Что значит сингулярность простыми словами
Что такое сингулярность своими словами?
Что такое сингулярность простыми словами?
Какой физический смысл имеет понятие сингулярность?
Что такое Сингулярная точка?
Сингулярная точка Сингулярная точка, точка на диаграмме состояния или на диаграмме состав — свойство, отвечающая образованию недиссоциированного соединения. Например, в системе из компонентов А и В образование такого соединения С выражается точкой D (см.
Как образуется сингулярность?
Что такое сингулярность в астрономии?
Как понять слово сингулярность?
Что значит Вселенная Сингулярна?
Что значит слово Сингулярный?
сингулярный — ая, ое; рен, рна, рно. [от лат. singulāris отдельный, одиночный] Книжн. Единственный в своем роде, одиночный; уникальный.
Какая сила притяжения черной дыры?
имеет две истинные гравитационные сингулярности: одну в «прошлом» для любого наблюдателя из областей I и III, и одну в «будущем» (обозначены серым на рисунке справа).
Что такое фазовая сингулярность?
Фазовые сингулярности в пучках когерентного излучения обусловлены нарушением топологической структуры волнового фронта и характеризуются аномально-быстрыми изменениями фазы световых колебаний. На волновом фронте фазовые сингулярности очень часто проявляются в форме винтовых дислокаций (ВД).
Когда наступит технологическая сингулярность?
Концепция технологической сингулярности в политике
Технологическая сингулярность как следствие развития нанотехнологий рассматривается в отчёте 2007 года Комиссии по экономической политике Конгресса США. Некоторые интерпретации концепции сингулярности предполагают, что последняя должна наступить около 2030 года.
Что произошло после Большого взрыва?
Приблизительно через 10−42 секунд после момента Большого взрыва фазовый переход вызвал экспоненциальное расширение Вселенной. Данный период получил название Космической инфляции и завершился через 10−36 секунд после момента Большого взрыва.
Что такое черные дыры как они образуются?
Чёрные дыры звёздных масс образуются как конечный этап жизни звезды: после полного выгорания термоядерного топлива и прекращения реакции звезда теоретически должна начать остывать, что приведёт к уменьшению внутреннего давления и сжатию звезды под действием гравитации.
Где находится горизонт событий?
Горизо́нт собы́тий, в астрофизике — это граница, за которой события не могут повлиять на наблюдателя. Этот термин был придуман Вольфгангом Риндлером. В 1784 году Джон Мичелл предположил, что вблизи компактных массивных объектов гравитация может быть настолько сильной, что даже свет не может ее преодолеть.
Что будет если попасть в черную дыру?
Что такое черная дыра
В момент, когда вы входите в черную дыру, реальность будет разделена на две части. В одной вы будете немедленно уничтожены, а в другой погрузитесь в черную дыру совершенно невредимым. Черная дыра — это место, в котором известные нам законы физики не работают.
masterok
Мастерок.жж.рф
Хочу все знать
В философии слово «сингулярность», произошедшее от латинского «singulus» — «одиночный, единичный», обозначает единичность, неповторимость чего-либо — существа, события, явления. Больше всего над этим понятием размышляли современные французские философы — в частности, Жиль Делез. Он трактовал сингулярность как событие, порождающее смысл и носящее точечный характер. «Это поворотные пункты и точки сгибов; узкие места, узлы, преддверия и центры; точки плавления, конденсации и кипения; точки слез и смеха, болезни и здоровья, надежды и уныния, точки чувствительности». Но при этом, оставаясь конкретной точкой, событие неизбежно связано с другими событиями.
Поэтому точка одновременно является и линией, выражающей все варианты модификации этой точки и ее взаимосвязей со всем миром.
«Когда человек создаст машину, которая будет умнее человека, история станет непредсказуемой, потому что невозможно предугадать поведение интеллекта, превосходящего человеческий»
В других науках термин «сингулярность» стал обозначать единичные, особые явления, для которых перестают действовать привычные законы. Например, в математике сингулярность — это точка, в которой функция ведет себя нерегулярно — например, стремится к бесконечности или не определяется вообще. Гравитационная сингулярность — это область, где пространственно-временной континуум настолько искривлен, что превращается в бесконечность. Принято считать, что гравитационные сингулярности появляются в местах, скрытых от наблюдателей — согласно «принципу космической цензуры», предложенному в 1969 году английским ученым Роджером Пенроузом. Он формулируется так: «Природа питает отвращение к голой (т.е. видимой внешнему наблюдателю) сингулярности». В черных дырах сингулярность скрыта за так называемым горизонтом событий — воображаемой границей черной дыры, за пределы которой не вырывается ничего, даже свет.
Но ученые продолжают верить в существование где-то в космосе «голых» сингулярностей. А самый яркий пример сингулярности — состояние с бесконечно большой плотностью материи, возникающее в момент Большого взрыва. Этот момент, когда вся Вселенная была сжата в одной точке, остается для физиков загадкой — потому, что он предполагает сочетание взаимоисключающих условий, например, бесконечной плотности и бесконечной температуры.
В сфере IT ждут прихода другой сингулярности — технологической. Ученые и писатели-фантастыобозначают этим термином тот переломный момент, после которого технический прогресс ускорится и усложнится настолько, что окажется недоступным нашему пониманию. Исходно этот термин предложил американский математик и писатель-фантастВернор Виндж в 1993 году. Он высказал следующую идею: когда человек создаст машину, которая будет умнее человека, история станет непредсказуемой, потому что невозможно предугадать поведение интеллекта, превосходящего человеческий. Виндж предположил, что это произойдет в первой трети XXI века, где-то между 2005 и 2030 годами.
В 2000 году американский специалист по развитию искусственного интеллекта Елиезер Юдковски также высказал гипотезу о том, что, возможно, в будущем появится программа искусственного интеллекта, способная совершенствовать саму себя со скоростью, во много раз превосходящей человеческие возможности. Близость этой эры, по мнению ученого, можно определить по двум признакам: растущая техногенная безработица и экстремально быстрое распространение идей.
«Вероятно, это окажется самой стремительной технической революцией из всех прежде нам известных, — писал Юдковски. — Свалится, вероятнее всего, как снег на голову — даже вовлеченным в процесс ученым… И что же тогда случится через месяц или два (или через день-другой) после этого? Есть только одна аналогия, которую я могу провести — возникновение человечества. Мы очутимся в постчеловеческой эре. И несмотря на весь свой технический оптимизм, мне было бы куда комфортнее, если бы меня от этих сверхъестественных событий отделяли тысяча лет, а не двадцать».
Темой технологической сингулярности вдохновлялись писатели жанра «киберпанк» — например, она встречается в романе Уильяма Гибсона «Нейромант». Она показана и в популярном романе современного фантаста Дэна Симмонса «Гиперион» — там описывается мир, помимо людей, населенный Искинами — то есть, носителями искусственного интеллекта, которые вступают в конфликт с человечеством.
«Это был сингулярный случай, когда механизм вышел из-под контроля». Правильно — «единичный».
«Я уверен, рано или поздно Вселенная снова схлопнется в сингулярность».
«Мне нравится этот роман — лучшее описание технологической сингулярности из всех, что я читал».
Что такое сингулярность
Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. В разговорах с людьми мы иногда слышим редкое, непонятное большинству, слово «сингулярность». Для придания значимости собственной персоне, человек вворачивает подобные словечки, но точно ответить, что оно означает, не в состоянии.
Дословный перевод с латыни найти несложно. Слово singularis означает особенный, единственный, указывает на уникальность какого-либо события, существа, явления. Кажется, куда проще, но тут начинаются непонятности.
Это понятие применимо в разных сферах жизни человека, науки, техники, философии. В каждой области оно объясняется специфично. Неискушенному гражданину кажется, что речь идет о совсем непохожих вещах. Нет согласия даже в понимании значения слова.
Значение слова
Словно специально, чтобы запутать все окончательно, ученые умы придумали несколько разновидностей сингулярности. Согласно википедии бывают:
Сингулярность понятным языком
Да, легче не стало! Вы растеряны и возмущены: «Что это, простыми словами объяснить нельзя?». Давайте попробуем. Возьмем для примера два упомянутых выше трактования и объясним все это максимально просто (на пальцах):
Вы бросаете в люк один камень, промахнулись – камень остался в нашем пространстве. Следующий – попали, он пролетел границу горизонта и попал в зону сингулярности (неопределенности);
Два распространенных толкования этого явления способны описать его основные отличительные признаки:
Соответствие чего-то хотя бы одному из этих признаков говорит о том, что перед вами сингулярность.
Наиболее ярко по обоим признакам сингулярность иллюстрирует черная дыра. Считается, что в ее центре показатели всех физических характеристик бесконечны, законы физики не действуют, а время течет по неизвестным нам правилам. Поскольку предсказать поведение такого объекта невозможно, то и прогнозирование утрачивает всякий смысл.
Думаете, что все описанное далеко во времени, пространстве и нас не касается? Я покажу вам, что это не так.
Сингулярность в нашей жизни
Большинство процессов в обществе, экономике, истории, биологии происходит по условиям, предполагающим точку сингулярности в определенный момент времени. В основе развития этого явления лежит закон гиперболы. Прямо сейчас вокруг нас приближаются к своей развязке процессы, которые зарождались миллиарды лет назад.
Человечество и мировой продукт
Самый понятный пример – возрастание численности населения Земли и прирост мировых запасов продукта. Связи, обусловленные определенными условиями, строились тысячелетиями. Если сейчас оставить эти зависимости без изменения и продолжить их в будущее, очень скоро мы подойдем к точке сингулярности.
Количество людей на планете и мировой продукт были давно подсчитаны учеными. Еще два-три десятилетия назад стало понятно, что число людей увеличивается по квадратичной гиперболе, а производство продукции – по простой, то есть в 2 раза медленнее.
Прогнозы показывали, что в период с 2005 по 2020 год настанет время точки сингулярности. То есть сегодня мы внутри этого явления. Скажите, вы наблюдаете вокруг всеобъемлющее изобилие и богатство?
И снова технологическая сингулярность
Та самая точка, когда сложность развивающихся технологий будет недоступна человеческому пониманию, не за горами. Предположительно мы встретим ее с 2030 до 2045 года. Сценарий вероятных событий известен всем из фантастических фильмов.
Биологические революции
Сингулярность в биологии Земли дело привычное. Каждая революция происходила при гиперболическом росте популяции до какого-то момента. К примеру, динозавры были хозяевами планеты. Но после революционных событий их почти не осталось. Разве что крокодилы скромно занимают несущественную нишу.
Когда ученые мужи проанализировали периодичность дат революций, происходивших в биологии, а потом добавили к этой информации человеческие волнения, они заметили четкую связь с точкой сингулярности в районе 2010—2050 годов.
Сингулярность в истории
Это явление случалось довольно часто. Вспомните истории государств и империй. Скажем, Древний Рим в начале своего развития развивался по закону гиперболы.
Рост населения стал причиной захвата территорий, определил некоторое техническое развитие. Так продолжалось до нескольких эпидемий чумы, когда умерло до трети населения. После этого человечество задумалось о плотности жителей в одном месте.
Попытки восстановить количество людей позволили империи продержаться еще какое-то время. Но все равно государство по многим причинам распалось. Итак, алгоритм – резкий рост, нарушение равновесия, небольшие колебания, смена баланса ресурсов и гибель.
Похожие предопределенности были обнаружены в:
Выводы
В указанный исторический промежуток должно произойти что-то неимоверно важное, сравнимое с выходом живых организмов на сушу, что в корне изменит будущее.
Только не говорите, что все пропало и нам уготована участь крокодилов. Ведь и Рим не исчез бесследно. Да и мы отличаемся от динозавров. Мы можем думать, делать прогнозы, искать решения и адаптировать среду под свои потребности.
Главное, понимать что происходит и вовремя менять условия игры, чтобы не допускать необратимых процессов.
Потому что сингулярность – это точка с бесконечной плотностью, где нарушены все законы физики, а предположения о будущем неизвестны. В ней все теряет смысл. И осмысление происходящего тоже не имеет значения.
Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru
Эта статья относится к рубрикам:
Комментарии и отзывы (9)
Пример с асфальтом и люком — абсолютно бредовый. Почему пространство стало плоское? Камень попавший в люк остается в пространстве.
Слово «сингулярность», будем считать, придумано людьми. Хотя и это вопрос спорный. Как допущение, годится. Другого ничего предложить не возможно. А если это так, то люди и вправе давать толкование этому слову. Ну и что, что его применяют в разных областях знаний. Да на здоровье. Кому от этого вред.
сингулярность — степень неопределенности (ЭНТРОПИЯ) стремится к бесконечности
Сингулярность — кердык всему в некой точке вселенной.
Когда-нибудь слыхали про Новохоперскую аномальную зону, что в районе Воронежского заповедника? Вот это и есть геодезическая зона сингулярности, там регистрировались даже искажения на фото, когда фотографировали скажем в 80-е годы 20 века, а видели очертания иностранных интервентов времен Гражданской войны, белочехов и прочих.
Вообще это очень опасно, человек может физически переместиться в другой слой информационного поля, как скажем и во время управляемого сновидения. И исчезнуть для нашего информационного поля насовсем.
Учёные вообще любят всякие непонятные словечки употреблять, вот кто-то смог заглянуть внутрь черной дыры? Конечно нет, так с чего учёные взяли, что законы физики там не работают?
Ну есть очень плотное тело, обладающее огромной гравитацией, что на определенном расстоянии от него все тела будут обречены на падение на поверхность этого тела и нет такой скорости, на которой можно было бы преодолеть эту гравитацию. Вот так мне понятно, но физикам же скучно и они какие-то сингулярности придумывают.
камент на каменты к этой страничке написал ещё В.Высоцкий:
«Товарищи ученые! не сомлевайтесь, милые, коль что у вас не ладится, ну там не тот аффект, мы мигом к вам заявимся с лопатами и с вилами, денёчек покумекаем и выправим дефект!»
Как говорится, когда ученому нечего сказать, он переходит на формулы, так же и здесь. А вообще, наука-большой лохотрон, помимо реальных людей, понимающих то о чем они говорят, четко представляющих происходящие процессы, в науку затесались и проходимцы, разного рода, которые пришли тупо зарабатывать. Отсюда и путаница.
«Талантам надо помогать, бездарности пробьются», даже сквозь сингулярность.
Сингулярность — что это такое простыми словами
Сингулярность — что это простыми словами
Каждый из нас изучая и познавая окружающее мироздание, нередко сталкивается с событиями, описанными как «сингулярность». Термин позаимствован из латинского языка (singularis), что означает «уникальность», «единственность» или «особенность» чего-либо.
Наше познание и понимание не безгранично, и когда в какой-то области мы наблюдаем, предполагаем или ощущаем процессы, но объяснить не можем. Предполагаемые явления в данный момент времени, находятся как бы за горизонтом уровня наших знаний.
Про Сингулярность простыми словами
Рассмотрим это понятие на некоторых примерах:
Хоть уже давно математически доказано возникновение Вселенной из объекта сингулярности, но это пока находиться за горизонтом нашего восприятия:
Футурология о технологичной сингулярности
Великий ученый нашей современности Stephen Hawking (Стивен Хоукинг) подтвердил в своей теории расширения Вселенной возникновение «сингулярности», но это не соответствует классическим законном современной физики. Законам, согласно которым не соответствует состоянию космологической сингулярности (плотность материи и температура одновременно имели бесконечные значения).
Современное научное сообщество проводит фундаментальные исследования, чтобы попытаться найти ответы, что было до Большого взрыва. Так Stephen Hawking разрабатывал теорию квантовых полей, условия, способные нарушить состояние энергодинамичности. Также есть предположения, что используя квантовую гравитацию, можно будет понять динамику развития процессов, где отсутствуют данные.
Что ждет человечество, как будут развиваться общественные, социальные, межгосударственные и другие отношения в мире, над этим работают ученые футурологи. Что ждет планету Земля в глобальном смысле, в ближайшем и далеком будущем. Какие процессы окажут самые главные влияния на развитие цивилизации.
Бурное развитие науки, техники, экономики и других процессов в XXI веке неразрывно связаны с социальным развитием современного общества и отражается в определенных закономерностях и динамке. Полученные в прошлом данные экстраполируются виде прогнозов бедующих явлений и процессов.
Простыми словами экстраполяция — это процесс работы с «неизвестными данными, будущими» на основе полученных данных в прошлом и настоящем. Это позволяет сделать более достоверный и предсказуемый прогноз будущего.
Технологическая сингулярность — это одна из теорий развития будущей науки. Футурологи предполагают и прогнозируют ближайшее будущие время развития науки и технологий до такого уровня, когда оно станет не доступным для понимания человечества. Эти прогнозы вероятной картины будущего представлены в возможностях:
Выводы
Необходимо сделать важное дополнение к сказанному выше. Не все ученые мужи согласны с «перспективой» технологичной сингулярности (высокого интеллекта компьютеров и роботов), так как понимают, что всё человечество попадет в очень сложную ситуацию.
Про сингулярность простыми словами
В связи с этим многие передовые ученые и компании разрабатывают технологии способные в значительной степени повысить и даже уровнять шансы человечества перед машинами.
Некоторые просветители науки просто исключают возможность как таковую сингулярность в технологическом развитии общества. Их оптимистическая теория констатирует, что с техническим интеллектом машин будет развиваться и эволюционировать мозг человека, который всегда будет выше на несколько шагов самых умных машин.
Сингулярность (кратко)
Давайте рассмотрим простым языком и выясним что это такое.
Чем ближе пространство к «горошине» тем сильнее действует на нее гравитационная сила.
Насколько сильно притягивает сингулярность?
Рассмотрим на примере человека притяжения к Земле.
возьмем пример человека который летит к сингулярности
Предположим что такой человек ростом 2 метра находится уже в двух метрах от сингулярности и лежит горизонтально.
С атомами все тоже самое!
@moderator, а удалить пост незя? яндекс выдает ссыль на этот пост при запросе «сингулярность», а я реально хочу про сингулярность узнать
Предположим что такой человек ростом 2 метра находится уже в двух метрах от сингулярности и лежит горизонтально.
Ошибочка. Человек на картинке расположен вертикально относительно сингулярности (хотя и горизонтально для тех, кто смотри с экрана компьютера). Будь он расположен горизонтально к сингулярности, он был бы скручен в дугу или кольцо. Вертикаль – это линия, направленная на центр притяжения, горизонталь – линия перпендикулярная к вертикали.
вы дошли до этого открытия, если сами ниже приводите формулу силы гравитации, обратно пропорциональной квадрату расстояния? Человек рядом с Землёй равноудалён от всех её точек?
Далее про сингулярность:
возьмем пример человека который летит к сингулярности
Где летит, если пространство сжато в точку?
ТС, если вы ближайший родственник баобаба, зачем людям пудрить мозги? Посмотрели «Спокойной ночи, малыши!», почистили зубы и спать.
ТС, у вас сплошные опечатки в тегах. Вместо «наука», «космос» и «сингулярность» должны быть «школота», «въебал говна», «бред сивой кобылы».
это какой атом можно разорвать пополам? Они как бы не совсем однородны.
Ученые пришли к выводу, что Марс невозможно превратить во вторую Землю
Американские планетологи озвучили совсем уж неутешительные выводы, опираясь на научные данные, полученные космическими зондами с начала 2000-х годов.
Кажется, человечество слишком рано настроилось на то, чтобы в случае возникновения глобальной катастрофы или перенаселения Земли, или истощения ресурсов можно было бы достаточно легко совершить полет на Марс, где к тому времени были бы созданы все условия для нормального проживания. Кристофер Эдвардс, представляющий Университет в Северной Аризоне, и Брюс Якоски из Колорадского университета опубликовали научную статью, где весьма детально описали причины, по которым Красной планете не суждено стать второй Землей даже в относительно отдаленном будущем.
Как считают ученые, опираясь на данные полученные в ходе работы космических аппаратов MRO, Mars Odyssey и орбитальной обсерватории Maven, планам масштабной колонизации Марса помещает то, что создание плотной атмосферы и теплого климата без больших запасов углекислого газа невозможно. Несмотря на то, что в составе атмосферы планеты 95% занимает углекислый газ, его оболочка весьма тонка, поэтому о создании парникового эффекта говорить не приходится. Водяные пары наблюдаются на Марсе и вовсе в незначительном, остаточном, количестве. А без парникового эффекта проживание на Красной планете практически невозможно, ведь там даже в летние месяцы и в районе экватора температура не поднимается выше нуля градусов.
Исследования показали, что некоторые запасы нужных веществ имеются в грунте и полярных шапках. Но как их оттуда вытащить и вернуть обратно в атмосферу? Для этого необходимы совсем уж новые технологии, а о том, чтобы добыть углерод из глубин планет, не стоит и говорить. Для реализации этих целей нужны технологии, которые не разработаны еще даже в виде проектов и могут появиться лишь спустя множество десятилетий как минимум.
Проблема заключается в том, что без должного уровня углекислого газа атмосферное давление на Марсе не будет аналогичным земному. И вода не сможет существовать на планете в жидком виде. Даже если как-то удастся испарять водяной лед, низкие температуры Марса будут замораживать его на лету. По расчетам исследователей, как озвучил их Кристофер Эдвардс, даже при благоприятном испарении полярных шапок, атмосферное давление Красной планеты приблизится к земным параметрам лишь на 1,2%. Пылевые частицы в грунте, имеющиеся на небольшой глубине, дадут еще 4%. Даже залежи минералов, содержащих углерод, которые еще надо отыскать, при самом благоприятном исходе способны менее чем на 5% продвинуть марсианскую атмосферу к подходящей для жизни людей. Аналогичный результат будет и при использовании клатратов, в которых углерод содержится в кристаллах водяного льда.
Процесс терраформирования Марса невозможен при использовании даже самых современных из имеющихся технологий. Такой неутешительный вывод делают американские планетологи. А ведь когда-то давно на Марсе была весьма плотная атмосфера и существовали океаны. Но ослабевшее магнитное поле и низкий уровень гравитации привели к безвозвратной утере основной массы нужных веществ, а газы атмосферы были снесены порывами солнечных ветров. И даже если человечеству удастся создать искусственное магнитное поле, для того, чтобы газовая оболочка Марса стала хотя бы в два раза толще, должно будет пройти 10 миллионов лет. А у людей нет такого запаса времени. Впрочем, ученые оставляют шанс на покорение Красной планеты. Это можно будет сделать за счет отдельных баз для проживания на поверхности Марса. При этом ученые готовы довести до ума имеющиеся научные наработки, чтобы обеспечить марсианских колонистов и кислородом, и энергией, и даже строительным материалом для возведения различных построек.
Насколько огромна наша Вселенная?
Вселенная – это грандиозная структура, которая состоит из бесконечного множества самых разнообразных объектов. Их разделяют настолько бескрайние космические пространства, что даже свет теряется в их глубинах. Ведь для того, чтобы достигнуть ближайшей звезды, фотону, покинувшему Солнце, потребуется более 4 лет. А преодоление межгалактических расстояний займет миллионы лет. Осознание того, что этот гигантский путь – лишь крошечный шаг в масштабах макрокосмоса, не может не поражать воображение. Так насколько же велика Вселенная на самом деле?
Коснуться Солнца: впервые зонд достиг атмосферы нашей звезды
В научной работе, опубликованной 14 декабря 2021 года, ученые сделали вывод, что впервые в истории человечества рукотворный аппарат «пощупал» атмосферу Солнца. По данным учёных, это произошло 28 апреля 2021 г., когда зонд «Паркер» (Parker Solar Probe), запущенный в 2018 г., приблизился к Солнцу на рекордно минимальное расстояние — 7,87 млн км. Данные показывают, что он впервые оказался внутри короны, внешнего слоя атмосферы Солнца. «Паркер» провёл в прямом контакте с солнечной плазмой в общей сложности 5 часов, проведя замеры магнитных полей и частиц. В настоящее время зонд продолжает двигаться по эллиптической орбите, в перигелии всё глубже и глубже погружаясь внутрь внешней атмосферы Солнца.
За время пролёта «Паркер» три раза погружался и вновь выходил за т.н. критическую поверхность Альфвена (Alfven critical surface). Это граница, отделяющая корону (внешний слой атмосферы Солнца) от солнечного ветра. На это границе гравитационное и магнитное поля звезды становятся слишком слабы, чтобы удержать вещество светила и оно отправляется в полет по Солнечной системе. Ранее считалось, что критическая поверхность Альфвена имеет форму шара. Но, видимо, у неё есть выступы и впадины, а её форма и динамика определяются активностью на поверхности Солнца. Учёные также не знали, на каком расстоянии от поверхности Солнца проходит эта граница, предполагая, что она проходит где-то между 10 и 20 радиусами Солнца. Это практически подтвердилось: апрельское прохождение зондом границы атмосферы произошло на расстоянии 13 млн км от поверхности Солнца или 18,8 радиусов.
До конца миссии «Паркер» ещё не раз пройдёт через внешний слой атмосферы Солнца. В следующий раз это случится в январе 2022 г., а к концу миссии в 2025 г. он пролетит на рекордно близком расстоянии в 6,16 млн км (8,86 солнечных радиусов). Корона Солнца тоже «дышит» пропорционально 11-летнему циклу солнечной активности. Сейчас мы находимся вблизи минимума этого цикла, что даст «Паркеру» шансы значительно увеличить общее время пребывания внутри его атмосферы. Учёные примерно с 1950-х гг. бьются над разгадкой причин, почему солнечная корона нагревается более чем до 1 млн градусов, рождая солнечный ветер. И измерения «Паркера» за поверхностью Альфвена может стать самым большим шагом вперед в понимании физики Солнечной активности.
Ранее это сделать было невозможно, просто не было соответствующих технологий защиты космического зонда, чтобы он смог пролететь так близко. При максимальном приближение «Паркера» к Солнцу, оно будет в 475 раз ярче, чем у поверхности Земли. На керамический тепловой щит зонда толщиной 115 мм будет действовать тепловое излучение в 5,5 MВт. В результате его внешняя поверхность нагреется до 1500 °C. Если большинство научных инструментов и оборудования зонда будет прикрыто этим щитом, то единственный внешний датчик (Solar Probe Cup) для измерения заряженных частиц солнечного ветра пришлось сделать из тугоплавких сплавов с термостойкими изоляторами из сапфира. Из-за близости Солнца и сильных электромагнитных помех связываться с Землёй и передавать данные зонд будет только в апогее, — самой дальней от Солнца точке орбиты. В остальное время он действует максимально автономно.
Отметим, что за экстремальные условия мы вознаграждены не только научными данными, но и технологическими рекордами. Во время последнего пролёта мимо Солнца Parker Solar Probe достиг рекордной для рукотворных аппаратов скорости в 170 км/с.
Автор: Антон Мерзляков
Как известно, советское руководство уделяло освоению космоса, военной и тяжелой промышленности особое внимание в сравнении с производством товаров «народного потребления». Но даже при таком раскладе некоторые амбициозные проекты так и не были реализованы. Иногда не хватало финансирования, иногда силы решали перебросить на более, как тогда казалось, перспективные направления. В этом материале мы расскажем, как не дошел до воплощения один из подобных проектов — по разработке и запуску «тяжелого межпланетного корабля».
«Как появилась идея создания межпланетного космического корабля»
Насчет частичного освоения (ну или хотя бы посещения) Марса, четвертой планеты Солнечной системы, человечество размышляет уже не первый десяток лет. Понятно, что подобные планы строили и советские инженеры и конструкторы, особенно после успешных запусков первых в своем роде космических спутников и выхода человека в околоземное пространство. Не стоит забывать и о космической и военной гонке, разворачивавшейся между СССР и США.
В общем, к началу 1960-х годов в Союзе начали всерьез задумываться о создании так называемого тяжелого межпланетного корабля, или ТМК. Как понятно из названия, его основным предназначением виделись долговременные космические экспедиции с высадкой космонавтов на ближайших к Земле планетах — сначала на Марсе, а впоследствии и на Венере.
Амбициозно? Не то слово. Особенно с учетом того, что начать осуществление таких полетов предполагалось уже к середине 1970-х годов (напомним, что на Марс человек не попал и по сей день — экспедиция отправится к планете в лучшем случае в 2025 году силами компании SpaceX Илона Маска).
При этом к концу 1950-х — началу 1960-х вывести в космос межпланетный корабль (если предположить, что его разработка вполне реальна) способны были только сверхтяжелые ракеты. У СССР на тот период была всего одна подобная ракета — Р-7. На такой на орбиту выводили первые спутники и собак Белку и Стрелку, а также «Восток» с Юрием Гагариным.
Так появилась необходимость в разработке более совершенной и мощной ракеты. В книге «Марсианский проект Королева» (есть в свободном доступе) инженер-конструктор Владимир Бугров вспоминает: «На основании постановления правительства от 23 июня 1960 года С. П. Королев вместе с большой кооперацией смежных организаций, привлеченных к этим работам, со своими соратниками В. П. Мишиным и М. К. Тихонравовым приступил к созданию ракеты Н1 и тяжелого межпланетного корабля».
«Как, по задумке исследователей, должна была выглядеть ракета-носитель Н1»
В той же книге одна из глав открывается такими словами, описывающими основные характеристики и компоновку как самого корабля, так и ракеты-носителя: «Облик марсианского пилотируемого ракетно-космического комплекса (МПРКК) окончательно сформировался к 1964 году — лишь на четвертый год проектирования. Он состоял из двух основных частей: марсианского пилотируемого космического комплекса (МПКК) — для полета экипажа к Красной планете, высадки на ее поверхность и возвращения на Землю (иногда тяжелый межпланетный комплекс называли ТМК) — и межпланетного ракетного комплекса (МРК), где в качестве основного элемента использовалась трехступенчатая ракета-носитель Н1, а также имелись технический, стартовый комплексы и другие наземные сооружения».
«Википедия» уточняет: H1 — советская ракета-носитель сверхтяжелого класса, которая должна была оказаться способна выводить на орбиту с Земли 80 тонн груза. Разрабатывалась с начала 1960-х годов в ОКБ-1 (нынешняя РКК «Энергия») под руководством академика Сергея Королева. Сейчас Н1 известна скорее благодаря планам по ее использованию в советской лунно-посадочной пилотируемой программе (последнюю позже также закрыли, так и не достигнув целевого результата). Но в самом начале 1960-х, когда только планировали постройку межпланетного космического корабля, идеи вроде «Быстрее, выше, сильнее» процветали, существенного недостатка в финансировании еще не было, так что выводить ТМК в космическое пространство должна была именно эта сверхтяжелая ракета.
«В чем заключалась разница подходов двух ученых, параллельно работавших над проектом ТМК»
Сам межпланетный космический корабль также предлагался в двух вариантах. Описанный выше проект — авторства Константина Феоктистова, инженера-разработчика и летчика-космонавта. Если коротко, то он был максимально амбициозен и, как выяснилось, существенно опережал не только свое время (проект представляли в 1962—1964 годах), но и наше.
Тяжелый межпланетный корабль в вариации 1963 года. Иллюстрация: «Марсианский проект Королева»
Так, ТМК Феоктистова должен был собираться на околоземной орбите с последующим разгоном к Марсу и предполагал высадку на поверхность планеты двух космонавтов (полная численность экипажа — три человека). Интересно, что двигатели корабля изначально должны были использовать «электрореактивную двигательную установку с ядерным реактором (ЯЭРДУ)».
В книге Бугрова процесс описывается так: «В результате ядерной реакции горючее превращается в высокотемпературный газ, истечение которого из сопла с очень высокой скоростью создает тягу. ЭРДУ создает значительно меньшую по сравнению с ЖРД тягу, но за счет длительного включения, постепенно наращивая скорость и раскручивая комплекс в течение нескольких месяцев на околоземных орбитах, может обеспечить его разгон к Марсу. Таким же образом предполагалось выполнять операции при переходе на орбиту спутника Марса и при старте с нее».
С учетом того, что подобная марсианская экспедиция получилась бы достаточно продолжительной (если отталкиваться от заданной траектории полета с возвращением в район Земли, получается не менее двух-трех лет), проект ТМК Феоктистова предполагал разработку систем жизнеобеспечения, регенерации кислорода и производства еды прямо во время миссии.
Вот некоторые цитаты из книги с описанием нескольких блоков ТМК:
«Главным фактором, определявшим облик и конструкцию, являлась длительная невесомость. Бороться с ней пытались путем создания искусственной тяжести за счет вращения корабля вокруг центра масс».
«Снизить необходимость обеспечения экипажа пищей можно только за счет воспроизводства на борту. Для этого разрабатывался специальный замкнутый биолого-технический комплекс (ЗБТК)».
«В состав ЗБТК также входили хлорельный реактор, ферма с животными — кроликами или курами, от которых впоследствии отказались, — и система утилизации отходов с запасами реактивов».
Вариация ТМК от Глеба Максимова, советского ученого и инженер-конструктора, была более приземленной и не предполагала высадки космонавтов на Марс.
Задумывалось создание «небольшого по массе корабля, рассчитанного на трех членов экипажа, с исследованием на пролетной траектории и без посадки на его поверхность или без выхода на околомарсианскую орбиту с последующим возвращением корабля в район Земли с посадкой отделяемого спускаемого аппарата». В состав такого корабля хотели включить «жилой, рабочий (со шлюзом для выхода в открытый космос), биологический, агрегатный отсеки, спускаемый аппарат и корректирующую двигательную установку».
Интересно, что этот вариант предполагал создание так называемого наземного экспериментального комплекса (НЭК), и эту идею даже реализовали. С этой целью разработали специальный полноразмерный макет ТМК, с чем помогал основанный в 1963 году Институт космической биологии и медицины (впоследствии Институт медико-биологических проблем).
В книге с воспоминаниями Бугрова заявляется, что НЭК «содержал все необходимые системы для имитации условий длительного межпланетного полета (кроме невесомости) и обеспечения жизнедеятельности экипажа в этих условиях». Именно в НЭКе в 1967—1969 годах установили образец тяжелого межпланетного корабля, в составе которого проходили наземную отработку «бортовые системы жизнеобеспечения, радиационной защиты, спасения в аварийных ситуациях, сбора и обработки экологической и медико-биологической информации и многие другие».
«Почему проекты межпланетных космических кораблей так и не были реализованы»
Если коротко, советское руководство решило, что освоение Луны является более перспективным направлением (тем более что США делали в этом значительные успехи, а космическую гонку между двумя сверхдержавами никто не отменял). Вторая причина кроется в смерти Королева, после чего успешно «продавливать» идеи по экспедициям к Марсу или Венере (а в теории и к другим планетам) ни у кого не получалось. Да и сама эта идея к середине 1970-х слегка устарела.
Впрочем, сыграли свою роль и испытательные запуски сверхтяжелой ракеты Н1, произведенные на космодроме Байконур (всего их было четыре): все они оказывались неудачными, сбои происходили еще на этапе работы первой ступени. В общем, активную работу над Н1 полностью свернули уже к 1976 году. По сути, это и поставило крест что на марсианской, что на лунной программе СССР — к тому моменту советская космонавтика переходила к идеям долговременных орбитальных станций.
Автор: Антон Мерзляков
Фото: носят иллюстративный характер
Как найти комету Леонарда на утреннем небе 11-12 декабря 2021 г
11- го декабря 2021 утром в 04.01 мск, 12-го декабря 05.12 мск комета появиться из-за горизонта и наблюдать ее можно будет вплоть до восхода солнца. Мне кажется идеальное время для наблюдений в течении часа с 6-00 по 7-00 по мск. Юго-восточное направление должно быть свободно для наблюдений. С течением времени комета будет стремительно «взлетать» и перемещаться с восточного направления в сторону юго-востока (с 93-96 по 118-123 по азимутальному направлению). Учитывайте это при поисках. В качестве ориентира на небе используйте звезду Арктур в созвездии Волопаса.
Предлагаю захватить с собой как минимум бинокль. Невооруженном глазом комета тоже должна быть видна как туманная звездочка, но не факт, если наблюдаете в городе, учтите фактор засветки. И обязательно оденьтесь потеплее, будет морозно.
ЗЫ Высота, азимут и время кометы C/2021 A1 (Leonard) указаны для широты г.Казань
Приближающийся к нам астероид (4660) Нерей (Nereus): насколько он опасен для Земли
Начнем с истории. Этот астероид был открыт 28 февраля 1982 года американским астрономом Элеанор Френсис «Гло» Хелин из Паломарской обсерватории в США, собственно, через месяц после своего очередного близкого пролета у Земли. Первоначально ему было присвоено обозначение 1982 DB, а потом и номер с собственным именем 4660 Нерей (Nereus) в честь древнегреческого бога водяной стихии и моря.
В своем перигелии Нерей сближается с орбитой Земли на минимальное расстояние около 496 тысяч километров, при этом в афелии Нерей проникает далеко за орбиту Марса. Таким образом, значение перигелия, то есть минимального сближения с Солнцем составит примерно 0,95 астрономической единицы, а афелия, то есть максимального удаления от нашего центрального светила – 2,02 астрономической единицы. Его орбита несколько вытянута, имея эксцентриситет примерно 0,35, но лежит практически в плоскости эклиптики. Угол ее наклона в чуть более 1,4 градуса.
Орбитальный период составляет 663,5 земных суток или 1,82 года. При таком значении астероид огромное количество раз приближался к Земле как до его открытия, так и добрых пару десятков раз после этого.
Да, Нерей классифицируют как астероид, потенциально опасный для нашей планеты, однако ничего экстраординарного до этого не произошло, не произойдет ничего необычного и 11 декабря 2021 года, когда Нерей в очередной раз прилетит на близкое рандеву с Землей. В этот раз нас и астероид будет разделять 3 934 250 километров, что более чем в 10 раз больше удаления от нас Луны.
Что касается размеров Нерея, то тут популярные СМИ изгалялись, как хотели, приводя размерные его параметры и в Эйфелевых башнях, и в футбольных полях, и в Статуях свободы, и даже в железнодорожных составах. Мы обратимся для оценки к старому доброму метру. Учитывая то, что форма Нерея далеко не сфероидальная, а скорее эллипсоидная, или даже яйцевидная, то его размеры, наверное, будет правильным указывать вдоль трех осей координат. А если так, то получаются габариты 510 на 330 на 241метр. При такой неправильности формы астероид не вращается, а скорее кувыркается в пространстве, при этом такой кувырок он делает за 15,1 часа.
В качестве вывода отмечается, что астероид 4660 Нерей или Nereus, невзирая на то, что является потенциально опасным для Земли, пока что, как ни парадоксально звучит, не несет для нее никакой угрозы, поэтому, как и ранее, спим в декабре спокойно и поменьше на сон грядущий читаем и смотрим популярные СМИ.
Ответ на пост «Ученые открыли галактику без темной материи, чье существование не может объяснить теория»
о теории, основанной на свойствах симметрии волновой функции, описывающей систему частиц с отрицательным квадратом массы для объяснения природы темной материи.
Несмотря на их сверхсветовую природу, ансамбль всех частиц системы оказывается в состояниях с нулевым импульсом.
Таким образом, вместо тахионов, с которыми досветовая материя не может взаимодействовать напрямую, можно рассматривать гравитационное взаимодействие досветовой материи с квазичастицами, образованными в среде конденсированного тахионного газа.
Проходя сквозь досветовую материю, эти квазичастицы, образующие темную материю, теряют часть своей энергии с испусканием тормозного излучения в определенном спектре гравитационных волн.
Используя обобщенные преобразования Лоренца, возможно сформулировать лагранжиан кинематически разрешенных процессов рассеяния. Структура этого лагранжиана соответствует формализму Стандартной модели. Исходя из этого лагранжиана, по крайней мере одна из частиц, образующих пару, всегда должна быть досветовой.
Потеря энергии для тахионов означает увеличение скорости, поэтому они совершают переход из конденсированного состояния в ультрарелятивистский тахионный газ. С точки зрения досветовых инерциальных систем отсчета, происходит распад квазичастиц, хотя сами тахионы никуда не распадаются. Поэтому в некоторых очень редких галактиках, где доли темной материи и обычного вещества оказались сопоставимы из-за каких-то далеких событий в прошлом, значительная часть массы темной материи впоследствии могла уйти в тормозное гравитационное излучение, сопровождаемое подобным изменением дисперсии скоростей видимых объектов, образующих звездное скопление, галактику или сверхскопление галактик.
Ученые открыли галактику без темной материи, чье существование не может объяснить теория
Европейские и американские астрономы открыли в созвездии Рыб небольшую галактику AGC 114905, полностью лишенную темной материи. Ее существование невозможно объяснить при помощи современных космологических теорий, сообщила в понедельник пресс-служба британского Королевского астрономического общества (RAS).
За последние годы астрономы открыли около двух десятков галактик, в которых темная материя или полностью отсутствует, или же присутствует в неожиданно малых количествах. Из-за крайне низкой плотности материи исследователи начали называть их «сверхрассеянными галактиками» (UDG). Большое число подобных открытий заставило астрономов активно изучать UDG и искать объяснения их существованию.
Пинья и его коллеги открыли еще один подобный объект во время наблюдений за созвездием Рыб при помощи наземного радиотелескопа VLA. Используя его мощности, астрономы отслеживали, с какой скоростью движется газ в центральных регионах и на окраинах близлежащих галактик, что позволяло им точно оценивать то, как много темной материи присутствует в их пределах.
Эти замеры неожиданно указали на то, что темная материя почти полностью отсутствует в одной из близких к нам галактик, AGC 114905. Она удалена от Земли примерно на 247 млн световых лет и представляет собой сферический объект неправильной формы. Ее звездная масса оказалась примерно в 400 раз меньше, чем аналогичный параметр для Млечного Пути, но при этом она занимает столько же места в космосе, как и наша галактика.
Ученые потратили около 40 часов на наблюдения за вращением скоплений газа в этой галактике и не нашли никаких свидетельств того, что она могла лишиться своих запасов темной материи в результате столкновений с другими объектами. В свою очередь теоретические расчеты исключили, что AGC 114905 могла остаться без темной материи из-за особенностей в характере распределения материи в той части Вселенной, где она сформировалась.
Вдобавок ученые обнаружили, что существование этой галактики нельзя объяснить даже при помощи альтернативных космологических моделей. В частности, теория модифицированной ньютоновской динамики (MOND) не способна воспроизвести то, как движутся облака газа внутри этой галактики. Все это, по мнению ученых, указывает на то, что современные космологические теории могут быть ошибочными или неполными.
Последующие наблюдения за AGC 114905 и другими UDG, как надеются Пинья и его коллеги, дадут точный ответ на этот вопрос и помогут теоретикам сформулировать новые модели, которые будут точно воспроизводить процесс формирования одиноких галактик, полностью лишенных всех запасов темной материи.
Про теорию струн
Сингулярность или тот самый момент
Мифы современной популярной физики
Мопед не мой, я просто разместил объяву покрал статью с Хабра.
Где-то в альтернативной вселенной, согласно MWI, я стал гениальным физиком. Но в этой вселенной просто подробно слежу за профессиональными публикациями в области физики, зарабатывая себе на хлеб развозкой пиццы базами данных. Как следствие чуть более глубоких знаний, я не могу смотреть никаких научно-популярных передач. Это как железом по стеклу — тут oversimplification, тут просто неверно, тут есть тонкости…
Я решил сформировать список наиболее часто встречающихся неправд и полуправд. Итак, самое частое это…
Его изображают примерно так:
Далее обычно следует заявление: «Когда Вселенная была не больше размера атома. » и т. д. Здесь пропущено самое главное слово, которое полностью меняет смысл: «Когда видимая Вселенная была не больше размера атома. ». Видимая Вселенная, грубо говоря, это область, где свет мог пройти от одного места до другого с момента t=0. То есть небольшой шарик, который раздувается (примерно!) со скоростью света (на самом деле быстрее). Таких шариков может быть бесконечно много.
О, здесь просто бездна (черная дыра) популярных мифов. Начнем с Интерстеллар:
Для того, чтобы замедление времени было бы таким, планета должна была быть на расстоянии чуть более 0.003% от радиуса Шварцшильда. Между тем, судя по виду на черную дыру:
планета находится от горизонта событий не менее чем на 10*Rs. Мы уже не говорим о том, что такая планета, наверное, худший кандидат на планету, куда стоило лететь. Конечно, это художественный фильм. Никто не судит Звездные войны за звук взрывов в космосе. Но Звездные войны никогда и не претендовали на научность. А Интерстеллар — претендовал, причем с пафосом. Поэтому с него и другой спрос.
Чтобы закрыть тему с Интерстеллар, по современным научным данным, библиотеки внутри черной дыры тоже нет.
Замедление времени в черной дыре бесконечно
Интересный случай полуправды и неверных выводов. Начинается все с правильного утверждения: при приближении к горизонту событий для наблюдателей, подвешенных над черной дырой, замедление времени стремится к бесконечности. Это верно. Но из этого утверждения вырастает сразу несколько мифов:
• Замедление времени для падающего в черную дыру наблюдателя бесконечно
• Поэтому он увидит все будущее Вселенной — она для него будет ускоряться
• Падающие наблюдатели так и висят где-то недалеко от горизонта — ведь время для них бесконечно замедлилось
• Можно броситься им вслед и догнать их где-то там у горизонта, сколько бы не прошло времени
• Более того, они так никогда и не упадут в черную дыру, ведь для этого нужно бесконечное время
• Более того, можно даже сказать что на самом деле черных дыр не существует, ведь для их формирования нужно бесконечное время.
Все эти выводы растут из первого, неверного. Но он выглядит так правдоподобно, что в начале прошлого века долго вводил в заблуждение даже профессиональных физиков! Итак, мы имеем набор точек все ближе и ближе к горизонту, и замедление времени при приближении к горизонту стремится к бесконечности, а раз траектория падающего в черную дыру тела проходит через все эти точки, то для него замедление времени стремится к бесконечности! Логично? А вот и нет.
Замедление времени — это свойство траектории, а не точки пространства. То, что верно для наблюдателя, «подвешенного» на фиксированном растоянии над горизонтом, неверно для наблюдателя, падающего в черную дыру. Собственно, долгое время даже сам Эйнштейн не мог решить уравнение своей же общей теории относительности для областей внутри горизонта черной дыры — все упиралось в бесконечности на горизонте событий. Прогресс появился, когда вместо точек пространства стали рассматривать систему «дождя», свободно падающего внутрь черной дыры. В этой системе бесконечностей на горизонте не появлялось.
Более того, стало ясно то, что позже назвали «No drama» — при пересечении горизонта событий ничего особенного для свободно падающего наблюдателя не происходит — никакой тревожной музыки, пиу-пиу и зеленоватых всполохов. Провал под горизонт можно даже не заметить!
Для тех, кто хочет больше деталей о том, что происходит внутри черной дыры с точки зрения «дождя», я рекомендую почитать про координаты Эддингтона-Финкельштейна:
Они интересны тем, что просто водя по ним пальцем, можно графически дать ответы на много вопросов. В частности, про наши мифы:
• Свободно падающий наблюдатель достигает горизонта, а затем и сингулярности очень быстро (он падает почти со скоростью света). Если, не долетая горизонта, он передумает и даст «полный назад», то его раздавит в теории он очень долго будет выбираться назад, и вот тогда то он и схлопочет замедление времени по полной.
• Падающий наблюдатель видит оставленную им вселенную немного замедленной во времени и покрасневшей. Он продолжает ее видеть даже внутри горизонта (свет падает за ним)
• Падающие наблюдатели так и висят где-то недалеко от горизонта — но это чисто оптический эффект, свету от них очень сложно выбраться наружу
• Можно бросится им вслед, но как только вы станете приближаться к горизонту, вы увидите что их там уже нет. Если около горизонта висит «подвешенный» наблюдатель, то он сообщит (очень сильно замедленным голосом), что ваш коллега давно уже провалился внутрь. Давно — по данным этого наблюдателя с учетом того что он умный и корректирует свои наблюдения и в курсе того, что он сильно замедлен во времени. По его часам это время может быть очень коротким
• Более того, они так никогда и не упадут в черную дыру, ведь для этого нужно бесконечное время — ну, вы поняли что это совсем не так
Приливные силы разрывают всякого еще на подлете к черной дыре
Прочность нашего тела такова, что наше тело начнет разрывать примерно за секунду по времени до сингулярности. Учитывая, что свободное падение в черную дыру происходит почти всегда со скоростью, близкой к скорости света, то это произойдет примерно за 300000км до горизонта событий. Учитывая, что обычная черная дыра, являющаяся остатком звезды, имеет радиус 10-15-20км, то нас разорвет задолго до подлета к горизонту.
Однако, есть сверхмассивные черные дыры, массой в миллиарды солнечных масс, а радиусом больше орбиты Урана. В таких черных дырах лететь от горизонта к сингулярности — часы! именно в такие черные дыры можно провалиться, не заметив этого.
Чтобы получить черную дыру, надо сжать материю до чудовищной плотности
Опять таки, это верно для маленьких черных дыр. Радиус горизонта событий пропорционален массе. И это довольно удивительно, ведь при постоянной плотности масса объекта пропорциональна кубу радиуса.
Гравитационный радиус Земли чуть меньше сантиметра. Увеличим радиус Земли в 10 раз (оставив плотность материи такой же). Такая суперземля будет в 1000 раз тяжелее. Гравитационный радиус, соответственно, тоже увеличится в 1000 раз, а объем внутри гравитацонного радиуса увеличится в миллиард! раз. То есть в 1000 раз больше материи нам надо запихать в миллиард раз больший объем, то есть теперь сжимать материю надо в миллион раз меньше.
Таким образом, увеличивая масштаб любого тела, мы всегда дойдем до состояния, когда гравитационный радиус «догонит» настоящий. Так что черную дыру можно сделать из любого материала, не сжимая его — из воды, ваты, газа. Даже из вселенной с ее ничтожной средней плотностью — гравитационный радиус вселенной при ее плотности около 10 миллиардов световых лет.
Кстати, это одна из причин, почему невозможны статические решения Вселенной — она бы просто стала черной дырой. Нашей вселенной это не грозит, так как она расширяется.
Есть еще много мифов, если статья понравится, я продолжу.
Сингулярность: добро пожаловать в нигде
Пространство-время – та сцена, на которой разворачивается вся история Вселенной: с момента Большого Взрыва, через рождение Млечного Пути, Солнца и расцвет динозавров – к Александру Македонскому и электронным научно-популярным журналам. К нему часто добавляют слово континуум, от латинского «непрерывное» – но кое-где и пространство-время обрывается. Здесь теряют силу привычные законы физики. Здесь время выглядит иначе. Здесь даже нельзя сказать «здесь», поскольку здесь нет и пространства. Это – область нигде и никогда. Это – гравитационная сингулярность.
Со времен древних греков пространство казалось чем-то неизменным, постоянным, однородным, а время – не связанной с ним циклической спиралью вечного возвращения и повторения. К эпохе научно-технических революций эти представления лишь укрепились. Декартова система координат расчертила мир тремя взаимно перпендикулярными осями, время выпрямилось в отдельную, независимую от пространства (и вообще ни от чего) прямую стрелу. Во многом мы до сих пор живем в тех представлениях, возникших еще в XVIII веке.
Революционность взглядов Эйнштейна во многом состояла в понимании двух важных фактов, переворачивающих взгляды и на время, и на пространство. Во-первых, они взаимосвязаны и представляют собой единый пространственно-временной континуум. А во-вторых, континуум этот вовсе не неизменен и не постоянен: он деформируется в присутствии любой формы энергии, в том числе – в виде массы.
Классический способ представить этот обновленный Эйнштейном мир дает пример из геометрии. Представьте себе двухмерное пространство – туго натянутую сетку, на которую положен тяжелый бильярдный шар. Запустите мимо него теннисный мяч: шар немного растянул сетку, и мяч в своем движении отклонится, словно притянутый им, а возможно, даже «упадет» на него. Гравитация в эйнштейновском понимании может рассматриваться как геометрическое свойство пространства-времени, его искажение, возникающее под действием энергии (массы). Даже просто вращающееся массивное тело увлекает за собой «сетку» пространства-времени.
Мысленно расширьте этот пример на четыре измерения (три пространственных плюс одно временное) – и вы получите примерную геометрическую модель реального пространства-времени. Обратите внимание: где есть масса (энергия) – там нет прямых координатных осей, да и само время перестает быть прямолинейным и равномерным для всех наблюдателей. Представление о прямой оказывается просто математической абстракцией: самая прямая вещь, которую мы знаем из физики, – это траектория светового луча, движение фотона – но и оно искажается под действием гравитации. Притянутая материя локально движется по прямой, однако в глобальном рассмотрении эта прямая в гравитационном поле оказывается кривой.
Но что если мы бросим на сетку из нашего геометрического примера не бильярдный шар, а что-нибудь потяжелее? Гантель, двухпудовую гирю. Скорее всего, наш демонстрационный экспонат не выдержит и лопнет, а в центре его останутся лишь дыра, нити, обрывки пространства-времени нашей модели. Нечто вроде сингулярности.
Удивительно, что Общая теория относительности сама обозначает границы своей применимости: в сингулярности «не работает» и она. При этом теория не только указывает на саму возможность существования гравитационных сингулярностей, но в некоторых случаях делает их вообще обязательными. Речь, в частности, о черных дырах – объектах колоссальной плотности, которая делает их невероятно массивными для своих размеров.
Черная дыра может иметь массу, сравнимую с массой крупной планеты или с миллиардом крупных звезд, но эта масса определяет лишь величину той области вокруг нее, где царит одна лишь гравитация – и откуда не вырваться ничему, ни веществу, ни излучению, ни информации. Размер этой «области невозврата» называется радиусом Шварцшильда, а ограничивает ее горизонт событий, условная линия, по одну сторону которой Вселенная живет своими законами, а по другую властвует сингулярность.
Гравитационная плюс космологическая.
Принято говорить, что в сингулярности «законы физики теряют силу». Это не так – просто привычные законы здесь неприменимы, как неприменимы законы классической механики к миру квантовых частиц. По красочному выражению немецкого профессора Клауса Уггла, поведение математических уравнений и функций в сингулярности «становится патологическим». Заметить этот момент достаточно просто – достаточно наблюдать поведение свободно падающих частиц.
Независимо ни от вида самой частицы, ни от того, где именно она падает, она стремится двигаться по максимально прямой траектории, которая только существует в данных условиях. В пустом космосе, у поверхности Земли или за границей горизонта событий частица меняет траекторию лишь под действием других сил, в том числе гравитации. Но в сингулярности гравитационное поле возрастает до бесконечности, и свободно падающая частица просто. перестает существовать.
Прямые здесь обрываются (это свойство сингулярности называется геодезической неполнотой), а с ними обрывается и судьба частицы. Как показал еще около 40 лет назад великий математик Роджер Пенроуз, геодезическая неполнота должна возникать внутри любой черной дыры. Впоследствии его выкладки развил Стивен Хокинг, расширив эти представления до целой Вселенной.
Да, вначале была сингулярность. Еще в 1967 году Хокинг строго доказал, что если взять любой вариант решения уравнений Общей теории относительности и «развернуть их» назад во времени, то при любом раскладе в расширяющейся Вселенной мы придем к ней, к сингулярности. Из бесконечного провала этой «космологической праматери» и распустился цветок нашего пространства-времени.
Впрочем, при всей своей красоте «теоремы сингулярности Пенроуза – Хокинга» лишь указывают на возможность их существования. О том же, что происходит там, внутри, что можно «увидеть» в сердце черной дыры и чем была Вселенная до Большого Взрыва, они не говорят ровным счетом ничего. Возьмем хотя бы космологическую сингулярность Хокинга: она должна иметь одновременно бесконечную плотность и бесконечную температуру, совместить которые пока никак не получается. Ведь бесконечная температура означает бесконечную энтропию, меру хаоса системы – а бесконечная плотность, наоборот, указывает на хаос, стремящийся к нулю.
Впрочем, это далеко не единственная странность вокруг сингулярности. Среди диковинных гипотез, построенных на строгой основе общей тео¬рии относительности, стоит вспомнить идею существования «голых сингулярностей» – не окруженных горизонтом событий, а значит и вполне наблюдаемых извне.
По мнению некоторых физиков, голая сингулярность может появляться из обычной черной дыры. Если черная дыра вращается чрезвычайно быстро, сингулярность вместо точки может приобрести кольцеобразную форму тора, окруженного горизонтом событий. Чем быстрее дыра вращается, тем сильнее сходятся внешний и внутренний горизонты – и в какой-то момент они могут слиться, исчезнув.
К сожалению, в реальности наблюдать голую сингулярность пока не удается, зато в фантастике она встречается регулярно. Одна из населенных разумными существами колоний в культовой киносаге «Звездный крейсер «Галактика» вращается не вокруг звезды или планеты, а вокруг такой голой сингулярности.
Стоит сказать, что Роджер Пенроуз ввел в космологию принцип космической цензуры, предположение, согласно которому голых сингулярностей во Вселенной быть не может. Ученый образно сформулировал свой подход: «Природа не терпит голых сингулярностей». Этот принцип до сих пор остается недоказанным и не опровергнутым окончательно.
Как (не) попасть в сингулярность.
Рассуждая логически, можно прий¬ти к выводу о том, что оказаться внутри сингулярности мы не сможем никогда – вплоть до момента окончательной гибели Вселенной. Давайте представим частицу, притянутую черной дырой. Вот она, ускоряясь, по спирали приближается к ней. Чем сильнее гравитация и выше скорость, тем, согласно уравнениям того же Эйнштейна, сильнее замедляется течение времени. Наконец наша частица пересекает горизонт событий.
Сколько у нее ушло на это времени? Для стороннего наблюдателя это могут быть годы. Но вот частица устремляется к сингулярности в центре дыры – пространство-время вокруг нее буквально встает на дыбы, время для частицы практически останавливается. Можно представить это и наоборот: время Вселенной в сравнении с ней ускоряется практически бесконечно.
Но ведь даже черные дыры не вечны. Как показал Стивен Хокинг еще в 1970-х, в результате сложной игры гравитации и квантовых эффектов у горизонта событий все черные дыры понемногу испаряются и рано или поздно исчезают. Быть может, исчезнет и частица, так и не добравшись до сингулярности. Но тут снова появляются парадоксы почище тех, что встретились Алисе в Стране Чудес. Например – где же находится эта частица?
С точки зрения теоретической физики, черные дыры – пустые. Да, их ограничивает горизонт событий, но за ним нет ничего, что можно было бы измерить, обозначить, зафиксировать – а значит, нет ничего вообще. Вся масса черной дыры сосредоточена в сингулярности – бесконечно малой точке, окруженной сферой, полной почти метафизической тьмы.
Некоторые теоретики полагают, что Вселенная не терпит не только голой сингулярности, но и разрывов пространства-времени. Поэтому каждая сингулярность является червоточиной – своего рода провалом, туннелем, соединяющим одну область мира с какой-то другой «прямым ходом», образно называемым «кротовой норой» или «червоточиной». Но это лишь гипотеза, и неизвестно, появится ли у нас когда-нибудь хотя бы возможность подтвердить ее или опровергнуть.
Главный вопрос остается: что там, внутри сингулярности? Что наступает после того, как сама ткань пространства-времени мнется, растягивается, дыбится, пока не разрывается окончательно? Ответить на него проще простого: неизвестно.