Что значит ряд сходится или расходится

Признаки сходимости рядов.
Признак Даламбера. Признаки Коши

Работайте, работайте – а понимание придёт потом
Ж.Л. Даламбер

Всех поздравляю с началом учебного года! Сегодня 1 сентября, и я решил в честь праздника познакомить читателей с тем, что вы давно с нетерпением ждали и жаждали узнать – признаками сходимости числовых положительных рядов. Праздник Первое сентября и мои поздравления всегда актуальны, ничего страшного, если на самом деле за окном лето, вы же сейчас в третий раз пересдаете экзамен учитесь, если зашли на эту страничку!

Для тех, кто только начинает изучать ряды, рекомендую для начала ознакомиться со статьей Числовые ряды для чайников. Собственно, данная телега является продолжением банкета. Итак, сегодня на уроке мы рассмотрим примеры и решения по темам:

Одним из распространенных признаков сравнения, который встречается в практических примерах, является признак Даламбера. Признаки Коши встречаются реже, но тоже весьма популярны. Как всегда, постараюсь изложить материал просто, доступно и понятно. Тема не самая сложная, и все задания в известной степени трафаретны.

Признак сходимости Даламбера

Жан Лерон Даламбер – это знаменитый французский математик 18-го века. Вообще, Даламбер специализировался на дифференциальных уравнениях и на основании своих исследований занимался баллистикой, чтобы у Его Величества лучше летали пушечные ядра. Заодно и про числовые ряды не забыл, не зря потом шеренги наполеоновских войск так четко сходились и расходились.

Перед тем как сформулировать сам признак, рассмотрим важный вопрос:
Когда нужно применять признак сходимости Даламбера?

Сначала начнем с повторения. Вспомним случаи, когда нужно применять самый ходовой предельный признак сравнения. Предельный признак сравнения применяется тогда, когда в общем члене ряда:

1) В знаменателе находится многочлен.
2) Многочлены находятся и в числителе и в знаменателе.
3) Один или оба многочлена могут быть под корнем.
4) Многочленов и корней, разумеется, может быть и больше.

Основные же предпосылки для применения признака Даламбера следующие:

1) В общий член ряда («начинку» ряда) входит какое-нибудь число в степени, например, Что значит ряд сходится или расходится, Что значит ряд сходится или расходится, Что значит ряд сходится или расходитсяи так далее. Причем, совершенно не важно, где эта штуковина располагается, в числителе или в знаменателе – важно, что она там присутствует.

2) В общий член ряда входит факториал. С факториалами мы скрестили шпаги ещё на уроке Числовая последовательность и её предел. Впрочем, не помешает снова раскинуть скатерть-самобранку:
Что значит ряд сходится или расходится
Что значит ряд сходится или расходится
Что значит ряд сходится или расходится
Что значит ряд сходится или расходится
Что значит ряд сходится или расходится

Что значит ряд сходится или расходится
Что значит ряд сходится или расходится

! При использовании признака Даламбера нам как раз придется расписывать факториал подробно. Как и в предыдущем пункте, факториал может располагаться вверху или внизу дроби.

3) Если в общем члене ряда есть «цепочка множителей», например, Что значит ряд сходится или расходится. Этот случай встречается редко, но! При исследовании такого ряда часто допускают ошибку – см. Пример 6.

Вместе со степенями или (и) факториалами в начинке ряда часто встречаются многочлены, это не меняет дела – нужно использовать признак Даламбера.

Кроме того, в общем члене ряда может встретиться одновременно и степень и факториал; может встретиться два факториала, две степени, важно чтобы там находилось хоть что-то из рассмотренных пунктов – и это как раз предпосылка для использования признака Даламбера.

Признак Даламбера: Рассмотрим положительный числовой ряд Что значит ряд сходится или расходится. Если существует предел отношения последующего члена к предыдущему: Что значит ряд сходится или расходится, то:
а) При Что значит ряд сходится или расходитсяряд сходится. В частности, ряд сходится при Что значит ряд сходится или расходится.
б) При Что значит ряд сходится или расходитсяряд расходится. В частности, ряд расходится при Что значит ряд сходится или расходится.
в) При Что значит ряд сходится или расходитсяпризнак не дает ответа. Нужно использовать другой признак. Чаще всего единица получается в том случае, когда признак Даламбера пытаются применить там, где нужно использовать предельный признак сравнения.

У кого до сих пор проблемы с пределами или недопонимание пределов, обратитесь к уроку Пределы. Примеры решений. Без понимания предела и умения раскрывать неопределенность Что значит ряд сходится или расходитсядальше, к сожалению, не продвинуться.

А сейчас долгожданные примеры.

Исследовать ряд на сходимость Что значит ряд сходится или расходится
Мы видим, что в общем члене ряда у нас есть Что значит ряд сходится или расходится, а это верная предпосылка того, что нужно использовать признак Даламбера. Сначала полное решение и образец оформления, комментарии ниже.

Используем признак Даламбера:
Что значит ряд сходится или расходится
Таким образом, исследуемый ряд сходится.
(1) Составляем отношение следующего члена ряда к предыдущему: Что значит ряд сходится или расходится. Из условия мы видим, что общий член ряда Что значит ряд сходится или расходится. Для того, чтобы получить следующий член ряда нужно ВМЕСТО Что значит ряд сходится или расходитсяподставить Что значит ряд сходится или расходится: Что значит ряд сходится или расходится.
(2) Избавляемся от четырехэтажности дроби. При определенном опыте решения этот шаг можно пропускать.
(3) В числителе раскрываем скобки. В знаменателе выносим четверку из степени.
(4) Сокращаем на Что значит ряд сходится или расходится. Константу Что значит ряд сходится или расходитсявыносим за знак предела. В числителе в скобках приводим подобные слагаемые.
(5) Неопределенность Что значит ряд сходится или расходитсяустраняется стандартным способом – делением числителя и знаменателя на «эн» в старшей степени.
(6) Почленно делим числители на знаменатели, и указываем слагаемые, которые стремятся к нулю.
(7) Упрощаем ответ и делаем пометку, что Что значит ряд сходится или расходитсяс выводом о том, что, по признаку Даламбера исследуемый ряд сходится.

В рассмотренном примере в общем члене ряда у нас встретился многочлен 2-й степени. Что делать, если там многочлен 3-й, 4-й или более высокой степени? Дело в том, что если дан многочлен более высокой степени, то возникнут трудности с раскрытием скобок. В этом случае можно применять «турбо»-метод решения.

Возьмём похожий ряд и исследуем его на сходимость
Что значит ряд сходится или расходится

Сначала полное решение, потом комментарии:

Используем признак Даламбера:
Что значит ряд сходится или расходится
Таким образом, исследуемый ряд сходится.

(1) Составляем отношение Что значит ряд сходится или расходится.
(2) Избавляемся от четырехэтажности дроби.

(3) Рассмотрим выражение Что значит ряд сходится или расходитсяв числителе и выражение Что значит ряд сходится или расходитсяв знаменателе. Мы видим, что в числителе нужно раскрывать скобки и возводить в четвертую степень: Что значит ряд сходится или расходится, чего делать совершенно не хочется. А для тех, кто не знаком с биномом Ньютона, эта задача окажется ещё сложнее. Проанализируем старшие степени: если мы вверху раскроем скобки Что значит ряд сходится или расходится, то получим старшую степень Что значит ряд сходится или расходится. Внизу у нас такая же старшая степень: Что значит ряд сходится или расходится. По аналогии с предыдущим примером, очевидно, что при почленном делении числителя и знаменателя на Что значит ряд сходится или расходитсяу нас в пределе получится единица. Или, как говорят математики, многочлены Что значит ряд сходится или расходитсяи Что значит ряд сходится или расходитсяодного порядка роста. Таким образом, вполне можно обвести отношение Что значит ряд сходится или расходитсяпростым карандашом и сразу указать, что эта штука стремится к единице. Аналогично расправляемся со второй парой многочленов: Что значит ряд сходится или расходитсяи Что значит ряд сходится или расходится, они тоже одного порядка роста, и их отношение стремится к единице.

На самом деле, такую «халтуру» можно было провернуть и в Примере № 1, но для многочлена 2-й степени такое решение смотрится всё-таки как-то несолидно. Лично я поступаю так: если есть многочлен (или многочлены) первой или второй степени, я использую «длинный» способ решения Примера 1. Если попадается многочлен 3-й и более высоких степеней, я использую «турбо»-метод по образцу Примера 2.

Исследовать ряд на сходимость Что значит ряд сходится или расходится

Полное решение и образец оформления в конце урока

Рассмотрим типовые примеры с факториалами:

Исследовать ряд на сходимость Что значит ряд сходится или расходится

В общий член ряда входит и степень, и факториал. Ясно, как день, что здесь надо использовать признак Даламбера. Решаем.

Что значит ряд сходится или расходится
Таким образом, исследуемый ряд расходится.
(1) Составляем отношение Что значит ряд сходится или расходится. Повторяем еще раз. По условию общий член ряда: Что значит ряд сходится или расходится. Для того чтобы получить следующий член ряда, вместо Что значит ряд сходится или расходитсянужно подставить Что значит ряд сходится или расходится, таким образом: Что значит ряд сходится или расходится.
(2) Избавляемся от четырехэтажности дроби.
(3) Отщипываем семерку от степени. Факториалы расписываем подробно. Как это сделать – см. начало урока или статью о числовых последовательностях.
(4) Сокращаем всё, что можно сократить.
(5) Константу Что значит ряд сходится или расходитсявыносим за знак предела. В числителе раскрываем скобки.
(6) Неопределенность Что значит ряд сходится или расходитсяустраняем стандартным способом – делением числителя и знаменателя на «эн» в старшей степени.

Исследовать ряд на сходимость Что значит ряд сходится или расходится

Полное решение и образец оформления в конце урока

Исследовать ряд на сходимость Что значит ряд сходится или расходится

Иногда встречаются ряды, которые в своей начинке содержат «цепь» множителей, этот тип ряда мы еще не рассматривали. Как исследовать ряд с «цепочкой» множителей? Использовать признак Даламбера. Но сначала для понимания происходящего распишем ряд подробно:
Что значит ряд сходится или расходится

Из разложения мы видим, что у каждого следующего члена ряда добавляется дополнительный множитель в знаменателе, поэтому, если общий член ряда Что значит ряд сходится или расходится, то следующий член ряда:
Что значит ряд сходится или расходится. Вот здесь часто автоматом допускают ошибку, формально по алгоритму записывая, что Что значит ряд сходится или расходится

Примерный образец решения может выглядеть так:

Используем признак Даламбера:
Что значит ряд сходится или расходится

Таким образом, исследуемый ряд сходится.

Радикальный признак Коши

Огюстен Луи Коши – еще более знаменитый французский математик. Биографию Коши вам может рассказать любой студент технической специальности. В самых живописных красках. Не случайно эта фамилия высечена на первом этаже Эйфелевой башни.

Признак сходимости Коши для положительных числовых рядов чем-то похож на только что рассмотренный признак Даламбера.

Радикальный признак Коши: Рассмотрим положительный числовой ряд Что значит ряд сходится или расходится. Если существует предел: Что значит ряд сходится или расходится, то:
а) При Что значит ряд сходится или расходитсяряд сходится. В частности, ряд сходится при Что значит ряд сходится или расходится.
б) При Что значит ряд сходится или расходитсяряд расходится. В частности, ряд расходится при Что значит ряд сходится или расходится.
в) При Что значит ряд сходится или расходитсяпризнак не дает ответа. Нужно использовать другой признак. Интересно отметить, что если признак Коши не даёт нам ответа на вопрос о сходимости ряда, то признак Даламбера тоже не даст ответа. Но если признак Даламбера не даёт ответа, то признак Коши вполне может «сработать». То есть, признак Коши является в этом смысле более сильным признаком.

Когда нужно использовать радикальный признак Коши? Радикальный признак Коши обычно использует в тех случаях, когда корень Что значит ряд сходится или расходится«хорошо» извлекается из общего члена ряда. Как правило, этот перец находится в степени, которая зависит от Что значит ряд сходится или расходится. Есть еще экзотические случаи, но ими голову забивать не будем.

Исследовать ряд на сходимость Что значит ряд сходится или расходится

Мы видим, что дробь полностью находится под степенью, зависящей от «эн», а значит, нужно использовать радикальный признак Коши:
Что значит ряд сходится или расходится
Таким образом, исследуемый ряд расходится.

(1) Оформляем общий член ряда под корень.

(2) Переписываем то же самое, только уже без корня, используя свойство степеней Что значит ряд сходится или расходится.
(3) В показателе почленно делим числитель на знаменатель, указывая, что Что значит ряд сходится или расходится
(4) В результате у нас получилась неопределенность Что значит ряд сходится или расходится. Здесь можно было пойти длинным путем: возвести Что значит ряд сходится или расходитсяв куб, возвести Что значит ряд сходится или расходитсяв куб, потом разделить числитель и знаменатель на «эн» в кубе. Но в данном случае есть более эффективное решение: этот приём можно использовать прямо под степенью-константой. Для устранения неопределенности делим числитель и знаменатель на Что значит ряд сходится или расходится(старшую степень многочленов).

(5) Выполняем почленное деление, и указываем слагаемые, которые стремятся к нулю.
(6) Доводим ответ до ума, помечаем, что Что значит ряд сходится или расходитсяи делаем вывод о том, что ряд расходится.

А вот более простой пример для самостоятельного решения:

Исследовать ряд на сходимость Что значит ряд сходится или расходится

И еще пара типовых примеров.

Полное решение и образец оформления в конце урока

Исследовать ряд на сходимость Что значит ряд сходится или расходится
Используем радикальный признак Коши:
Что значит ряд сходится или расходится
Таким образом, исследуемый ряд сходится.

(1) Помещаем общий член ряда под корень.

(2) Переписываем то же самое, но уже без корня, при этом раскрываем скобки, используя формулу сокращенного умножения: Что значит ряд сходится или расходится.
(3) В показателе почленно делим числитель на знаменатель и указываем, что Что значит ряд сходится или расходится.
(4) Получена неопределенность вида Что значит ряд сходится или расходится, и здесь тоже можно выполнять деление прямо под степенью. Но с одним условием: коэффициенты при старших степенях многочленов должны быть разными. У нас они разные (5 и 6), и поэтому можно (и нужно) разделить оба этажа на Что значит ряд сходится или расходится. Если же эти коэффициенты одинаковы, например (1 и 1): Что значит ряд сходится или расходится, то такой фокус не проходит и нужно использовать второй замечательный предел. Если помните, эти тонкости рассматривались в последнем параграфе статьи Методы решения пределов.

(5) Собственно выполняем почленное деление и указываем, какие слагаемые у нас стремятся к нулю.
(6) Неопределенность устранена, у нас остался простейший предел: Что значит ряд сходится или расходится. Почему Что значит ряд сходится или расходитсяв бесконечно большой степени стремится к нулю? Потому что основание степени удовлетворяет неравенству Что значит ряд сходится или расходится. Если у кого есть сомнения в справедливости предела Что значит ряд сходится или расходится, то я не поленюсь, возьму в руки калькулятор:
Если Что значит ряд сходится или расходится, то Что значит ряд сходится или расходится
Если Что значит ряд сходится или расходится, то Что значит ряд сходится или расходится
Если Что значит ряд сходится или расходится, то Что значит ряд сходится или расходится
Если Что значит ряд сходится или расходится, то Что значит ряд сходится или расходится
Если Что значит ряд сходится или расходится, то Что значит ряд сходится или расходится
… и т.д. до бесконечности – то есть, в пределе: Что значит ряд сходится или расходится

Прямо таки бесконечно убывающая геометрическая прогрессия на пальцах =)
! Никогда не используйте этот приём в качестве доказательства! Ибо если что-то очевидно, то это ещё не значит, что это правильно.

(7) Указываем, что Что значит ряд сходится или расходитсяи делаем вывод о том, что ряд сходится.

Исследовать ряд на сходимость Что значит ряд сходится или расходится

Это пример для самостоятельного решения.

Иногда для решения предлагается провокационный пример, например: Что значит ряд сходится или расходится. Здесь в показателе степени нет «эн», только константа. Тут нужно возвести в квадрат числитель и знаменатель (получатся многочлены), а далее придерживаться алгоритма из статьи Ряды для чайников. В подобном примере сработать должен либо необходимый признак сходимости ряда либо предельный признак сравнения.

Интегральный признак Коши

Или просто интегральный признак. Разочарую тех, кто плохо усвоил материал первого курса. Для того чтобы применять интегральный признак Коши необходимо более или менее уверенно уметь находить производные, интегралы, а также иметь навык вычисления несобственного интеграла первого рода.

В учебниках по математическому анализу интегральный признак Коши дан математически строго, но слишком уж поморочено, поэтому я сформулирую признак не слишком строго, но понятно:

Рассмотрим положительный числовой ряд Что значит ряд сходится или расходится. Если существует несобственный интеграл Что значит ряд сходится или расходится, то ряд сходится или расходится вместе с этим интегралом.

И сразу примеры для пояснения:

Исследовать ряд на сходимость Что значит ряд сходится или расходится

Почти классика. Натуральный логарифм и какая-нибудь бяка.

Основной предпосылкой использования интегрального признака Коши является тот факт, что в общем члене ряда содержатся множители, похожие на некоторую функцию и её производную. Из темы Производная вы наверняка запомнили простейшую табличную вещь: Что значит ряд сходится или расходится, и у нас как раз такой каноничный случай.

Как использовать интегральный признак? Сначала берем значок интеграла и переписываем со «счётчика» ряда верхний и нижний пределы: Что значит ряд сходится или расходится. Затем под интегралом переписываем «начинку» ряда с буковкой «хэ»: Что значит ряд сходится или расходится. Чего-то не хватает…, ах, да, еще в числителе нужно прилепить значок дифференциала: Что значит ряд сходится или расходится.

Теперь нужно вычислить несобственный интеграл Что значит ряд сходится или расходится. При этом возможно два случая:

1) Если выяснится, что интеграл Что значит ряд сходится или расходитсясходится, то будет сходиться и наш ряд Что значит ряд сходится или расходится.

2) Если выяснится, что интеграл Что значит ряд сходится или расходитсярасходится, то наш ряд Что значит ряд сходится или расходитсятоже будет расходиться.

Повторюсь, если материал запущен, то чтение параграфа будет трудным и малопонятным, поскольку применение признака по сути дела сводится к вычислению несобственного интеграла первого рода.

Полное решение и оформление примера должно выглядеть примерно так:

Используем интегральный признак:

Что значит ряд сходится или расходится

Подынтегральная функция непрерывна на Что значит ряд сходится или расходится

Что значит ряд сходится или расходится

Таким образом, исследуемый ряд расходится вместе с соответствующим несобственным интегралом.

Исследовать ряд на сходимость Что значит ряд сходится или расходится

Решение и образец оформления в конце урока

В рассмотренных примерах логарифм также мог находиться под корнем, это не изменило бы способа решения.

И еще два примера на закуску

Исследовать ряд на сходимость Что значит ряд сходится или расходится

По общим «параметрам» общий член ряда подходит для использования предельного признака сравнения. Нужно всего лишь раскрыть скобки Что значит ряд сходится или расходитсяи сразу сдать на кандидата предельно сравнить данный ряд со сходящимся рядом Что значит ряд сходится или расходится. Впрочем, я немного слукавил, скобки можно и не раскрывать, но всё равно решение через предельный признак будет выглядеть несколько вычурно.

Поэтому мы используем интегральный признак Коши:

Что значит ряд сходится или расходится

Подынтегральная функция непрерывна на Что значит ряд сходится или расходится

Что значит ряд сходится или расходится
Получено конечное число, значит, исследуемый ряд сходится вместе с соответствующим несобственным интегралом.

! Примечание: полученное число Что значит ряд сходится или расходитсяне является суммой ряда.

Исследовать ряд на сходимость Что значит ряд сходится или расходится

Решение и образец оформления в конце урока, который подходит к концу.

Да. Возможно, у некоторых возник вопрос, почему я начал этот урок с таким энтузиазмом? Всё просто – начался учебный год, а мне не нужно на учебу. Я столько мучался =( Что даже не устал в заключительных аккордах этой статьи.

В целях окончательного и бесповоротного усвоения темы числовых рядов посетите урок Знакочередующиеся ряды. Признак Лейбница. Примеры решений.

Пример 3: Используем признак Даламбера:
Что значит ряд сходится или расходится
Таким образом, исследуемый ряд расходится.

Примечание: Можно было использовать и «турбо»-метод решения: сразу обвести карандашом отношение Что значит ряд сходится или расходится, указать, что оно стремится к единице и сделать пометку: «одного порядка роста».

Пример 5: Используем признак Даламбера:
Что значит ряд сходится или расходится
Таким образом, исследуемый ряд сходится.

Пример 8: Используем радикальный признак Коши:
Что значит ряд сходится или расходится
Таким образом, исследуемый ряд сходится.

Пример 10: Используем радикальный признак Коши:
Что значит ряд сходится или расходится
Таким образом, исследуемый ряд расходится.
Примечание: Здесь основание степени Что значит ряд сходится или расходится, поэтому Что значит ряд сходится или расходится

Пример 12: Используем интегральный признак:.
Что значит ряд сходится или расходится
Подынтегральная функция непрерывна на Что значит ряд сходится или расходится.
Что значит ряд сходится или расходится
Получено конечное число, значит, исследуемый ряд сходится вместе с соответствующим несобственным интегралом.

Пример 14: Используем интегральный признак:
Что значит ряд сходится или расходится
Подынтегральная функция непрерывна на Что значит ряд сходится или расходится.
Что значит ряд сходится или расходится
Таким образом, исследуемый ряд расходится вместе с соответствующим несобственным интегралом.

Примечание: Ряд Что значит ряд сходится или расходитсятакже можно исследовать с помощью предельного признака сравнения. Для этого удобно раскрыть скобки под корнем Что значит ряд сходится или расходитсяи сравнить исследуемый ряд с расходящимся рядом Что значит ряд сходится или расходится.

Автор: Емелин Александр

(Переход на главную страницу)

Что значит ряд сходится или расходится Zaochnik.com – профессиональная помощь студентам

cкидкa 15% на первый зaкaз, прoмoкoд: 5530-hihi5

Что значит ряд сходится или расходится Tutoronline.ru – онлайн репетиторы по математике и другим предметам

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *