Что значит решить задачу коши

Порядок дифференциального уравнения и его решения, задача Коши

Обыкновенным дифференциальным уравнением называется уравнение, связывающее независимую переменную, неизвестную функцию этой переменной и её производные (или дифференциалы) различных порядков.

Порядком дифференциального уравнения называется порядок старшей производной, содержащейся в нём.

Кроме обыкновенных изучаются также дифференциальные уравнения с частными производными. Это уравнения, связывающие независимые переменные Что значит решить задачу коши, неизвестную функцию этих переменных и её частные производные по тем же переменным. Но мы будем рассматривать только обыкновенные дифференциальные уравнения и поэтому будем для краткости опускать слово «обыкновенные».

Примеры дифференциальных уравнений:

(1) Что значит решить задачу коши;

(2) Что значит решить задачу коши;

(3) Что значит решить задачу коши;

(4) Что значит решить задачу коши;

(5) Что значит решить задачу коши.

Дифференциальное уравнение n-го порядка не обязательно должно содержать явно функцию, все её производные от первого до n-го порядка и независимую переменную. В нём могут не содержаться явно производные некоторых порядков, функция, независимая переменная.

Решением дифференциального уравнения называется всякая функция y = f(x), при подстановке которой в уравнение оно обращается в тождество.

Процесс нахождения решения дифференциального уравнения называется его интегрированием.

Пример 1. Найти решение дифференциального уравнения Что значит решить задачу коши.

Решение. Запишем данное уравнение в виде Что значит решить задачу коши. Решение состоит в нахождении функции по её производной. Изначальная функция, как известно из интегрального исчисления, есть первообразная для Что значит решить задачу коши, т. е.

Что значит решить задачу коши.

Это и есть решение данного дифференциального уравнения. Меняя в нём C, будем получать различные решения. Мы выяснили, что существует бесконечное множество решений дифференциального уравнения первого порядка.

Общим решением дифференциального уравнения n-го порядка называется его решение, выраженное явно относительно неизвестной функции и содержащее n независимых произвольных постоянных, т. е.

Что значит решить задачу коши

Решение дифференциального уравнения в примере 1 является общим.

Частным решением дифференциального уравнения называется такое его решение, в котором произвольным постоянным придаются конкретные числовые значения.

Пример 2. Найти общее решение дифференциального уравнения Что значит решить задачу кошии частное решение при Что значит решить задачу коши.

Решение. Проинтегрируем обе части уравнения такое число раз, которому равен порядок дифференциального уравнения.

Что значит решить задачу коши,

Что значит решить задачу коши,

Что значит решить задачу коши.

Что значит решить задачу коши

данного дифференциального уравнения третьего порядка.

Теперь найдём частное решение при указанных условиях. Для этого подставим вместо произвольных коэффициентов их значения и получим

Что значит решить задачу коши.

Если кроме дифференциального уравнения задано начальное условие в виде Что значит решить задачу коши, то такая задача называется задачей Коши. В общее решение уравнения подставляют значения Что значит решить задачу кошии Что значит решить задачу кошии находят значение произвольной постоянной C, а затем частное решение уравнения при найденном значении C. Это и есть решение задачи Коши.

Пример 3. Решить задачу Коши для дифференциального уравнения из примера 1 при условии Что значит решить задачу коши.

Решение. Подставим в общее решение Что значит решить задачу кошизначения из начального условия y = 3, x = 1. Получаем

Что значит решить задачу коши.

Записываем решение задачи Коши для данного дифференциального уравнения первого порядка:

Что значит решить задачу коши.

При решении дифференциальных уравнений, даже самых простых, требуются хорошие навыки интегрирования и взятия производных, в том числе сложных функций. Это видно на следующем примере.

Пример 4. Найти общее решение дифференциального уравнения Что значит решить задачу коши.

Решение. Уравнение записано в такой форме, что можно сразу же интегрировать обе его части.

Что значит решить задачу коши.

Применяем метод интегрирования заменой переменной (подстановкой). Пусть Что значит решить задачу коши, тогда Что значит решить задачу коши.

Что значит решить задачу коши

Что значит решить задачу коши

Возвращаясь к переменной x, получаем:

Что значит решить задачу коши.

Это и есть общее решение данного дифференциального уравнения первой степени.

Не только навыки из предыдущих разделов высшей математики потребуются в решении дифференциальных уравнений, но и навыки из элементарной, то есть школьной математики. Как уже говорилось, в дифференциальном уравнении любого порядка может и не быть независимой переменной, то есть, переменной x. Помогут решить эту проблему не забытые (впрочем, у кого как) со школьной скамьи знания о пропорции. Таков следующий пример.

Пример 5. Найти общее решение дифференциального уравнения Что значит решить задачу коши.

Решение. Как видим, переменная x в уравнении отсутствует. Вспоминаем из курса дифференциального исчисления, что производная может быть записана также в виде Что значит решить задачу коши. В результате уравнение приобретает вид

Что значит решить задачу коши,

то есть, в нём в некотором виде появился x.

Теперь вспомнаем одно из свойств пропорции: из пропорции Что значит решить задачу кошивыткают следующие пропорции:

Что значит решить задачу коши,

то есть в пропорции можно менять местами крайние и средние члены или те и другие одновременно.

Применяя это свойство, преобразуем уравнение к виду

Что значит решить задачу коши,

после чего интегрируем обе части уравнения:

Что значит решить задачу коши.

Что значит решить задачу коши

и получаем решение данного дифференциалного уравнения первого порядка:

Что значит решить задачу коши.

Эта статья представила необходимый минимум сведений о дифференциальных уравнениях и их решениях и должна помочь вам уверенно и увлечённо перейти к изучению различных видов дифференциальных уравнений.

Источник

Коши задача

Зада́ча Коши́ — одна из основных задач теории дифференциальных уравнений (обыкновенных и с частными производными); состоит в нахождении решения (интеграла) дифференциального уравнения, удовлетворяющего так называемым начальным условиям (начальным данным).

От краевых задач задача Коши отличается тем, что область, в которой должно быть определено искомое решение, здесь заранее не указывается. Тем не менее, задачу Коши можно рассматривать как одну из краевых задач.

Основные вопросы, которые связаны с задачей Коши, таковы:

Содержание

Различные постановки задачи Коши

Свойства задачи Коши

См. также

Литература

А.Н. Тихонов, А.Б. Васильева, А.Г. Свешников Курс высшей математики и математической физики. Дифференциальные уравнения. — Физматлит, 2005. — ISBN 5-9221-0277-X

Полезное

Смотреть что такое «Коши задача» в других словарях:

Коши задача — одна из основных задач теории дифференциальных уравнениний. Заключается в нахождении решения такого уравнения, удовлетворяющего так называемым начальным условиям. Например, для уравнения dy = 2xdx можно поставить Коши задачу: найти решение… … Энциклопедический словарь

КОШИ ЗАДАЧА — задача о нахождении решения дифференц. ур ния (обыкновенного или в частных производных), удовлетворяющего нач. условиям. Рассмотрена в 1823 24 О. Коши (A. Cauchy). Примером К. з. может служить осн. задача механики, когда по известным нач.… … Физическая энциклопедия

КОШИ ЗАДАЧА — одна из основных задач теории дифференциальных уравнений. Заключается в нахождении решения такого уравнения, удовлетворяющего т. н. начальным условиям. Напр., для уравнения dy = 2xdx можно поставить Коши задачу: найти решение у = у(х),… … Большой Энциклопедический словарь

КОШИ ЗАДАЧА — одна из основных задач теории дифференциальных уравнений (обыкновенных и с частными производными); состоит в отыскании решения (интеграла) дифференциального уравнения, удовлетворяющего так наз. начальным условиям (начальным данным). К. з. обычно… … Математическая энциклопедия

Коши задача — одна из основных задач теории дифференциальных уравнений (См. Дифференциальные уравнения), впервые систематически изучавшаяся О. Коши. Заключается в нахождении решения u (x, t); х = (x1. xn) дифференциального уравнения вида: … … Большая советская энциклопедия

КОШИ ЗАДАЧА — численные методы решения для обыкновенного дифференциального уравнения. Задачей Коши наз. задача определения функции или нескольких функций, удовлетворяющих одному или, соответственно, системе дифференциальных уравнений и принимающих заданные… … Математическая энциклопедия

КОШИ ЗАДАЧА — одна из оси. задач теории дифференц. ур ний. Заключается в нахождении решения такого ур ния, удовлетворяющего т. н.начальным условиям. Напр., для ур ния dy = 2xdx можно поставить К. з.: найти решение у = у(х), принимающее при х0 = 0 значение… … Естествознание. Энциклопедический словарь

КОШИ ХАРАКТЕРИСТИЧЕСКАЯ ЗАДАЧА — задача отыскания решения дифференциальных уравнений или систем уравнений с частными производными по заданным его значениям на характеристических многообразиях. Для широкого класса уравнений гиперболического и параболического типов в пространстве… … Математическая энциклопедия

Коши — (Cauchy) Огюстен Луи (21.8.1789, Париж, 23.5.1857, Со), французский математик, член Парижской АН (1816). Окончил Политехническую школу (1807) и Школу мостов и дорог (1810) в Париже. В 1810 13 работал инженером в г. Шербур. В 1816 30… … Большая советская энциклопедия

Источник

Что значит решить задачу коши

Принцип и понятие

Под задачей Коши для дифференциального уравнения понимают выражение вида: y’ = f (x, y) с начальным условием, соответствующим равенству: y (x0) = y0. По сути, это обозначает, что необходимо найти такое решение уравнения, которое проходит через заданную точку игрек и икс нулевое. Решением задачи называется функция, заданная на указанном интервале в окрестности точки икс нулевое, то есть: x Є (x0 — q, x0 + q).

Для проведения анализа функции должны выполняться следующие критерии:

Что значит решить задачу коши

Следует отметить, что решение Коши включает в себя и сам интервал икс нулевое плюс минус кью, фактически q-окрестность. Это обозначает, что одна и та же функция, задаваемая одной формулой, но рассматриваемая на разных интервалах, представляет два разных нахождения задачи Коши. Отсюда возникает вопрос, при каких же ответах существует решение Коши, а также когда оно будет единственным.

Существует теорема, гарантирующая единственность какого-то решения задачи. На самом деле возможность аналитического подхода Коши требует лишь главного условия, при котором функция f будет непрерывной в какой-то окрестности точки x0, y0. Но для доказательства единственности этого недостаточно. Для нормального случая необходимо следующее:

По игреку функция должна иметь обыкновенный рост, то есть не убыстряющийся (локальный подъём не превышать линейный). Если эти два условия выполняются, то решение Коши существует и оно будет единственным. Это значит, что тогда у точки икс нулевое найдётся такая окрестность, в которой существует решение и к тому же оно будет единственным.

А это обозначает, что любая другая функция в этой окрестности, удовлетворяющая уравнениям начальных условий, совпадает с той, существование которой утверждается. При этом на практике проверка условия на самом деле вещь не очень сложная, особенно если функция f (y) имеет в окрестности ограниченную производную.

Алгоритм нахождения

Пусть имеется функция у’ = 2 * √ |y| и условие что y (0) = 0. Необходимо её исследовать. Тут можно заметить, что в этом случае функция зависит только от игрека и условию не удовлетворяет. В окрестностях точки с координатами (0, 0) она не удовлетворяет условию, так как любая окрестность захватывает ноль, а у корня квадратного по игреку будет бесконечная производная.

Это приводит не к единственности получения результатов. Так, у уравнения есть два решения: y1 тождественный нулю; y2 равняется x2. Согласно условию, игрек стоит по модулю, точнее, можно сказать, что для отрицательных значений икс будет меньше ноля, а положительных — больше.

Главный же вопрос заключается в продолжаемости анализа. Доказывается возможность простым построением решения с использованием специальных условий. В итоге должна быть найдена окрестность в точке x0. То есть берётся уравнение и точка с начальными координатами, затем выясняется, что в окрестности выполнены условия теоремы и строится решение.

Что значит решить задачу коши

Затем исследуется другая точка и изучается структура её окрестности. Например, обнаруживается, что условия существования единственности выполняются. Согласно теореме, тогда можно будет строить решение, где в качестве начальной точки будет взята любая координата. Другими словами, получается более широкое решение. Поэтому возникает вопрос, насколько можно приблизить точность ответа. Практические примеры показывают, что иногда можно двигаться до бесконечности, а в некоторых случаях сделать не более трёх шагов.

Если есть два уравнения y’ = f (x, y); y (x0) = y0 имеющие два решения: y1 (x), x Є I1 (эX), y2 (x), x єI2 (єX0). Тогда можно утверждать, что игрек два будет продолжением решения y1 (x) если в I2 входит I1, а y2 (x) равняется y1 (x) для любого икс из интервала I1. Следует учесть, что в этом определении в качестве областей функции всегда рассматривается интервал.

В изучении исследуются и матричные функциональные системы, состоящие из нескольких переменных A (z 1, z 2, …, zn). При этом z являются вещественными, а элементы матрицы могут быть как вещественными, так и комплексными. Исходя из этого даётся определение того, что функция, описываемая матрицей, непрерывна тогда, когда все элементы непрерывны в точке или на некотором множестве.

При определении используют численные и векторные функции от аргумента: y = (x), где y — это столбец от набора игреков, а икс со штрихом — от набора иксов. Таким образом, обобщённым решением будет такое действие, которое не будет иметь нетривиального продолжения, то есть вторые интервалы содержать первые.

Примеры задач

На практических занятиях по высшей математике студентам предлагается для понимания курса выполнить ряд практических заданий. Существует типовой набор задач, научившись решать которые учащийся досконально разберётся в теме. Вот некоторые из них.

Первый пример. Имеется уравнение y’ = (2y / x lnx) + 1/x, для которого установлено начальное условие y (e) = 0. Необходимо найти решение, проходящее через точку e. Перед тем как приступить непосредственно к решению, необходимо отметить, что функция f (x, y) определённа всюду, за исключением прямых x = 0 и x = 1. Отсюда следует, что краевое решение не может быть вычислено на интервале от нуля до единицы.

Что значит решить задачу коши

В этом примере должен содержаться интервал, имеющий координату точки e по иксу. Он не может включать значения меньше единицы, так как необходимо, чтобы выполнялось заданное условием уравнение, которое в точке x = 1 теряет смысл, ведь в ней функция неопределённа. Установив это, можно переходить к анализу уравнения.

Заданное равенство является линейным — неоднородным уравнением первого порядка. Для решения нужно сначала рассмотреть левое соотношение: y’ = 2y / x * lnx. Добавив константу, уравнение можно переписать как y = c * e. Теперь необходимо взять интеграл исходя из первообразной формулы: ∫ 2 dx / (x *lnx).

После того как будет найдена постоянная, через общий интегральный метод с учётом условия определения функции, уравнение в окрестности точки e будет иметь решение вида: y = ln2x — lnx. Из полученного выражения можно сделать вывод, что функция будет определена для всех положительных иксов, но рассматривать её необходимо от единицы до плюс бесконечности. Это и будет максимальное непродолжаемое решение задачи: xЄ (1, + ∞).

Второй пример. Пусть имеется функция y’ = y / (1+x 2 ) с начальным условием: y = y (0). В задании нужно будет рассмотреть дифференциальную кривую уравнения, проходящего через точку y0. Нужно заметить, что функция f (x, y) в любой ограниченной области двумерной плоскости удовлетворяет условию регулярности для теоремы существования единственности. В задаче спрашивается, каким должен быть y0, если предел максимального решения при иксе, стремящемся к плюс бесконечности, равняется единице.

Что значит решить задачу коши

Операционный метод

Решение задачи Коши (примеров) целесообразно выполнять экономичным методом интегрирования линейных выражений, содержащих постоянные коэффициенты. Суть способа сводится к решению алгебраических равенств или неравенств. Алгоритм исследования заключается в следующих действиях:

Что значит решить задачу коши

Использование онлайн-калькулятора

Часто решение задач по рассматриваемой теме связано с большими трудозатратами. Это касается времени и повышенного внимания. На практике не всегда получается правильно применить алгоритм и избежать ошибок. Поэтому имеет смысл для сложных заданий использовать онлайн-калькулятор. Решения на задачу Коши с его помощью доступны любому заинтересованному, имеющему доступ к интернету и устройство, поддерживающее работу веб-обозревателя.

Что значит решить задачу коши

В интернете существует довольно большое количество различных математических онлайн-решителей. В своём большинстве они бесплатны и ориентированы на работу даже с людьми, совершенно не разбирающимися в тематике. Поэтому они привлекательны не только как инструмент, предоставляющий быстрый и правильный ответ на поставленную задачу, но и как обучающие программы.

Всё дело в том, что на страницах сервисов, предлагающих такого рода услуги, содержится вся необходимая теоретическая информация. Кроме этого, они предлагают к рассмотрению типовые примеры с подробным объяснением решения. Из онлайн-калькуляторов, предоставляющих бесплатный доступ к своим услугам в русском сегменте интернета, можно отметить следующие:

Приведённые сервисы помогают без труда найти студентам решение дифференциального уравнения с заданными начальными условиями. Для этого в предлагаемую форму необходимо записать дифуравнение и через запятую начальные данные. Затем просто нажать интерактивную кнопку «Решить» и через некоторое время на экране дисплея отобразится ответ.

Что значит решить задачу коши

Для правильной записи уравнения существуют подсказки, так что разобраться, как работает сайт, сможет пользователь даже со слабой компьютерной подготовкой. Кроме этого, некоторые сервисы предлагают не просто ответ, а и пошаговое решение, к которому даётся комментарий. Решив несколько заданий, учащийся сможет разобраться в алгоритме и вычислять уравнения уже самостоятельно.

Следует отметить, что предложенные сервисы могут находить ответ для любой сложности математической задачи, например, вычисляя устойчивость математических моделей. Они также востребованы в инженерии и научных исследованиях, связанных с анализом функций. Для таких расчётов важны точность и время, что вполне могут обеспечить математические онлайн-сервисы.

Источник

Инструменты пользователя

Инструменты сайта

Боковая панель

Теория вероятностей и математическая статистика Что значит решить задачу коши
Строительная механика для строительных специальностей Что значит решить задачу коши
Матанализ. Дифференциальное и интегральное исчисление Что значит решить задачу коши
Экономика

Решение дифференциальных уравнений:

Контакты

Решение задачи Коши (диффуры)

Задача Коши́ — одна из основных задач теории дифференциальных уравнений (обыкновенных и с частными производными); состоит в нахождении решения (интеграла) дифференциального уравнения, удовлетворяющего так называемым начальным условиям (начальным данным).

Что бы решить задачу Коши – нужно получить общее решение дифференциального уравнения в которое входят произвольные постоянные, количество которых зависит от порядка дифференциального уравнения и численно равно этому порядку. Собственно, решение задачи Коши и отличается от нахождения общего решения дифференциального уравнения тем, что, используя общее решение с учётом начальных условий находят эти произвольные константы, входящие в общее решение.

От краевых задач задача Коши отличается тем, что область, в которой должно быть определено искомое решение, здесь заранее не указывается. Тем не менее, задачу Коши можно рассматривать как одну из краевых задач.

Примеры

Пример 1.

Решение дифференциального уравнения:

Дифференциальные уравнения с разделяющимися переменными. Решение задачи Коши

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *