Что значит симметричная игральная кость

Вероятность и статистика

ВЕРОЯТНОСТЬ, математическое понятие, количественно характеризующее меру реализации случайного события при тех или иных определенных, могущих повторяться неограниченное число раз условиях и определяемое как действительное число в диапазоне от 0 до 1

БИНОМИАЛЬНЫЙ РЯД — бесконечный ряд, являющийся обобщением формулы бинома Ньютона (1 + х) n на случай дробных и отрицательных показателей n: (1+х)n = 1 + nx + [n (n-1). (n-m+1)/m!]xm +.
Биномиальный ряд сходится: при —1 1, если —1 x 1, если n > 0.

СЛУЧАЙНОЕ СОБЫТИЕ (в теории вероятностей), событие, которое может при осуществлении данных условий (т. е. при данном испытании) как произойти, так и не произойти и для которого имеется определенная вероятность его наступления. Наличие у случайного события определенной вероятности r ( от 0 до 1) его появления проявляется в том, что при большом числе испытаний частота появления случайного события оказывается близкой к r.

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА, наука о математических методах систематизации и использования статистических данных для научных и практических выводов. Во многих своих разделах математическая статистика опирается на теорию вероятностей, позволяющую оценить надежность и точность выводов, делаемых на основании ограниченного статистического материала (напр., оценить необходимый объем выборки для получения результатов требуемой точности при выборочном обследовании).

Монета и игральная кость в теории вероятностей

Многие важные и нужные факты первоначально были получены с помощью очень простых опытов. Большую роль в развитии теории вероятностей как науки сыграли обычные монеты и игральные кубики.

Симметричная монета

Математическая монета, используемая в теории вероятностей, лишена многих качеств настоящей монеты. У математической монеты нет цвета, размера, веса и достоинства.

Монета с точки зрения теории вероятностей имеет только две стороны, одна из которых называется «орел», а другая —«решка». Монету бросают, и она падает одной из сторон вверх. Никакие другие свойства математической монете не присущи.

Название «орел» для обратной стороны (реверса) монеты происходит оттого, что на реверсе российских монет изображен герб Российского государства—двуглавый орел. Впервые орел на монетах появился при великом князе Иване III.

А название «решка» для лицевой стороны (аверса) монеты возникло потому, что рисунок на аверсе российских монет в XVIII—XIX вв. напоминал решетку, на фоне которой был написан номинал монеты (ее достоинство).

Математическая монета считается симметричной. Это означает, что брошенная на стол монета имеет равные шансы выпасть «орлом» или «решкой». При этом подразумевается, что никакой другой исход бросания монеты невозможен, — она не может потеряться, закатившись в угол, и, тем более, не может «встать на ребро».

До сих пор монета часто используется как средство решения споров. В начале футбольного матча арбитр бросает монету, чтобы решить, какая из команд получит право начать игру.

Игральные кости в теории вероятностей

Игральный кубик или игральная кость также служит прекрасным средством для получения случайных событий. Игральная кость имеет удивительную историю. Игра в кости—одна из древнейших. Она была известна в глубокой древности в Индии, Китае, Лидии, Египте, Греции и Риме.

Игральные кости в виде кубиков находили в Египте (XX в. до н. э.) и в Китае (VI в. до н. э.) при раскопках древних захоронений. Точки на гранях древнеегипетских костей часто изображались в виде птичьего глаза.

Правильные (симметричные) кости обеспечивают одинаковые шансы выпадения каждой грани. Для этого все грани должны иметь одинаковую площадь, быть плоскими и одинаково гладкими. Вершины и рёбра кубиков должны иметь правильную форму. Если они скруглены, то все скругления должны быть одинаковыми. Отверстия, маркирующие очки на гранях, должны быть просверлены на одинаковую глубину. Сумма очков на противоположных гранях правильной кости равна 7.

Математическая игральная кость, которая обсуждается в теории вероятностей,—это математический образ правильной кости. Выпадения всех граней равновозможны. Подобно математической монете, математическая кость не имеет ни цвета, ни размера, ни веса, ни иных материальных качеств.

Игры в кости у разных народов мира

Об играх с костями животных (игры в «лодыжки», «костыги», «козули») у славян и на языческой Руси свидетельствуют многочисленные археологические находки на обширной территории. Отсюда и русское название игрального кубика—кость.

В острогах заключенные играли парой костяных кубиков с очками на гранях, называя их «быками». Выражение «быков гонять» до сих пор означает игру в кости.

Ранние упоминания о костях в древнеиндийской поэзии отражают популярность игры в кости в Древней Индии. В Древней Греции считалось, что игральные кости придумал Паламед во время Троянской войны. Но по версии философа Геродота, кости изобрели лидийцы, населявшие Малую Азию, чтобы отвлечься от голода, болезней или других напастей.

В Древнем Риме кости, вероятно пришедшие из Древней Греции, быстро приобрели популярность. В кости играли все, от рабов до императоров. Император Клавдий даже написал книгу по игре в кости. В III в. до н. э. в Риме игра в кости была запрещена и разрешалась лишь во время ежегодного празднования Сатурналий.

Азартные игры в кости запрещали не только в Древнем Риме. В Древнем Китае за игру в кости можно было попасть на каторгу.
С появлением христианства кости время от времени запрещались в разных странах, поскольку, по мнению духовенства, игра эта была порождением дьявола. Человек, играющей в кости, при этом якобы становился слугой дьявола, распространяя зло.

В другое время кости были разрешены, и игра в них даже поощрялась, при этом каждому сочетанию очков приписывалось некоторое божественное значение. Считалось, что игра в кости позволяет благочестивому человеку выявить свои христианские добродетели. Очевидно, такие крайности в отношении азартных игр свидетельствуют о том, что изжить их церковь не могла, но иногда пыталась использовать страсть к игре в своих целях.

В 1188 г. английский король Генрих II запретил играть в кости крестоносцам. Многочисленные королевские указы в XIII—XIV вв. запрещают игру в кости во Франции.

Игра в кости в самых разных проявлениях намного древнее всех прочих игр. Поэтому и жулики (шулеры), нечестным способом выигрывающие в кости, появились намного раньше карточных шулеров. Археологи находят в раскопах Древнего Китая, Греции и Рима игральные кости, у которых нарушена симметрия.

Все рассуждения о равных вероятностях выпадения различных комбинаций справедливы, если кость имеет кубическую форму и ее центр тяжести совпадает с геометрическим центром. Изменение формы или смещение центра тяжести меняет свойства кости. Кости неправильной формы —самый обычный тип шулерских костей. Иногда в кости вплавляют свинцовые шарики, в них делают замаскированные пустоты, каналы, по которым переливается ртуть.

Нарушить равновозможность выпадения граней можно, сделав некоторые грани чуть выпуклыми, а другие — чуть вогнутыми. Достаточно сделать одни из граней более гладкими, чем другие. Все эти способы предназначены для изменения вероятностей выпадения очков.

Есть еще способ плутовства — нарушение разметки костей. Если сумма очков на противоположных гранях не равна 7, то искусный мошенник, определенным образом бросая кости, может добиться, что сумма выброшенных им очков будет больше, чем у неискушенного игрока.

(Тюрин и др. Теория вероятностей и статистика, 2008)

Источник

Что значит симметричная игральная кость

Симметричную игральную кость бросили 3 раза. Известно, что в сумме выпало 6 очков. Какова вероятность события «хотя бы раз выпало 3 очка»?

В городе 48 % взрослого населения — мужчины. Пенсионеры составляют 12,6 % взрослого населения, причём доля пенсионеров среди женщин равна 15 %. Для социологического опроса выбран случайным образом мужчина, проживающий в этом городе. Найдите вероятность события «выбранный мужчина является пенсионером».

При трёхкратном бросании игральной кости 6 очков может получится только в десяти случаях: 1 + 2 + 3, 1 + 3 + 2, 2 + 1 + 3, 2 + 3 + 1, 3 + 1 + 2, 3 + 2 + 1, 2 + 2 + 2, 1 + 1 + 4, 1 + 4 + 1 и 4 + 1 + 1. При этом 3 очка выпадает в шести из этих случаев. Значит, вероятность того, что хотя бы раз выпало 3 очка равна

Что значит симметричная игральная кость

Женщин среди взрослого населения 100 % − 48 % = 52 %, среди них 52 % · 0,15 = 7,8% пенсионерок. Всего в городе 12,6 % пенсионеров, поэтому мужчин-пенсионеров 12,6 % − 7,8 % = 4,8 % от взрослого населения города. Поскольку всего среди взрослого населения города 48 % мужчин и среди них 4,8 % пенсионеров, пенсионером является каждый десятый: Что значит симметричная игральная костьСледовательно, вероятность того, что случайно выбранный мужчина окажется пенсионером равна 0,1.

Приведём другое решение.

Пусть х — доля мужчин-пенсионеров среди всех мужчин. Построим дерево вероятностей (см. рис.).

Пенсионеры составляют 0,126 взрослого населения города, откуда получаем:

Что значит симметричная игральная кость

Таким образом, вероятность того, что случайно выбранный мужчина окажется пенсионером, равна 0,1.

Источник

Вероятность игральной кости.

Задачи на вероятность игральной кости не менее популярны, чем задачи о подбрасывании монет. Условие такой задачи обычно звучит так: при бросании одной или нескольких игральных костей (2 или 3), какова вероятность того, что сумма очков будет равна 10, или число очков равно 4, или произведение числа очков, или делится на 2 произведение числа очков и так далее.

Применение формулы классической вероятности является основным методом решения задач такого типа.

Одна игральная кость, вероятность.

Задача 1. Один раз брошена игральная кость. Какова вероятность выпадения четного числа очков?

Поскольку игральная кость собой представляет кубик (или его еще называют правильной игральной костью, на все грани кубик выпадет с одинаковой вероятностью, так как он сбалансированный), у кубика 6 граней (число очков от 1 до 6, которые обычно обозначаются точками), это значит, что в задаче общее число исходов: n=6. Событию благоприятствуют только исходы, при которых выпадает грань с четными очками 2,4 и 6, у кубика таких граней: m=3. Теперь можем определить искомую вероятность игральной кости: P=3/6=1/2=0.5.

Задача 2. Брошен один раз игральный кубик. Какова вероятность, что выпадет не менее 5 очков?

Решается такая задача по аналогии с примером, указанным выше. При бросании игрального кубика общее число равновозможных исходов равно: n=6, а удовлетворяют условие задачи (выпало не менее 5 очков, то есть выпало 5 или 6 очков) только 2 исхода, значит m=2. Далее находим нужную вероятность: P=2/6=1/3=0.333.

Две игральные кости, вероятность.

Что значит симметричная игральная кость

Задача 3. Брошены одновременно 2 игральные кости. Какова вероятность выпадения суммы менее 5 очков?

Теперь можно заполнить таблицу, для этого в каждую ячейку заносится число суммы очков, которые выпали на первой и второй кости. Заполненная таблица выглядит так:

Что значит симметричная игральная кость

Благодаря таблице определим число исходов, которые благоприятствуют событию » выпадет в сумме менее 5 очков». Произведем подсчет числа ячеек, значение суммы в которых будет меньше числа 5 (это 2, 3 и 4). Такие ячейки для удобства закрашиваем, их будет m=6:

Что значит симметричная игральная кость

Учитывая данные таблицы, вероятность игральной кости равняется: P=6/36=1/6.

Задача 4. Было брошено две игральные кости. Определить вероятность того, что произведение числа очков будет делиться на 3.

Для решения задачи составим таблицу произведений очков, которые выпали на первой и на второй кости. В ней сразу же выделим числа кратные 3:

Что значит симметричная игральная кость

Записываем общее число исходов эксперимента n=36 (рассуждения такие же как в предыдущей задаче) и число благоприятствующих исходов (число ячеек, которые закрашены в таблице) m=20. Вероятность события равняется: P=20/36=5/9.

Задача 5. Дважды брошена игральная кость. Какова вероятность, что на первой и второй кости разность числа очков будет равна от 2 до 5?

Чтобы определить вероятность игральной кости запишем таблицу разностей очков и выделим в ней те ячейки, значение разности в которых будет между 2 и 5:

Что значит симметричная игральная кость

Число благоприятствующих исходов (число ячеек, закрашенных в таблице) равно m=10, общее число равновозможных элементарных исходов будет n=36. Определит вероятность события: P=10/36=5/18.

В случае простого события и при бросании 2-х костей, требуется построить таблицу, затем в ней выделить нужные ячейки и их число поделить на 36, это и будет считаться вероятностью.

Источник

Решение №1663 Симметричную игральную кость бросили три раза. Известно, что в сумме выпало 6 очков.

Симметричную игральную кость бросили три раза. Известно, что в сумме выпало 6 очков. Какова вероятность события «хотя бы раз выпало три очка»?

Источник задания: fipi.ru

Решение:

При броске игральной кости могут выпасть числа от 1 до 6.

Что значит симметричная игральная кость

Запишем все возможные варианты, когда кость бросают три раза и в сумме выпало 6 очков:

1 + 1 + 4 = 6
1 + 4 + 1 = 6
4 + 1 + 1 = 6
2 + 2 + 2 = 6
1 + 2 + 3 = 6
1 + 3 + 2 = 6
2 + 3 + 1 = 6
2 + 1 + 3 = 6
3 + 1 + 2 = 6
3 + 2 + 1 = 6

Всего вариантов получили 10, из них хотя бы раз выпало три очка в 6 вариантах.
Найдём вероятность события «хотя бы раз выпало три очка»:

Что значит симметричная игральная кость

Ответ: 0,6.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 5 / 5. Количество оценок: 6

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время

В отзыве оставляйте контакт для связи, если хотите, что бы я вам ответил.

Источник

Задание 10 ЕГЭ по математике. Теория вероятностей. Повышенный уровень сложности

В 2022 году в варианты ЕГЭ по математике добавились новые задачи по теории вероятностей. По сравнению с теми, которые раньше были в варианте, это повышенный уровень сложности.

Мы разберем задачу №10 из Демоверсии ЕГЭ-2022, задания из Методических рекомендаций ФИПИ для учителей и аналогичные им.

1. Демо-версия ЕГЭ-2022

Симметричную игральную кость бросили 3 раза. Известно, что в сумме выпало

6 очков. Какова вероятность события «хотя бы раз выпало 3 очка»?

Выпишем возможные исходы как тройки чисел так, чтобы в сумме получилось 6.

Что значит симметричная игральная кость

Всего 10 возможных исходов. Благоприятные исходы помечены красным цветом, их 6.

По определению вероятности получаем

2. Игральный кубик бросают дважды. Известно, что в сумме выпало 8 очков. Найдите вероятность того, что во второй раз выпало 3 очка.

Выпишем возможные варианты получения 8 очков в сумме:

Что значит симметричная игральная кость

Подходит только вариант 5; 3. Вероятность этого события равна 1 : 5 = 0,2 (один случай из 5 возможных).

3. В ящике 4 красных и 2 синих фломастера. Фломастеры вытаскивают по очереди в случайном порядке. Какова вероятность того, что первый раз синий фломастер появится третьим по счету?

Благоприятными будут следующие исходы:

Первый раз – вытащили красный фломастер,

И второй раз – красный,

А третий раз – синий.

Вероятность вытащить красный фломастер (которых в ящике 4) равна

После этого в ящике остается 5 фломастеров, из них 3 красных, вероятность вытащить красный равна

Наконец, когда осталось 4 фломастера и из них 2 синих, вероятность вытащить синий равна

Вероятность события <красный – красный – синий >равна произведению этих вероятностей, то есть

4. В коробке 10 синих, 9 красных и 6 зеленых фломастеров. Случайным образом выбирают 2 фломастера. Какова вероятность того, что окажутся выбраны один синий и один красный фломастер?

Всего в коробке 25 фломастеров.
В условии не сказано, какой из фломастеров вытащили первым – красный или синий.

Предположим, что первым вытащили красный фломастер. Вероятность этого в коробке остается 24 фломастера, и вероятность вытащить вторым синий равна Вероятность того, что первым вытащили красный, а вторым синий, равна

А если первым вытащили синий фломастер? Вероятность этого события равна Вероятность после этого вытащить красный равна вероятность того, что синий и красный вытащили один за другим, равна

Значит, вероятность вытащить первым красный, вторым синий или первым синий, вторым красный равна

А если их доставали из коробки не один за другим, а одновременно? Вероятность остается такой же: 0,3. Потому что она не зависит от того, вытащили мы фломастеры один за другим, или с интервалом в 2 секунды, или с интервалом в 0,5 секунды… или одновременно!
Ответ: 0,3.

5. При подозрение на наличие некоторого заболевания пациента отправляют на ПЦР-тест. Если заболевание действительно есть, то тест подтверждает его в 86 % случаев. Если заболевания нет, то тест выявляет отсутствие заболевания в среднем в 94% случаев.

Известно, что в среднем тест оказывается положительным у 10% пациентов, направленных на тестирование. При обследовании некоторого пациента врач направил его на ПЦР-тест, который оказался положительным. Какова вероятность того, что пациент действительно имеет это заболевание?

Пациент приходит к врачу и делает ПЦР-тест. Он может быть болен этим заболеванием – с вероятностью х. Тогда с вероятностью 1 – х он этим заболеванием не болен.

Анализ пациента может быть положительным по двум причинам:
а) пациент болеет заболеванием, которое нельзя называть, его анализ верен; событие А,
б) пациент не болен этим заболеванием, его анализ ложно-положительный, событие В.
Это несовместные события, и вероятность их суммы равна сумме вероятностей этих событий.

Мы составили уравнение, решив которое, найдем вероятность x.

Нам же нужно найти вероятность z того, что пациент, ПЦР-тест которого положителен, действительно имеет это заболевание. Вероятность этого события равна (пациент болен и ПЦР-тест выявил заболевание, произведение событий). С другой стороны, эта вероятность равна (у пациента положительный результат ПЦР-теста, и при выполнении этого условия он действительно болен).

Вероятность того, что пациент с положительным результатом ПЦР-теста действительно болен, меньше половины!
Кстати, это реальная проблема для диагностики в медицине, то есть в задаче отражена вполне жизненная ситуация.

6. Телефон передает sms-сообщение. В случае неудачи телефон делает следующую попытку. Вероятность того, что сообщение удастся передать без ошибок в каждой следующей попытке, равна 0,4. Найдите вероятность того, что для передачи сообщения потребуется не больше 2 попыток.

Решение:
Здесь все просто. Либо сообщение удалось передать с первой попытки, либо со второй.
Вероятность того, что сообщение удалось передать с первой попытки, равна 0,4.

С вероятностью 0,6 с первой попытки передать не получилось. Если при этом получилось со второй, то вероятность этого события равна

Значит, вероятность того, что для передачи сообщения потребовалось не более 2 попыток, равна

7. Симметричную монету бросают 10 раз. Во сколько раз вероятность события «выпадет ровно 5 орлов» больше вероятности события «выпадет ровно 4 орла»?

А это более сложная задача. Можно, как и в предыдущих, пользоваться определением вероятности и понятиями суммы и произведения событий. А можно применить формулу Бернулли.

Формула Бернулли:

– Вероятность того, что в n независимых испытаниях некоторое случайное событие A наступит ровно m раз, равна:

p – вероятность появления события A в каждом испытании;

– вероятность появления события A в каждом испытании

Коэффициент часто называют биномиальным коэффициентом.

О том, что это такое, расскажем с следующих статьях на нашем сайте. Чтобы не пропустить – подписывайтесь на нашу рассылку.

А пока скажем просто, как их вычислять.

Нет, это не заклинание. Не нужно громко кричать: Эн. Поделить на эм! И на эн минус эм! То, что вы видите в формуле, – это не восклицательные знаки. Это факториалы. На самом деле все просто: n! (читается: эн факториал) – это произведение натуральных чисел от 1 до n. Например,

Пусть вероятность выпадения орла при одном броске монеты равна вероятность решки тоже Давайте посчитаем вероятность того, что из 10 бросков монеты выпадет ровно 5 орлов.

Вероятность выпадения ровно 4 орлов равна

Найдем, во сколько раз больше, чем

8. Стрелок стреляет по пяти одинаковым мишеням. На каждую мишень дается не более двух выстрелов, и известно, что вероятность поразить мишень каждым отдельным выстрелом равна 0,6. Во сколько раз вероятность события «стрелок поразит ровно 5 мишеней» больше вероятности события «стрелок поразит ровно 4 мишени»?

Стрелок поражает мишень с первого или со второго выстрела;
Вероятность поразить мишень равна

Вероятность поразить 5 мишеней из 5 равна

Вероятность поразить 4 мишени из 5 находим по формуле Бернулли:

9. Стрелок стреляет по пяти одинаковым мишеням. На каждую мишень дается не более двух выстрелов, и известно, что вероятность поразить мишень каждым выстрелом равна 0,5. Во сколько раз вероятность события «стрелок поразит ровно 3 мишени» больше вероятности события «стрелок поразит ровно 2 мишени»?

Решение:
Найдем вероятность поразить одну мишень – с первого или со второго выстрела.

С вероятностью стрелок поражает мишень первым выстрелом (и больше по ней не стреляет).

Найдем вероятность того, что стрелок поразит мишень вторым выстрелом. Она равна так как с вероятностью он промахнулся в первый раз и с вероятностью второй выстрел был удачным.

Значит, вероятность поразить одну мишень первым или вторым выстрелом равна

Теперь нам на помощь придет формула Бернулли.

Найдем вероятность того, что стрелок поразит ровно 3 мишени из 5.

Вероятность поразить ровно 2 мишени из пяти

10. Стрелок в тире стреляет по мишени. Известно, что он попадает в цель с вероятностью 0,3 при каждом отдельном выстреле. Какое наименьшее количество патронов нужно дать этому стрелку, чтобы вероятность поражения цели была не менее 0,6?

Вероятность промаха при одном выстреле равна 1 – 0,3 = 0,7.

Если то – не подходит;

Для условие выполнено,

11. Игральную кость бросают до тех пор, пока сумма всех выпавших очков не превысит число 3. Какова вероятность того, что для этого потребуется ровно 3 броска? Ответ округлите до сотых.

Кажется, что задача сложная (на самом деле нет).

Давайте подумаем: как получилось, что ровно за 3 броска игральной кости сумма выпавших очков оказалась больше трех? Из этого следует, что за 2 броска сумма выпавших очков была меньше 3 или равна 3.

Если за 2 броска сумма выпавших очков была меньше 3, значит, она была равна 2, то есть первый раз выпала единица и второй раз тоже единица. Вероятность этого события равна

Сколько же очков в этом случае должен дать третий бросок? Очевидно, что подойдет 2, 3, 4, 5, 6 – все, кроме 1. Вероятность того, что при третьем броске выпадет число очков, не равное единице, равна

Значит, вероятность того, что при первых двух бросках выпали единицы, а при третьем – не единица, равна

Нам подойдет также случай, когда сумма очков за первые 2 броска равна 3. Это значит, что выпали 2 и 1 или 1 и 2, то есть 2 благоприятных исхода из 36 возможных. Вероятность этого события равна

При этом нам все равно, что выпадет при третьем броске: очевидно, что сумма очков при трех бросках будет больше трех.

Вот еще одна задача из Демо-версии ЕГЭ-2022:

12. В городе 48% взрослого населения – мужчины. Пенсионеры составляют 12,6% взрослого населения, причём доля пенсионеров среди женщин равна 15%. Для социологического опроса выбран случайным образом мужчина, проживающий в этом городе. Найдите вероятность события «выбранный мужчина является пенсионером».

Решение:
Пусть N – численность взрослого населения в городе (мужчин и женщин).
Количество взрослых мужчин в городе: 0,48N
Количество женщин в городе: 0,52N
Из них 0,15 * 0,52N = 0,078N женщин-пенсионеров,
Всего пенсионеров 0,126N,
Тогда количество мужчин-пенсионеров равно 0,126N – 0,078N = 0,048N.
Вероятность для случайно выбранного мужчины оказаться пенсионером равна отношению числа мужчин-пенсионеров к числу мужчин в городе, то есть 0,048 N : 0,48N = 0,1.
Ответ. 0,1.

Мы разобрали все доступные типы заданий №10 из вариантов ЕГЭ-2022. Раздел будет дополняться решениями новых задач– как только они появятся в Банке заданий ФИПИ.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *