Что значит ряд сходится равномерно

Равномерная сходимость функциональных последовательностей и рядов

Сходимость функциональной последовательности и ряда.

Сходимость последовательности функций.

Пусть функции \(f_(x)\), \(n \in \mathbb\), определены на множестве \(E\) и пусть \(x_ <0>\in E\). Если числовая последовательность \(\(x_<0>)\>\) сходится, то последовательность функций \(\(x)\>\) сходится в точке \(x_<0>\).

Последовательность \(\(x)\>\), сходящуюся в каждой точке \(x \in E\), называют сходящейся на множестве \(E\). В этом случае на множестве \(E\) определена функция \(f(x)\), значение которой в любой точке \(x \in E\) равно пределу последовательности \(\(x)\>\). Эту функцию называют предельной функцией последовательности \(\(x)\>\) на множестве \(E\) и пишут
$$
\lim_f_(x) = f(x),\ x \in E,\label
$$
или
$$
f_(x) \rightarrow f(x),\ x \in E,\nonumber
$$
или, короче,
$$
f_ \xrightarrow[E]<> f.\nonumber
$$

По определению предела запись \eqref означает, что
$$
\forall x \in E\ \forall \varepsilon > 0\ \exists N = N_<\varepsilon>(x): \forall n \geq N \rightarrow |f_(x)-f(x)| Пример 1.

Найти предельную функцию \(f(x)\) последовательности \(\(x)\>\) на множестве \(E\), если:

Сходимость функционального ряда.

Пусть функции \(u_(x)\), \(n \in \mathbb\), определены на множестве \(E\) и пусть для каждого \(x \in E\) существует конечный предел последовательности \(\(x)\>\), где \(S_(x) = \displaystyle\sum_^u_(x)\). Тогда ряд
$$
\sum_^<\infty>u_(x),\label
$$
называют сходящимся на множестве \(E\).

Если \(S(x)\) — предельная функция последовательности \(\(x)\>\) на множестве \(E\), то есть
$$
\lim_S_(x) = S(x),\ x \in E,\nonumber
$$
то функцию называют \(S(x)\) суммой ряда \eqref и пишут
$$
\sum_^<\infty>u_(x) = S(x),\ x \in E.\nonumber
$$
Например, если \(u_(x) = x^\), \(E = (-1,1)\), то \(S_(x) = \displaystyle\frac<1-x^><1-x>\), \(S(x) = \displaystyle\frac<1><1-x>\). Если в каждой точке \(x \in E\) сходится ряд \(\displaystyle\sum_^<\infty>|u_(x)|\), то ряд \eqref называют абсолютно сходящимся на множестве \(E\).

Равномерная сходимость функциональной последовательности.

Понятие равномерной сходимости последовательности функций.

Последовательность функций
$$
\(x)\>\nonumber
$$
называется равномерно сходящейся на множестве \(E\) к функции \(f(x)\), если
$$
\forall \varepsilon > 0\ \exists N_<\varepsilon>:\ \forall n \geq N_ <\varepsilon>\ \forall x \in E \rightarrow |f_(x)-f(x)| Пример 2.

Доказать, что последовательность \(\(x)\>\) равномерно сходится на множестве \(E\), и найти ее предельную функцию \(f(x)\), если:

Критерии равномерной сходимости последовательности функций.

Чтобы последовательность функций \(\(x)\>\), определенных на множестве \(E\), сходилась равномерно на этом множестве к функции \(f(x)\), необходимо и достаточно, чтобы
$$
\lim_ \sup_ |f_(x)-f(x)| = 0.\label
$$

\(\circ\) Обозначим \(\sigma_ = \displaystyle\sup_ |f_(x)-f(x)|\). Тогда условие \eqref означает, что
$$
\forall \varepsilon > 0\ \exists n_<\varepsilon>: \forall n \geq n_ <\varepsilon>\rightarrow \sigma_ 0\ \exists N_<\varepsilon>: \forall n \geq N_ <\varepsilon>\rightarrow |f_(x)-f(x)| Пример 3.

Доказать, что последовательность \(\(x)\>\) сходится равномерно на множестве \(E\), и найти предельную функцию \(f(x)\), если:

Так как при \(x \neq 0\) справедливо неравенство \(1 + n^<\alpha>x^ <2>\geq 2n^<\alpha/2>|x|\), причем это неравенство обращается в равенство лишь в случае, когда \(n^<\alpha>x^ <2>= 1\), то есть \(|x| = n^<-\alpha/2>\), то
$$
|f_(x)-f(x)| \leq \frac<2n^<2>|x|><2n^<\alpha/2>|x|> = \frac<1>>,\ x \neq 0.\nonumber
$$
Следовательно, \(\displaystyle\sup_ |f_(x)-f(x)| = \frac<1>> \rightarrow 0\) при \(n \rightarrow \infty\), если \(\alpha > 4\), и поэтому \(f_(x) \rightrightarrows 0\), \(x \in R\).

(критерий Коши равномерной сходимости последовательности)

Чтобы последовательность функций \(\(x)\>\) сходилась равномерно на множестве \(E\), необходимо и достаточно, чтобы выполнялось условие Коши
$$
\forall \varepsilon > 0\ \exists N_<\varepsilon>: \forall n \geq N_<\varepsilon>\ \forall p \in \mathbb\ \forall x \in E \rightarrow |f_(x)-f_(x)| Доказательство.

\(\circ\) Необходимость. Пусть \(f_(x) \rightrightarrows f(x)\), \(x \in E\). Тогда по определению равномерной сходимости
$$
\forall \varepsilon > 0\ \exists N_<\varepsilon>: \forall k \geq N_<\varepsilon>\ \forall x \in E \rightarrow |f_(x)-f(x)| 0\ \exists N_<\varepsilon>: \forall n \geq N_<\varepsilon>\ \forall p \in \mathbb\ \forall x \in E \rightarrow |f_(x)-f_(x)| 0: \forall k \in \mathbb\ \exists n \geq k\ \exists p \in \mathbb\ \exists \tilde \in E: |f_(\tilde)-f_(\tilde)| \geq \varepsilon_<0>.\label
$$

Доказать, что последовательность \(\(x)\>\), где \(f_(x) = \displaystyle\frac<\ln nx><\sqrt>\), не является равномерно сходящейся на множестве \(E = (0, 1)\).

\(\vartriangle\) Для любого \(k \in \mathbb\) возьмем \(p = k = n\), \(\tilde = 1/k = 1/n\). Тогда
$$
|f_(\tilde)-f_(\tilde)| = \left|f_<2n>(\frac<1>)-f_ (\frac<1>)\right| = \left|\frac<\ln 2><\sqrt<2>>-\ln 1\right| = \frac<\ln 2><\sqrt<2>> = \varepsilon_<0>,\nonumber
$$
то есть выполняется условие \eqref, и поэтому последовательность \(\(x)\>\) не является равномерно сходящейся на \(E\). \(\blacktriangle\)

Если существует предельная функция \(f(x)\) последовательности \(\(x)\>\) на множестве \(E\), но не выполняется условие \eqref, то есть
$$
\exists \varepsilon_ <0>> 0: \forall k \in \mathbb\ \exists n \geq k\ \exists \tilde \in E: |f_(\tilde)-f(\tilde)| \geq \varepsilon_<0>,\label
$$
то говорят, что последовательность \(\(x)\>\) сходится неравномерно на множестве \(E\) к функции \(f(x)\).

Исследовать на сходимость и равномерную сходимость на множестве \(E\) последовательность \(\(x)\>\), если:

Неравномерную сходимость последовательности можно установить, используя теорему 1. Если условие \eqref не выполняется, то есть
$$
\sup_|f_(x)-f(x)| \nrightarrow 0\ \mbox<при>\ n \rightarrow \infty,\label
$$
то \(\(x)\>\) сходится неравномерно на множестве \(E\) к \(f(x)\).

Исследовать на сходимость и равномерную сходимость последовательность \(f_(x) = n^<2>x^<2>e^<-nx>\), \(E = (0, 2)\).

\(\vartriangle\) Предельная функция \(f(x) = 0\), \(x \in E\). Так как уравнение \(f_‘(x) = n^<2>xe^<-nx>(2-xn)\) имеет на интервале (0,2) единственный корень \(x_ = 2/n\), причем \(f_‘(x) > 0\) при \(x \in (0, x_)\) и \(f_‘(x)

Определение и критерий равномерной сходимости функционального ряда.

Пусть функции \(u_(x)\), \(n \in \mathbb\), определены на множестве \(E\). Обозначим
$$
S_(x) = \sum_^u_(x).\label
$$

Ряд
$$
\sum_^<\infty>u_(x),\label
$$
называется равномерно сходящимся на множестве \(E\), если на этом множестве определена функция \(S(x)\) такая, что
$$
S_(x) \rightrightarrows S(x),\ x \in E.\label
$$

Согласно определению равномерной сходимости последовательности функций запись \eqref означает, что
$$
\forall \varepsilon > 0\ \exists N_<\varepsilon>: \forall n \geq N_<\varepsilon>\ \forall x \in E \rightarrow |S_(x)-S(x)| 0\ \exists N_<\varepsilon>: \forall n \geq N_<\varepsilon>\ \forall x \in E \rightarrow |r_(x)| 0: \forall k \in \mathbb\ \exists n \geq k\ \exists \tilde \in E: |r_(\tilde)| \geq \varepsilon_<0>,\label
$$
или
$$
\sup_|r_(x)| \nrightarrow 0\ \mbox<при>\ n \rightarrow \infty,\label
$$
то ряд \eqref сходится неравномерно на множестве \(E\).

Исследовать на сходимость и равномерную сходимость на указанных множествах ряд \(\displaystyle\sum_^<\infty>u_(x)\), если:

(критерий Коши равномерной сходимости ряда)

Для того чтобы ряд \eqref равномерно сходился на множестве \(E\), необходимо и достаточно, чтобы выполнялось условие Коши, то есть
$$
\forall \varepsilon > 0\ \exists N_<\varepsilon>: \forall n \geq N_<\varepsilon>\ \forall p \in \mathbb\ \forall x \in E \rightarrow \left|\sum_^ u_(x)\right| Доказательство.

\(\circ\) По определению равномерная сходимость ряда \eqref на множестве \(E\) означает равномерную сходимость последовательности \(\(x)\>\) на \(E\).

Согласно теореме 2 \(S_(x) \rightrightarrows S(x)\) на \(E\) тогда и только тогда, когда
$$
\forall \varepsilon > 0\ \exists N_<\varepsilon>: \forall n \geq N_<\varepsilon>\ \forall p \in \mathbb\ \forall x \in E \rightarrow |S_(x)-S_(x)| 0: \forall m \in \mathbb\ \exists n \geq m\ \exists p \in \mathbb\ \exists\ \tilde \in E: \left|\sum_^ u_(\tilde)\right| \geq \varepsilon_<0>,\label
$$
то ряд \eqref не является равномерно сходящимся на множестве \(E\). В частности, если
$$
\exists \varepsilon_ <0>> 0: \forall n_ <0>\in \mathbb:\ \forall n \geq n_<0>\ \exists\ x_ \in E: |u_(x_)| \geq \varepsilon_<0>,\label
$$
то ряд \eqref не является равномерно сходящимся на множестве \(E\).

Доказать, что ряд \(\displaystyle\sum_^<\infty>u_(x)\) не является равномерно сходящимся на множестве \(E\), если:

Признаки равномерной сходимости функциональных рядов.

Признак Вейерштрасса.

Если для функционального ряда \eqref можно указать такой сходящийся числовой ряд \(\displaystyle\sum_^<\infty>a_\), что для всех \(n \geq n_<0>\) и для всех \(x \in E\) выполняется условие
$$
|u_(x)| \leq a_,\label
$$
то ряд \eqref сходится абсолютно и равномерно на множестве \(E\).

\(\circ\) Согласно условию \eqref для любого \(n \geq n_<0>\), любого \(p \in \mathbb\) и для каждого \(x \in E\) выполняется неравенство
$$
\left|\sum_^u_(x)\right| \leq \sum_^|u_(x)| \leq \sum_^a_.\label
$$
Из сходимости ряда \(\displaystyle\sum_^<\infty>a_\) следует (свойства сходящихся рядов можно посмотреть здесь), что для него выполняется условие Коши, то есть
$$
\forall \varepsilon > 0\ \exists N_<\varepsilon>: \forall n \geq N_<\varepsilon>\ \forall p \in \mathbb\ \rightarrow \sum_^a_ Следствие.

Если сходится ряд \(\displaystyle\sum_^<\infty>a_\), где \(a_ = \sup_|u_(x)|\), то ряд \eqref сходится абсолютно и равномерно на множестве \(E\).

Доказать, что ряд \(\displaystyle\sum_^<\infty>u_(x)\) сходится равномерно на множестве \(E\), если:

Признак Дирихле.

Ряд
$$
\sum_^<\infty>a_(x)b_(x),\label
$$
сходится равномерно на множестве \(E\), если выполняются условия:

Условие \eqref означает, что
$$
\forall \varepsilon > 0\ \exists N_<\varepsilon>: \forall k \geq N_<\varepsilon>\ \forall x \in E \rightarrow |a_(x)| Пример 10.

Доказать, что при \(\alpha > 0\) ряд
$$
\sum_^<\infty>\frac<\sin nx>>,\label
$$
сходится равномерно на множестве \(E = [\delta, 2\pi-\delta]\), где \(0 Решение.

\(\vartriangle\) Если \(\alpha > 1\), то по признаку Вейерштрасса ряд \eqref сходится абсолютно и равномерно на \(\mathbb\), так как \(|\sin x| \leq 1\), а ряд \(\displaystyle\sum_^<\infty>\frac<1>>\), где \(\alpha > 1\), сходится.

Признак Абеля.

Ряд \eqref сходится равномерно на множестве \(E\), если выполняются условия:

\(\circ\) Обозначим \(B_^<(n)>(x) = \displaystyle\sum_^b_(x)\). Тогда ряд \eqref в силу теоремы 3 удовлетворяет условию Коши, то есть
$$
\forall \varepsilon > 0\ \exists N_<\varepsilon>: \forall n \geq N_ <\varepsilon>\forall j \in \mathbb\ \rightarrow |B_^<(n)>(x)| 0\ \exists N_<\varepsilon>: \forall n \geq N_<\varepsilon>\ \forall p \in \mathbb\ \forall x \in E \rightarrow \left|\sum_^a_(x)b_(x)\right|

Свойства равномерно сходящихся функциональных последовательностей и рядов.

Непрерывность суммы равномерно сходящегося ряда.

Если все члены ряда \eqref — непрерывные на отрезке \([a, b]\) функции, а ряд \eqref сходится равномерно на \([a, b]\), то его сумма \(S(x)\) также непрерывна на отрезке \([a, b]\).

\(\circ\) Пусть \(x_<0>\) — произвольная точка отрезка \([a, b]\). Для определенности будем считать, что \(x_ <0>\in (a, b)\).

Нужно доказать, что функция
$$
S(x) = \sum_^<\infty>u_(x)\nonumber
$$
непрерывна в точке \(x_<0>\), то есть
$$
\forall \varepsilon > 0\ \exists \delta = \delta (\varepsilon) > 0: \forall x \in U_<\delta>(x_<0>) \rightarrow |S(x)-S(x_<0>)| 0\ \exists N_<\varepsilon>: \forall n \geq N_<\varepsilon>\ \forall x \in [a, b] \rightarrow |S(x)-S_(x)| 0\ \exists \delta = \delta (\varepsilon) > 0: \forall x \in U_<\delta>(x_<0>) \subset [a, b] \rightarrow |S_>(x)-S_>(x_<0>)| Замечание 1.

Если последовательность \(\(x)\>\) непрерывных на отрезке \([a, b]\) функций равномерно сходится на \([a, b]\), то ее предельная функция \(S(x)\) также непрерывна на отрезке \([a, b]\).

\(\circ\) Доказательство этого утверждения следует из теоремы 7. \(\bullet\)

Почленное интегрирование функционального ряда.

Если все члены ряда \eqref — непрерывные на отрезке \([a, b]\) функции, а ряд \eqref сходится равномерно на \([a, b]\), то ряд
$$
\sum_^<\infty>\int\limits_a^x u_(t)\ dt,\label
$$
также равномерно сходится на \([a, b]\), и если
$$
S(x) = \sum_^<\infty>u_(x),\label
$$
то
$$
\int\limits_a^x S(t)\ dt = \sum_^<\infty>\int\limits_a^x u_(t)\ dt,\quad x \in [a, b],\label
$$
то есть ряд \eqref можно почленно интегрировать.

\(\circ\) По условию ряд \eqref сходится равномерно к \(S(x)\) на отрезке \([a, b]\), то есть \(S_(x) = \displaystyle\sum_^u_(x) \rightrightarrows S(x)\), \(x \in [a, b]\). Это означает, что
$$
\forall \varepsilon > 0\ \exists N_<\varepsilon>: \forall n \in N_<\varepsilon>\ \forall t \in [a, b] \rightarrow |S(t)-S_(t)| Замечание 2.

Равенство \eqref остается в силе, если заменить \(a\) на \(c\), \(x\) на \(d\), где \(a \leq c \leq d \leq b\), то есть ряд \eqref можно при условиях теоремы 9 почленно интегрировать на любом отрезке \([c, d] \subset [a, b]\).

Если \(S_(t) \rightrightarrows S(t)\), \(x \in [a, b]\), а каждая из функций \(S_(t)\) непрерывна на отрезке \([a, b]\), то
$$
\int\limits_>^x S_(t)\ dt \rightrightarrows \int\limits_>^x S(t)\ dt,\quad x \in [a, b],\nonumber
$$
для любой точки \(x_ <0>\in [a, b]\).

\(\circ\) Доказательство этого утверждения получено при доказательстве теоремы 9. \(\bullet\)

Почленное дифференцирование функционального ряда.

Если функции \(u_(x)\), \(n \in \mathbb\), имеют непрерывные производные на отрезке \([a, b]\), ряд
$$
\sum_^<\infty>u_‘(x),\label
$$
сходится равномерно на отрезке \([a, b]\), а ряд
$$
\sum_^<\infty>u_(x),\label
$$
сходится хотя бы в одной точке \(x \in [a, b]\), то есть сходится ряд
$$
\sum_^<\infty>u_(x_<0>),\label
$$
то ряд \eqref сходится равномерно на отрезке \([a, b]\), и его можно почленно дифференцировать, то есть
$$
S'(x) = \sum_^<\infty>u_‘(x),\label
$$
где
$$
S(x) = \sum_^<\infty>u_(x),\label
$$

\(\circ\) Обозначим через \(\tau(x)\) сумму ряда \eqref, то есть
$$
\tau(x) = \sum_^<\infty>u_‘(x),\label
$$

По теореме 9 ряд \eqref можно почленно интегрировать, то есть
$$
\int\limits_>^x \tau(t)\ dt = \sum_^<\infty>\int\limits_>^x u_‘(t)\ dt,\label
$$
где \(x_<0>,\ x \in [a, b]\), причем ряд \eqref сходится равномерно на отрезке \([a, b]\). Так как \(\displaystyle\int\limits_>^x u_‘(t)\ dt = u_(x)-u_(x_<0>)\), то равенство \eqref можно записать в виде
$$
\int\limits_>^x \tau(t)\ dt = \sum_^<\infty>v_(x),\label
$$
где
$$
v_(x) = u_(x)-u_(x_<0>).\label
$$
Ряд \eqref сходится равномерно, а ряд \eqref сходится (а значит, и равномерно сходится на отрезке \([a, b]\)). Поэтому ряд \eqref сходится равномерно на \([a, b]\) как разность равномерно сходящихся рядов.

Из равенств \eqref, \eqref и \eqref следует, что
$$
\int\limits_>^x \tau(t)\ dt = S(x)-S(x_<0>).\label
$$

Так как функция \(\tau(t)\) непрерывна на отрезке \([a, b]\) по теореме 7, то в силу свойств интеграла с переменным верхним пределом левая часть равенства \eqref имеет производную, которая равна \(\tau(x)\). Следовательно, правая часть \eqref — дифференцируемая функция, а ее производная равна \(S'(x)\). Итак, доказано, что \(\tau(x) = S'(x)\), то есть справедливо равенство \eqref для всех \(x \in [a, b]\). \(\bullet\)

При условиях теоремы 11 функция \(S'(x)\) непрерывна на отрезке \([a, b]\), то есть \(S(x)\) — непрерывно дифференцируемая на \([a, b]\) функция.

Если последовательность \(\(x)\>\) непрерывно дифференцируемых на \([a, b]\) функций сходится хотя бы в одной точке \(x_ <0>\in [a, b]\), а последовательность \(\‘(x)\>\) сходится равномерно на \([a, b]\), то последовательность \(\(x)\>\) также сходится равномерно на \([a, b]\) к некоторой функции \(S(x)\) и
$$
S'(x) = \lim_S_‘(x),\quad x \in [a, b].\nonumber
$$

\(\circ\) Доказательство этого утверждения получено при доказательстве теоремы 11. \(\bullet\)

Источник

Равномерная сходимость функционального ряда

Содержание

Поточечная сходимость [ править ]

То, как была определена сумма функционального ряда, не учитывает то, что функция — закон соответствия, который каждому [math]x \in E[/math] сопоставляет некоторое число. При этом, все [math]x[/math] фигурировали изолированно.

Приведем пример, показывающий, что если требовать лишь поточечной сходимости, то для [math] f [/math] свойство [math]P[/math] может отсутствовать.

Что значит ряд сходится равномерно

Тогда [math]f[/math] будет разрывна в нуле, свойство непрерывности не сохранилось.

Равномерная сходимость [ править ]

Возникает вопрос: «Что ещё надо потребовать от поточечной сходимости, чтобы в пределе [math]P[/math] сохранилось?»

Классическое требование: равномерная сходимость.

Далее всё будем писать на языке функциональных рядов, так как их наиболее удобно использовать в математическом анализе, и вообще это очень круто и популярно.

Критерий Коши равномерной сходимости [ править ]

[math]\Longrightarrow[/math] Пусть ряд равномерно сходится.

[math]\Longleftarrow[/math] Пусть выполняется условие критерия Коши.

[math]\forall x \in E[/math] для [math]\sum\limits_^\infty f_n(x)[/math] выполняется критерий Коши сходимости числовых рядов. Значит, этот ряд сходится. На всем [math]E[/math] определена его сумма. Осталось установить равномерную сходимость ряда.

По условию критерия Коши, [math]\forall m \geq n \gt N\ \forall x \in E : \left|\sum\limits_^m f_k(x) \right| \leq \varepsilon[/math]

Значит, определение равномерной сходимости проверено.[math]\triangleleft[/math]

Признак Вейерштрасса [ править ]

Существует простой признак для проверки равномерной сходимости (признак Вейерштрасса)

Можно рассматривать [math]\sum\limits_^\infty |f_n|[/math] и при этом сохраняется терминология числовых рядов, связанная с абсолютной и условной сходимостью.

Как и в рядах, абсолютная сходимость сильнее сходимости: из абсолютной сходимости вытекает сходимость.

Применим критерий Коши:

[math]\left|\sum\limits_^m f_k(x) \right|[/math] [math]\leq \sum\limits_^m |f_k(x)|[/math] [math]\leq \sum\limits_^m a_k[/math]

[math]\sum\limits_^m a_k \lt +\infty \Rightarrow \forall\varepsilon\ \gt 0\ \exists N\ \forall m \geq n \gt N : \sum\limits_^m a_k \lt \varepsilon[/math]

Признак Абеля-Дирихле [ править ]

1)Частичные суммы [math] S_k(x)= \sum\limits_^k a_n(x) [/math] ряда [math]\sum\limits_^\infty a_n(x) [/math] равномерно ограничены на [math]E[/math] ;

Монотонность последовательности [math]b_n(x)[/math] позволяет при каждом [math]x \in E[/math] записать оценку:

[math] |\sum\limits_^m a_k(x) b_k(x)| \leq 4 max |A_k(x)| * max( |b_n(x)|, |b_m(x)| )[/math]

Источник

Функциональные ряды. Область сходимости. Равномерная сходимость

Содержание:

Что значит ряд сходится равномерно

Что значит ряд сходится равномерно

Что значит ряд сходится равномерно

Что значит ряд сходится равномерно

Что значит ряд сходится равномерно

Что значит ряд сходится равномерно

Что значит ряд сходится равномерно

Что значит ряд сходится равномерно

Что значит ряд сходится равномерно

Что значит ряд сходится равномерно

Что значит ряд сходится равномерно

По этой ссылке вы найдёте полный курс лекций по математике:

Свойства равномерно сходящихся функциональных рядов числовой ряд Если ряд (1) сходится в каждой точке х множества D С Е и расходится в каждой точке, множеству D не принадлежащей, то говорят, что ряд сходится на множестве D, и называют D областью сходимости ряда. Ряд (1) называется абсолютно сходящимся на множестве D, если на этом множестве сходится ряд В случае сходимости ряда (1) на множестве D его сумма S будет являться функцией, определенной на D.

Область сходимости некоторых функциональных рядов можно найти с помощью известных достаточных признаков, установленных для рядов с положительными членами, например, признака Дапамбера, признака Коши. Пример 1. Найти область сходимости ряда М Так как числовой ряд сходится при р > 1 и расходится при р ^ 1, то, полагая р — Igx, получим данный ряд. который будет сходиться при Igx > Ц т.е. если х > 10, и расходиться при Igx ^ 1, т.е. при 0

Равномерная сходимость Среди всех сходящихся функциональных рядов важную роль играют так называемые равномерно сходящиеся ряды. Пусть дан сходящийся на множестве D функциональный ряд сумма которого равна S(x). Возьмем его n-ю частичную сумму Определение. Функциональный ряд ФУНКЦИОНАЛЬНЫЕ РЯДЫ Область сходимости Равномерная сходимость Признак Вейерштрасса Свойства равномерно сходящихся функциональных рядов называется равномерно сходящимся на множестве ПС1), если для любого числа е > О найдется число ЛГ > О такое, что неравенство будет выполняться для всех номеров п > N и для всех х из множества fI. Замечание.

Здесь число N является одним и тем же для всех х € Ю, т.е. не зависит от z, однако зависит от выбора числа е, так что пишут N = N(e). Равномерную сходимость функционального ряда £ /п(®) к функции 5(х) на множестве ft часто обозначают так: Определение равномерной сходимости ряда /п(ж) на множестве ft можно за- писать короче с помощью логических символов: Поясним геометрически смысл равномерной сходимости функционального ряда.

Возможно вам будут полезны данные страницы:

Теорема 1 (признак Вейерштрасса):

Пусть для всех х из множества Q члены функционального ряда по абсолютной величине не превосходят соответствующих членов сходящегося числового ряда П=1 с положительными членами, т. е. для всех х € Q. Тогда функциональный ряд (1) на множестве П сходится абсолютно и равномерно. А Тек как по условию теоремы члены ряда (1) удовлетворяют условию (3) на всем множестве Q, то по признаку сравнения ряд 2 \fn(x)\ сходится при любом х € И, и, следовательно, ряд (1) сходится на П абсолютно.

Докажем равномерную сходимость ряда (1).

Теорема (Вейерштрасс):
Пусть на отрезке [а, Ь\ ряд £ fn(x)

равномерно сходится к функции 5(ж), а функ- ция д(х) ограничена, т. е. существует постоянная С > 0 такая, что По определению равномерной сходимости ряда для любого числа е > 0 существует номер N такой, что для всех п > N и для всех х € [а, Ь] будет выполняться неравенство где 5n(ar) — частичная сумма рассматриваемого ряда.

Так как х является произвольной точкой отрезка [а, 6], то 5(ж) непрерывна на |а, 6|. Замечание. Функциональный ряд члены которого непрерывны на отрезке [а, 6), но который сходится на (а, 6] неравномерно, может иметь суммой разрывную функцию. Пример 1. Рассмотрим функциональный ряд на отрезке |0,1). Вычислим его n-ю частичную сумму Поэтому Она разрывна на отрезке [0,1], хотя члены ряда непрерывны на нем.

Пусть все члены fn(x) ряда непрерывны, и ряд сходится равномерно на отрезке [а, Ь] к функции S(x). Тогда справедливо равенство В силу непрерывности функций f„(x) и равномерной сходимости данного ряда на отрезке [а, 6] его сумма 5(ж) непрерывна и, следовательно, интегрируема на [a, ft].

Рассмотрим разность

Из равномерной сходимости ряда на [о, Ь] следует, что для любого е > 0 найдется число N(e) > 0 такое, что для всех номеров п > N(e) и для всех х € [а, 6] будет выполняться неравенство Если ряд fn(0 не является равномерно сходящимся, то его, вообще говоря, нельзя почленно интегрировать, т. е. Теорема 5 (о почленном дифференцировании функционального ряда). Пусть все члены сходящегося ряда 00 имеют непрерывные производные и ряд составленный из этих производных, равномерно сходится на отрезке [а, Ь].

Присылайте задания в любое время дня и ночи в ➔ Что значит ряд сходится равномерноЧто значит ряд сходится равномерно

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *