Что значит соответствуют в математике

СООТВЕТСТВИЕ

— понятие, распространяющее на случай двух, вообще говоря, различных множеств или однотипных математич. структур понятие бинарного отношения. С. широко используют в математике, а также в различных прикладных областях: теоретич. программировании, теории графов, теории систем, математич. лингвистике и т. д.
Соответствием между множествами Аи Вназ. любое подмножество Rдекартова произведения Что значит соответствуют в математикеДругими словами, С. между Аи Всостоит из нек-рых упорядоченных пар ( а, b), где Что значит соответствуют в математикеКак правило, С. обозначают тройкой (R, А, В )и, наряду с записью Что значит соответствуют в математикепишут также aRb или R (а, b). Иногда вместо лсоответствие

Смотреть что такое «СООТВЕТСТВИЕ» в других словарях:

соответствие — Соответствие … Словарь синонимов русского языка

Соответствие — СООТВЕТСТВИЕ, литературный прием, родственный символу, устанавливает внутреннюю связь между поэтически воспринимаемыми звуками, красками, линиями, формами, запахами, осязательными и другими ощущениями. Соответствие связано с первичным значением… … Литературная энциклопедия

Соответствие — СООТВЕТСТВИЕ, литературный прием, родственный символу, устанавливает внутреннюю связь между поэтически воспринимаемыми звуками, красками, линиями, формами, запахами, осязательными и другими ощущениями. Соответствие связано с первичным… … Словарь литературных терминов

СООТВЕТСТВИЕ — СООТВЕТСТВИЕ, соответствия, ср. Соотношение между чем нибудь, выражающее согласованность, равенство в чем нибудь или чему нибудь в каком нибудь отношении, гармонию. Соответствие исполнения заданию. У них полное соответствие интересов. Между его… … Толковый словарь Ушакова

соответствие — Соответствие, если это существительное достаточно гибко в сочетании с другими словами (можно сказать и соответствие с чем, и между чем и чем, и чему), то образованный с его помощью сложный предлог в соответствии (обратим внимание: он кончается на … Словарь ошибок русского языка

СООТВЕТСТВИЕ — СООТВЕТСТВИЕ, в геометрии свойство двух геометрических фигур, у которых углы, стороны и точки одной находятся в аналогичном отношении к углам, сторонам и точкам другой. В теории множеств говорят, что множества А и В находятся во взаимно… … Научно-технический энциклопедический словарь

СООТВЕТСТВИЕ — СООТВЕТСТВИЕ, я, ср. Соотношение между чем н., выражающее согласованность, равенство в каком н. отношении. Полное с. интересов. • В соответствии с чем, предл. с твор. соответственно чему н., в согласии с чем н. Поступать в соответствии с уставом … Толковый словарь Ожегова

СООТВЕТСТВИЕ — СООТВЕТСТВИЕ. Элемент одного языка, функционально соответствующий элементу другого в данном контексте. Различают постоянные С. и вариантные, или контекстуальные … Новый словарь методических терминов и понятий (теория и практика обучения языкам)

Соответствие — (матем.) см. Отображение … Экономико-математический словарь

соответствие — СООТВЕТСТВИЕ1, гармонизация, согласование, согласовывание, соразмерение СООБРАЗНОСТЬ, гармония, гармоничность, созвучность, сообразность, соразмерность, книжн. адекватность, устар. согласие, разг. ладность СООТВЕТСТВЕННЫЙ,… … Словарь-тезаурус синонимов русской речи

Источник

Числовые и буквенные выражения. Формулы

Так же, как и у нашего языка общения есть алфавит и знаки-помощники (точка, тире, запятая и т.д.), математический язык вычисления также имеет свой алфавит:

Буквы и цифры в математике служат для обозначения чисел.

Цифрами обозначается конкретное, какое-то определённое число.

Буквамилюбое или неизвестное число, в зависимости от задачи.

МАТЕМАТИЧЕСКИЕ ВЫРАЖЕНИЯ – это «слова» и «фразы» математики, записи, в которых содержатся:

При этом знаки математических действий и вспомогательные знаки ОБЯЗАТЕЛЬНО связывают числа и обозначают последовательность действий над ними.

Примеры математических выражений:

ВНИМАНИЕ!

НЕ ЯВЛЯЕТСЯ математическим выражением:

Например, это НЕ математические выражения:

Случаи опускания знака умножения в выражениях

В буквенных выражениях обычно знак умножения пишут только между числами, которые выражены цифрами.

В остальных случаях знак умножения опускают, например:

Как читать математические выражения

Простейшие математические выражения, состоящие из одного математического действия, называются по названию результата этого действия:

Более сложные выражения, называют по последнему выполняемому действию:

Важно не только уметь читать готовые математические выражения, но и «переводить» слова на математический язык – язык чисел, знаков действия и других символов:

Алгоритм чтения математических выражений

Чтобы прочитать математическое выражение, нужно:

При чтении сложного выражения повторяем действия алгоритма столько раз, сколько необходимо.

Формулы

Используя математические выражения можно одну величину представить в виде другой, то есть, установить зависимость значения одной величины от значения другой величины.

Велосипедист едет со скоростью \(v_<1>\) км/ч. Найти скорость:

а) автомобиля, если известно, что он едет в 3 раза быстрее: \(v_=3\cdot v_<1>\);

б) пешехода, если известно, что он двигается на 15 км/ч медленнее: \(v_

= v_<1>-15\).

Иначе это называется выразить одну величину через другую.

Многие величины в математике имеют свои собственные обозначения. Например: S – площадь фигуры, P – периметр, t – время и т.д.

Запись такого равенства называется формулой.

ФОРМУЛА – это запись зависимости значения некоторой величины от значений одной или нескольких других величин. Или другими словами, это запись правила вычисления одной неизвестной величины при помощи известных других.

Насколько публикация полезна?

Нажмите на звезду, чтобы оценить!

Средняя оценка 3.3 / 5. Количество оценок: 8

Источник

Словарь терминов по математике от А до Я

Что значит соответствуют в математике

Аксиома — утверждение, принимаемое 6ез доказательств.

Алгебраическое выражение — некоторое количество чисел, обозначенных буквами или цифрами и соединенных при помощи действий сложения, вычитания, умножения, деления, возведения в степень и извлечения корня.

Абцисса (французское слово). Одна из точек декартовых координат. Является первой. Обозначается, обычно, символом «X». Впервые употреблено Г. Лейбницем в 1675 году (немецкий ученый).

Аддитивность. Некоторое свойство величин. Говорит о следующем: значение определенной величины соответствующее полноценному объекту, равно сумме значений такой величины, которые соответствуют его частям в любом разбиении полноценного объекта на части.

Адъюнкта. Полностью соответствует алгебраическому дополнению.

Аксонометрия. Один из способов изображения на плоскости пространственных фигур.

Алгебра. Часть математики, которая изучает задачи и решения алгебраических уравнений. Термин впервые возможно было увидеть в 11-м веке. Применил Мухам меда бен-Муса ал-Хорезми (математик и астроном).

Аргумент (функции). Переменная величина (независимая), с помощью которой определяется значение функции.

Арифметика. Наука, которая изучает действия над числами. Возникла в Вавилоне, Индии, Китае, Египте.

Ассиметрия. Отсутствие или нарушение симметрии (обратное значение симметрии).

Бесконечно большая величина — больше любого наперед заданного числа.

Бесконечно малая величина — меньше любой конечной.

Биллион. Одна тысяча миллионов (единица с девятью нулями).

Биссектриса. Луч, имеющий начало в вершине угла (делит угол на две части).

Вектор. Направленный отрезок прямой. Один конец — начало вектора; другой — конец вектора. Впервые термин употребил У. Гамильтон (ирландский ученый).

Вертикальные углы. Пара углов, которая имеет общую вершину (образуется за счет пересечения двух прямых таким образом, что стороно одного угла — это прямое продолжение второго).

Вектор — величина, характеризующаяся не только своим числовым значением, но и направлением.

График — чертеж, наглядно изображающий зависимость одной величины oт другой, линия, дающая наглядное представление о характере изменения функции.

Гексаэдр. Шестигранник. Термин впервые был употреблен Паппой Александийским (древнегреческий ученый).

Геометрия. Часть математики, которая изучает пространственные формы и отношения. Термин впервые употребили в Вавилоне/Египте (5 ве до н. э.).

Гипербола. Незамкнутая кривая (состоит при помощи двух неограниченных ветвей). Термин появился благодаря Апполонию Пермскому (древнегреческий ученый).

Гипоциклоида. Это кривая, которую описывает точка окружности.

Гомотетия. Расположение между собой фигур (подобных), при которых прямые, соединяющие точки этих фигур, пересекаются в одной и той же точке (это называется центр гомотетии).

Градус. Единица измерения для плоского угла. Равна 1/90 части прямого угла. Измерять углы в градусах начала больше 3 веков назад. Впервые такие измерения применили в Вавилоне.

Дедукция. Форма мышления. С ее помощью какое-либо утверждение выводят логически (исходя из правил современной науки «логики»).

Диагональ. Отрезок прямой, который между собой соединяет вершины треугольника (они не лежат на одной стороне). Впервые употребил термин Евклид (3 век до нашей эры).

Дискриминант. Выражение, составленное из величин, определяющих функцию.

Дробь — число, составленное из целого числа долей единицы. Выражается отношением двух целых чисел m/n, где m — числитель, показывающий, сколько долей единицы содержится в дроби, а n знаменатель, показывающий, на сколько долей разделена единица.

Знаменатель. Числа, из которых составляют дробь.

Золотое сечение — деление отрезка на две части так, что большая часть, относится к меньшей так, как весь отрезок — к большей части. Приблизительно равно 1,618. Критерий красоты, используется в архитектуре и др. Термин ввел Леонардо да Винчи.

Индекс. Буквенный либо числовой указатель. С его помощью снабжается математические выражения (делается это для того, чтобы отличать друг от друга).

Индукция. Метод доказательства математического уравнения.

Интеграл. Основное понятие математического анализа. Возникло из-за того, что понадобилось измерять объемы и площади.

Иррациональное число. Число, которое не является рациональным.

Катет. Одна из сторон прямоугольного треугольника, которая прилежит к прямому углу.

Квадрат. Правильный четырехугольник (либо ромб). Каждый угол квадрата прямой. Все углы в квадрате равны (по 90 градусов).

Математическая константа. Величина, которая никогда не изменяется в своем значении. Константа — противоположное число для переменной.

Конус. Тело, которое ограничено одной полостью при помощи конической поверхности. Оно пересекает плоскость (плоскость перпендикулярна ее оси).

Косинус. Является одной из тригонометрических функций. Обозначение в математике/высшей математике — cos.

Корень уравнения — решение, значение неизвестного, найденное через известные коэффициенты.

Константа — постоянная величина.

Координаты — числа, определяющие положение точки на плоскости, поверхности или в пространстве.

Логарифм. Показатель степени «m». Его следует возвести в степень «а» для того, чтобы получить некоторое число NT. Впервые логарифм предложил Дж. Непер.

Линия — общая часть двух смежных областей поверхности.

Максимум. Наибольшее значение функции.

Масштаб. Отношение двух линейных размеров по отношению друг к другу. Используется во многих современных отраслях. Основная — картография, геодезия.

Матрица. Прямоугольная таблица. Образуется при помощи множества числа (определенного). Включает в себя столбцы и строки (структура матрицы). Впервые термин «матрица» появилась у ученого Дж. Сильвестра.

Медиана. Отрезок, который соединяет вершину треугольника и его середину противоположной стороны.

Минимум. Наименьшее значение функции.

Многоугольник. Геометрическая фигура. Определение — замкнутая ломаная.

Модуль. Абсолютная величина (действительного числа).

Множество — совокупность элементов, объединенных по какому-нибудь признаку.

Норма. Абсолютная величина числа.

Неравенство — два числа или выражения, соединенных знаками (больше) или (меньше).

Овал. Выпуклая, замкнутая фигура (плоская).

Окружность. Многочисленные точки, расположенные на плоскости.

Ордината. Одна из декартовых координат. Обозначается, обычно, второй.

Октаэдр. Геометрическая фигура. Один из пяти многогранников (правильных). Октаэдр включает в себя 8 граней (правильных), 6 вершин и 12 ребер.

Параллелепипед. Призма. Основание — параллелограмм или многогранник (равносильные понятия). Имеет 6 граней. Каждая грань — параллелограмм.

Параллелограмм. Четырехугольник. Противолежащие стороны у него параллельны (попарно). На данный момент присутствует 2 частных случая параллелограмма: ромб и квадрат. Главное свойство данной геометрической фигуры:
• Противоположные стороны равны;
• Противоположные углы равны.

Периметр. Сумма всех сторон геометрической фигуры. Впервые удалось встретить у Архимеда и Герона (древнегреческие ученые).

Перпендикуляр. Прямая, которая пересекает плоскость (любую), находящуюся под прямым углом.

Пирамида. Многогранник. Его основание — это многоугольник. Любая другая грань — треугольник (эти грани имеют общую вершину). На данный момент пирамиды могут быть различных типов: треугольные, четырехугольные и так далее (различают таковые при помощи определения числа углов).

Планиметрия. Одна из наиболее важных частей элементарной (простой) геометрии. Планиметрия изучает свойства фигур, которые находятся на плоскости. Впервые термин был обозначен Еквлидом (древнегреческий ученый).

Плюс. Знак, который обозначает математическое действие — сложение. Кроме того, при помощи плюса обозначаются положительные числа. Впервые знак ввел Я. Видман (знаменитый чешский ученый).

Предел. Основное понятие математики. Обозначает: переменная величина неограниченно приближается к постоянному значению (определенному). Впервые термин использовал известный ученый Ньютон.

Призма. Многогранник. Первые 2 грани — равные угольники (это есть основания призмы). Остальное — боковые грани.

Проекция. Один из способов изображения пространственных и плоских фигур.

Переменная — величина, числовое значение которой изменяется по определенному, известному или неизвестному закону.

Плоскость — простейшая поверхность. Любая прямая, соединяющая две ее точки, целиком принадлежит ей.

Прямая — совокупность точек, общих для двух пересекающихся плоскостей.

Процент — сотая часть числа.

Радиан. Единица для измерения углов.

Ромб. Параллелограмм. Все стороны у данной фигуры равны. Ромб, имеющие прмые углы, имеет термин «квадрат».

Сегмент. Часть круга (таковую ограничивают при помощи хорды, которая соединяет концы дуги).

Секанс. Тригонометрическая функция. Обозначение в математике/высшей математике — sec.

Сектор. Часть круга. Ограничивается при помощи окружности + двух радиусов (соединяет концы одной дуги с центром круга).

Симметрия — соответствие.

Синус. Тригонометрическая функция. Обозначение в математике/высшей математике — sin.

Стереометрия. Часть элементарной геометрии. Занимается изучением полноценных пространственных фигур.

Тангенс. Тригонометрическая функция. Обозначение в математике/высшей математике — tg.

Тетраэдр. Многогранник, включает в себя 4 треугольные грани. В каждой вершине по 3 грани (сходятся в вершинах). Тетраэдр имеет 4 грани + 6 ребер + 4 вершины.

Точка. Не имеет определенного и окончательного понятия. Любая точка обозначается при помощи букв A, B, C.

Треугольник. Многоугольник (простой). Включает в себя 3 вершины + 3 стороны;

Теорема — утверждение, которое нужно доказать исходя из аксиом и ранее доказанных теорем.

Тождество — равенство, справедливое при всех значениях входящих в него коэффициентов.

Топология — раздел математики, изучающий свойства фигур, не изменяющиеся при любых деформациях, проводимых 6ез разрывов и склеиваний.

Уравнение — математическая запись задачи о разыскании значений неизвестных, при которых значения двух данных функций равны.

Угол. Геометрическая фигура (плоская). Образуется двумя лучами, которые выходят из одной точки (точки — вершины угла).

Факториал — произведение натуральных чисел от 1 до какого-либо данного натурального числа n. Обозначается n!. Факториал нуля о! = 1.

Формула — комбинация математических знаков, выражающая какое-нибудь предложение.

Функция — числовая зависимость между элементами двух множеств, при котором одному элементу одного множества соответствует определенный элемент другого множества. Может быть задана формулой или графиком.

Хорда. Отрезок, который соединяет между собой 2 точки, находящиеся на окружности.

Цифры — знаки для обозначения чисел.

Центр. Середина чего-либо (например: круга).

Цилиндр. Тело, которое ограничено цилиндрической поверхностью + параллельными плоскостями (двумя). Впервые понятие «цилиндр» возможно было встретить у Евклида и Аристарха.

Циркуль. Специальный прибор, разработанный для того, чтобы чертить дуги, линейные измерения и окружности.

Числитель. Определенное число, при помощи которого составлена дробь. Впервые термин применил Максим Плануда (византийский ученый).

Число — одно из основных понятий математики, возникшее в связи со счетом отдельных предметов.

Шар. Геометрическое тело. Представляет из себя общую совокупность всех точек определенного пространства.

Экспонента. Является одним и тем же, что и экспоненциальная функция. Впервые термин ввел Г. Лейбниц (немецкий ученый).

Эллипс. Овальная кривая. Впервые данный термин ввел Апполоний Пергский (древнегреческий ученый).

Источник

Разряды и классы чисел

Что значит соответствуют в математике

Числа и цифры

Числа — это единицы счета. С помощью чисел можно сосчитать количество предметов и определить различные величины.

Для записи чисел используются специальные знаки — цифры. Всего их десять: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0.

Натуральные числа — это числа, которые мы используем при счете. Вот они: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, …

От количества цифр в числе зависит его название.

Число, которое состоит из одного знака, называется однозначным. Наименьшее однозначное — 1, наибольшее — 9.

Число, которое состоит из двух знаков цифр, называется двузначным. Наименьшее двузначное — 10, наибольшее — 99.

Числа, которые записаны с помощью двух, трех, четырех и более цифр, называются двузначными, трехзначными, четырехзначными или многозначными. Наименьшее трехзначное — 100, наибольшее — 999.

Каждая цифра в записи многозначного числа занимает определенное место — позицию.

Классы чисел

Цифры в записи многозначных чисел разбивают справа налево на группы по три цифры в каждой. Эти группы называют классами. В каждом классе цифры справа налево обозначают единицы, десятки и сотни этого класса.

Что значит соответствуют в математике

Названия классов многозначных чисел справа налево:

Чтобы читать запись многозначного числа было удобно, между классами оставляют небольшой пробел. Например, чтобы прочитать число 125911723296, удобно сначала выделить в нем классы:

А теперь прочитаем число единиц каждого класса слева направо:

Разряды чисел

От позиции, на которой стоит цифра в записи числа, зависит ее значение. Например:

Можно сформулировать иначе и сказать, что в заданном числе 1 123 цифра 3 располагается в разряде единиц, 2 в разряде десятков, 1 в разряде сотен, а 1 служит значением разряда тысяч.

Проясним, что такое разряд в математике. Разряд — это позиция или место расположения цифры в записи натурального числа.

У каждого разряда есть свое название. Слева всегда живут старшие разряды, а справа — младшие. Чтобы быстрее запомнить, можно использовать таблицу.

Что значит соответствуют в математике

Количество разрядов всегда соответствует количеству знаков в числе. В этой таблице есть названия всех разрядов для числа, которое состоит из 15 знаков. У следующих разрядов также есть названия, но они используются крайне редко.

Низший (младший) разряд многозначного натурального числа — разряд единиц.

Высший (старший) разряд многозначного натурального числа — разряд, соответствующий крайней левой цифре в заданном числе.

Разрядные единицы обозначают так:

Каждые три разряда, следующие друг за другом, составляют класс. Первые три разряда: единицы десятки и сотни — образуют класс единиц (первый класс). Следующие три разряда: единицы тысяч, десятки тысяч и сотни тысяч — образуют класс тысяч (второй класс). Третий класс будут составлять единицы, десятки и тысячи миллионов и так далее.

Чтобы легче понимать математику — записывайтесь на наши курсы по математике!

Потренируемся

Пример 1. Записать цифрами число, в котором содержится:

Все разрядные единицы, кроме простых единиц, называют составными единицами. Каждые десять единиц любого разряда составляют одну единицу следующего более высокого разряда:

Чтобы узнать, сколько в числе заключается всех единиц какого-либо разряда, нужно отбросить все цифры, обозначающие единицы низших разрядов и прочитать число, которое выражено оставшимися цифрами.

Пример 2. Сколько сотен содержится в числе 6284?

В числе 6284 на третьем месте в классе единиц стоит цифра 2, значит, в числе есть две сотни.

Следующая цифра слева — 6, означает тысячи. Так как в каждой тысяче содержится 10 сотен то, в 6 тысячах их заключается 60.

Значит, в данном числе содержится 62 сотни.

Цифра 0 в любом разряде означает отсутствие единиц в данном разряде.

Проще говоря, цифра 0 в разряде десятков означает отсутствие десятков, в разряде сотен — отсутствие сотен и т. д. В том разряде, где стоит 0, при чтении числа ничего не произносится:

Чтобы проще освоить эту тему, можно распечатать таблицу классов и разрядов для учащихся 4 класса и обращаться к ней, если возникнут сложности.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *