Что значит слово аксиома

АКСИОМА — что это такое

Слово «Аксиома» происходит от греческого axioma и обозначает в буквальном переводе на русский «значимое», «принятое» положение. То есть аксиома предполагает исходное понимание сути предмета или явления без необходимости доказывать это окружающим. Термин часто используется в математике, философии, логике.

Пожалуй, что такое аксиома, все мы знаем ещё со школьной скамьи. Но попроси любого человека привести пример таковой, наверняка каждый второй задумается и ответит не сразу, если вообще ответит.

Аксиома – это очевидное утверждение, не требующее доказательства.

Почему аксиома не нуждается в доказательстве? Ответ прост: потому что она очевидна – так считал учёный Аристотель, с точки зрения которого аксиома всегда ясна и проста. Например, «солнце светит днём».

Определение, что такое аксиома дал и древнегреческий учёный-математик Евклид, который ввёл несколько геометрических аксиом как самоочевидных истины. Например, «параллельные прямые не пересекаются». И, опираясь на них, он выводил иные теории в геометрии.

С точки зрения философии и риторики, аксиому можно трактовать как непреложную и вечную истину, познать которую можно без эмпирического опыта – например, «любить не значит обладать».

Понимание нового времени

Спустя какое-то время возникла необходимость переосмыслить термин. Возникновение желания обосновать существующие аксиомы привело к изменению содержания этого понятия:

Удивительно, но от теории к теории аксиомы меняются до неузнаваемости! Чаще всего они по-прежнему, как и до нашей эры, принимаются за отправное положение, на основе которого выстраиваются все остальные доказательства.

Синонимия

Синонимом термина «аксиома» можно назвать слово «постулат», поскольку он обозначает нечто незыблемое и не требующее доказательств.

Отталкиваясь от известного или нового постулата, можно рассуждать на любую тему, развивая мысль по определенным законам логики.

Мы помним, что любая аксиома должна приниматься на веру, но таковое положение дел возможно только в нематериальных субстанциях, например, когда речь идёт о религии. Если же разговор касается вполне материальных, проверяемых и анализируемых вещей/событий/фактов, то любой оратор должен тщательно анализировать ту базу, от которой он отталкивается, чтобы не основываться на ложных тезисах, которые слушатель не может проверить здесь и сейчас.

Источник

Аксиома – что означает? Определение, значение, примеры употребления

Ищешь, что значит слово аксиома? Пытаешься разобраться, что такое аксиома? Вот ответ на твой вопрос:

Значение слова «аксиома» в словарях русского языка

Аксиома это:

Аксио́ма ( «утверждение, положение») или постула́т — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами.

Аксиома

ж.
1. Положение какой-либо научной теории, принимаемое без доказательств в силу непосредственной убедительности.
2. Неоспоримая, бесспорная, не требующая доказательств истина.

Аксиома

(гр. axioma)
1) отправное, исходное положение какой-л. теории, лежащее в основе доказательств других положений этой теории, в пределах которой оно принимается без доказательства;
2) перен. бесспорная, не требующая доказательств истина.

Аксиома

ж.
1) Исходное положение какой-л. научной теории, принимаемое без доказательств.
2) перен. Неоспоримое, бесспорное положение, очевидная истина, не требующая доказательств.

Аксиома

Аксиома

[гр. axioma]
1. отправное, исходное положение какой-л. теории, лежащее в основе доказательств других положений этой теории, в пределах которой оно принимается без доказательства;
2. * бесспорная, не требующая доказательств истина.

Аксиома

Аксиома

положение, принимаемое без доказательств Lib аксиома исходное положение, принимаемое без доказательств и лежащее в основе доказательств истинности других положений Spec

Аксиома

(греч. axioma), положение, принимаемое без логического доказательства в силу непосредственной убедительности; истинное исходное положение теории.

Аксиома

аксиома ж.
1) Исходное положение какой-л. научной теории, принимаемое без доказательств.
2) перен. Неоспоримое, бесспорное положение, очевидная истина, не требующая доказательств.

Аксиома

аксиомы, ж. (греч. axioma). Положение, принимаемое без доказательств (мат.). || Очевидная истина, утверждение, принимаемое на веру (книжн.).

Аксиома

(греч. axioma — удостоенное, принятое положение, от axioo — считаю достойным), положение некоторой данной теории, которое при дедуктивном построении этой теории не доказывается в ней, а принимается за исходное, отправное, лежащее в основе доказательств других предложений этой теории. Обычно в качестве А. выбирают такие предложения рассматриваемой теории, которые являются заведомо истинными или могут в рамках этой теории считаться истинными. Возникнув в Древней Греции, термин ‘А.’ впервые встречается у Аристотеля, а затем через труды последователей и комментаторов Евклида прочно входит в геометрию. В средние века господство аристотелевской философии обусловило его проникновение в другие области науки, а через неё и в обыденную жизнь. А. стали называть такое общее положение, которое, будучи совершенно очевидным, не нуждается в доказательстве. Природу этой очевидности видели, следуя взглядам, идущим ещё от Платона, в прирождённости человеку таких основных истин, как математическая А. Учение И. Канта об априорности последних, т. е. о том, что они предшествуют всякому опыту и не зависят от него, было кульминацией таких взглядов на А. Первым крупным ударом по взгляду на А. как на вечные и непреложные ‘априорные’ истины явилось построение Н. И. Лобачевским неевклидовой геометрии. Критикуя взгляды Гегеля на логическую А. (на фигуры аристотелевских силлогизмов), В. И. Ленин писал: ‘…практическая деятельность человека миллиарды раз должна была приводить сознание человека к повторению разных логических фигур, дабы эти фигуры могли получить значение аксиом’ (‘Философские тетради’, 1969, с. 172). Именно в обусловленности многовековым человеческим опытом, практикой, включая сюда также и эксперимент, и опыт развития науки,- причина очевидности А., рассматриваемых как истины, не нуждающиеся в доказательстве. Вместе с тем крушение взгляда на А. как на ‘априорные’ истины привело к раздвоению понятия А. Всё возрастающая в связи с запросами практики необходимость экспериментировать в области построения новых теорий, заменять одну А. другой, а также их относительность, зависимость от ранее встречающихся конкретных условий опыта и уровня развития науки, приводящая к невозможности выбрать раз навсегда и навечно в качестве А. такие положения, которые будут истинны абсолютно во всех условиях, — всё это обусловило появление понятия А. в смысле, несколько отличном от традиционного. Понятие А. в этом смысле зависит от того, построение какой теории рассматривается и как оно проводится. А. данной теории при этом называются просто те предложения этой теории, которые при данном построении её как дедуктивной теории принимаются за исходные, притом совершенно независимо от того, сколь они просты и очевидны. Более того, уже из опыта, например, построения различных неевклидовых геометрий и их последующего истолкования и практического использования стала ясной невозможность при построении (или аксиоматизации) той или иной теории каждый раз требовать заранее истинности её А. С созданием развитого аппарата математической логики связано дальнейшее развитие понятия А. В формальном исчислении А. является уже не предположением некоторой содержательной научной теории, а просто одной из тех формул, из которых по правилам вывода этого исчисления выводятся остальные доказуемые в нём формулы (‘теоремы’ этого исчисления). См. также Аксиоматический метод и литературу при этой статье. А.В. Кузнецов.

Аксиома

Аксиома

заведомо истинное утверждение, принимаемое без доказательств

Источник

Аксиома

Аксио́ма (др.-греч. ἀξίωμα — утверждение, положение), постула́т — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без необходимости доказательства и лежащее в основе доказательства других ее положений. [1]

В современной науке аксиомы — это те положения теории, которые принимаются за исходные, причём вопрос об истинности решается либо в рамках других научных теорий, либо посредством интерпретации данной теории. [1]

Аксиоматиза́ция теории — явное указание конечного или счётного, рекурсивно перечислимого (как, например, в аксиоматике Пеано) набора аксиом и правил вывода. После того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, всё дальнейшее изложение должно основываться исключительно лишь на этих аксиомах, не опираясь на обычное конкретное значение этих объектов и их отношений. Утверждения на основе аксиом называются теоремами. С формальной точки зрения, сами аксиомы также входят в число теорем.

Примеры различных, но равносильных наборов аксиом можно встретить в математической логике и Евклидовой геометрии.

Набор аксиом называется непротиворечивым, если из аксиом набора, пользуясь правилами логики, нельзя прийти к противоречию, то есть доказать одновременно и некое утверждение, и его отрицание. Аксиомы являются своего рода «точками отсчёта» для построения теорий в любой науке, при этом сами они не доказываются, а выводятся непосредственно из эмпирического наблюдения (опыта) или обосновываются в более глубокой теории.

Австрийский математик Курт Гёдель доказал «теоремы о неполноте», согласно которым всякая система математических аксиом (формальная система) начиная с определённого уровня сложности либо внутренне противоречива, либо неполна (то есть в достаточно сложных системах найдётся хотя бы одно высказывание, истинность и ложность которого не может быть доказана средствами самой этой системы). [2]

Содержание

История

Впервые термин «аксиома» встречается у Аристотеля (384—322 до н. э.) и перешёл в математику от философов Древней Греции. Евклид различает понятия «постулат» и «аксиома», не объясняя их различия. Со времён Боэция постулаты переводят как требования (petitio), аксиомы — как общие понятия. Первоначально слово «аксиома» имело значение «истина, очевидная сама по себе». В разных манускриптах Начал Евклида разбиение утверждений на аксиомы и постулаты различно, не совпадает их порядок. Вероятно переписчики придерживались разных воззрений на различие этих понятий.

Отношение к аксиомам как к неким неизменным самоочевидным истинам сохранялось долгое время. Например, в словаре Даля аксиома — это «очевидность, ясная по себе и бесспорная истина, не требующая доказательств».

Сейчас аксиомы обосновываются не сами по себе, а в качестве необходимых базовых элементов теории. Критерии формирования набора аксиом в рамках конкретной теории часто являются прагматическими: краткость формулировки, удобство манипулирования, минимизация числа исходных понятий и т. п. Такой подход не гарантирует истинность принятых аксиом. Лишь подтверждение теории является одновременно и подтверждением набора её аксиом. [1]

Источник

Что такое аксиома простыми словами: определение и значение слова

Аксиома: определение кратко

В нашем родном языке существует огромное число сложных, непонятных, узкоспециализированных слов.

В данной статье вы сможете понять и узнать значение такого интересного слова, как аксиома. Это слово дает свои плоды из Греции, греческого языка, имеет перевод на русский язык: “утверждение”, “положение”.

Аксиома – это то, что было доказано кем-то очень давно и не нуждается в этом снова.

Это истина, которая очевидна всем, ей нужно поверить не требуя доказательств. Бывает аксиома в геометрии и философии.

Значение слова аксиома

Люди считают, что понятие вышеуказанного слова ввел в общее использование Аристотель – древнегреческий философ, ученик Платона с 343 года до н. э. С древнейших веков определение “аксиома” считается вечной, неприкосновенной и априорной.

Т. е. его истина устанавливается независимо от опыта, также не противоречит уже существующим фактам, потому что никто до данного не додумывался, не доказывал.

Аксиома возникает благодаря многовековой познавательной деятельности. Аристотель считал: данное утверждение принимается от природы или космоса. Но в современном мире это понятие сократилось до следующего определения: аксиома – это понятие, которое принимается на веру.

Тысячи лет назад и в современном мире постулат принимается за первоначальное, основывающее положение, исходя из которого строятся другие доказательства, свойства и теоремы. Отталкиваясь от постулата (аксиомы) есть возможно рассуждать на совершенно различные тему, развивать мысли по существующим логическим законам.

“Принимать на веру” можно не все понятия: если дело связано с техническими науками или вещью, то данное должно исходить из проведения многочисленных опытов, анализов, фактов, гипотез. Верить, не проверяя, возможно нематериальные вещи: религия.

Что значит слово аксиома. Смотреть фото Что значит слово аксиома. Смотреть картинку Что значит слово аксиома. Картинка про Что значит слово аксиома. Фото Что значит слово аксиома

Примеры аксиом

Аксиома в философии

Для точного и правильного построения философии следует уметь “философствовать”. Для достижения данного стоит найти важную и необходимую аксиому, являющуюся понятной, разумеющейся и неоспоримой. Надо найти такой постулат, на который возможно опереться, ка на твердую землю и из него выводить другие философские понятия.

Аристотель, в отличие от других мыслителей и философов, смог предоставить свои суждения и изложения о философии в отчетливой форме, он самым первым на основе аксиом построил единую систему философии. Данный метод применим в философии современного мира. Очевиден и разумеющийся до сих пор.

Первая аксиома Аристотеля – закон непротиворечия. Он гласит о сущности и смысле жизни, когда человек проводит тонкую грань между реальностью и мышлением, а также ищет ответы на разные философские вопросы. Закон гласит о том, что две противоположные, противоборствующие стороны не могут находиться на одной черте, существовать вместе одновременно.

Поэтому два разных суждения не могут быть одновременно правильными. Ученый Аристотель не был согласен с другими философами: Гераклитом и Протагором.

Геометрическая аксиома

Геометрия является особым видом познавательной деятельности, изучающая трехмерные фигуры, типы, свойства различных предметов, плоскостей.

Многие важнейшие геометрические понятия формулируются, исходя из подтверждающих положений и утверждений. Остальные – на основе положений, являющиеся правильными без учета доказательств – аксиоматические понятия.

Геометрия рассматривается в двух планах: фигуры и величины на плоскости (планиметрия), пространственные фигуры (стереометрия).

Самыми главными и элементарными планиметрическими понятиями считаются точка и прямая, в стереометрическом разделе геометрии – точка, прямая, плоскость.

Примеры важнейших аксиом геометрии

Все геометрические постулаты разделяют на множество категорий, приведем некоторые из них:

Аксиомы принадлежности

Источник

Значение слова аксиома

аксиома в словаре кроссвордиста

аксиома

Толковый словарь живого великорусского языка, Даль Владимир

ж. греч. очевидность, ясная по себе и бесспорная истина, не требующая доказательств, напр. целое всегда, больше части своей; основная истина, самоистина, ясноистина.

Толковый словарь русского языка. Д.Н. Ушаков

аксиомы, ж. (греч. axioma). Положение, принимаемое без доказательств (мат.).

Очевидная истина, утверждение, принимаемое на веру (книжн.).

Толковый словарь русского языка. С.И.Ожегов, Н.Ю.Шведова.

Исходное положение, принимаемое без доказательств и лежащее в основе доказательств истинности других положений (спец.).

Положение, принимаемое без доказательств (книжн.).

Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова.

Исходное положение какой-л. научной теории, принимаемое без доказательств.

перен. Неоспоримое, бесспорное положение, очевидная истина, не требующая доказательств.

Энциклопедический словарь, 1998 г.

АКСИОМА (греч. axioma) положение, принимаемое без логического доказательства в силу непосредственной убедительности; истинное исходное положение теории.

Имена, названия, словосочетания и фразы содержащие «аксиома»:

Большая Советская Энциклопедия

(греч. axíōma ≈ удостоенное, принятое положение, от axióō ≈ считаю достойным), положение некоторой данной теории, которое при дедуктивном построении этой теории не доказывается в ней, а принимается за исходное, отправное, лежащее в основе доказательств других предложений этой теории. Обычно в качестве А. выбирают такие предложения рассматриваемой теории, которые являются заведомо истинными или могут в рамках этой теории считаться истинными.

Возникнув в Древней Греции, термин «А.» впервые встречается у Аристотеля, а затем через труды последователей и комментаторов Евклида прочно входит в геометрию. В средние века господство аристотелевской философии обусловило его проникновение в другие области науки, а через неё и в обыденную жизнь. А. стали называть такое общее положение, которое, будучи совершенно очевидным, не нуждается в доказательстве. Природу этой очевидности видели, следуя взглядам, идущим ещё от Платона, в прирождённости человеку таких основных истин, как математическая А. Учение И. Канта об априорности последних, т. е. о том, что они предшествуют всякому опыту и не зависят от него, было кульминацией таких взглядов на А. Первым крупным ударом по взгляду на А. как на вечные и непреложные «априорные» истины явилось построение Н. И. Лобачевским неевклидовой геометрии.

Критикуя взгляды Гегеля на логическую А. (на фигуры аристотелевских силлогизмов), В. И. Ленин писал: «. практическая деятельность человека миллиарды раз должна была приводить сознание человека к повторению разных логических фигур, дабы эти фигуры могли получить значение аксиом» («Философские тетради», 1969, с. 172). Именно в обусловленности многовековым человеческим опытом, практикой, включая сюда также и эксперимент, и опыт развития науки,≈ причина очевидности А., рассматриваемых как истины, не нуждающиеся в доказательстве.

Вместе с тем крушение взгляда на А. как на «априорные» истины привело к раздвоению понятия А. Всё возрастающая в связи с запросами практики необходимость экспериментировать в области построения новых теорий, заменять одну А. другой, а также их относительность, зависимость от ранее встречающихся конкретных условий опыта и уровня развития науки, приводящая к невозможности выбрать раз навсегда и навечно в качестве А. такие положения, которые будут истинны абсолютно во всех условиях, ≈ всё это обусловило появление понятия А. в смысле, несколько отличном от традиционного. Понятие А. в этом смысле зависит от того, построение какой теории рассматривается и как оно проводится. А. данной теории при этом называются просто те предложения этой теории, которые при данном построении её как дедуктивной теории принимаются за исходные, притом совершенно независимо от того, сколь они просты и очевидны. Более того, уже из опыта, например, построения различных неевклидовых геометрий и их последующего истолкования и практического использования стала ясной невозможность при построении (или аксиоматизации) той или иной теории каждый раз требовать заранее истинности её А.

С созданием развитого аппарата математической логики связано дальнейшее развитие понятия А. В формальном исчислении А. является уже не предположением некоторой содержательной научной теории, а просто одной из тех формул, из которых по правилам вывода этого исчисления выводятся остальные доказуемые в нём формулы («теоремы» этого исчисления). См. также Аксиоматический метод и литературу при этой статье.

Имена, названия, словосочетания и фразы содержащие «аксиома»:

Википедия

Необходимость в принятии аксиом без доказательств следует из индуктивного соображения: любое доказательство вынуждено опираться на какие-либо утверждения, и если для каждого из них требовать своих доказательств, цепочка получится бесконечной. Чтобы не уходить в бесконечность, нужно где-то эту цепочку разорвать — то есть какие-то утверждения принять без доказательств, как исходные. Именно такие, принятые в качестве исходных, утверждения и называются аксиомами.

В современной науке вопрос об истинности аксиом, лежащих в основе какой-либо теории, решается либо в рамках других научных теорий, либо посредством интерпретации данной теории.

Примеры употребления слова аксиома в литературе.

Такими обезличенными аксиомами стали идеи Вернадского о биогенном происхождении атмосферы, о рассеянии элементов, о диссимметрии жизни, о коренном материально-энергетическом отличии живых и косных естественных тел биосферы, об избирательной способности живых организмов к изотопам, о материальном обмене Земли с космосом, о длительности геологического времени.

Каждое доказательство опирается либо на дефиницию, либо на аксиому, либо на предшествующее, ранее доказанное утверждение.

Начинался он, как ни странно, в самом запаутиненном отсеке физики, куда давно никто не заглядывал, ибо там двери были заперты аксиомами.

Никому даже в голову не приходило усомниться в этой очевидной аксиоме, тем более, что господствовавшая в то время контракционная теория объясняла образование гор остыванием Земли и сокращением ее радиуса.

Среди Бидлэйков того поколения, к которому принадлежал Уолтер, невыносимость старого Джона стала почти аксиомой.

В каждом случае переданный круг мог бы реагировать точно так же, как круг, определенный в аксиомах Евклида.

Даже Эвклид не воплотил своих рассуждений в чертежах, а создал их как цепь словесных положений: постулатов, аксиом, теорем, доказательств, при которых чертежи являются лишь подспорным пояснением.

Теперь я перехожу к дистрибуции Пуассона, теореме центрального предела, аксиоме Холмогорова, играм Эренхафта, цепочкам Маркова, треугольнику Паскаля и всему остальному.

Источник: библиотека Максима Мошкова

Транслитерация: aksioma
Задом наперед читается как: амоиска
Аксиома состоит из 7 букв

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *