Что значит решить систему уравнений второй степени
Система уравнений второй степени. Способы решения
Система уравнений второй степени – это система уравнений, в которой есть хотя бы одно уравнение второй степени.
Систему из двух уравнений, в которой одно уравнение второй степени, а второе уравнение первой степени, решают следующим образом:
1) в уравнении первой степени одну переменную выражают через другую;
2) подставляют полученное выражение в уравнение второй степени, благодаря чему получается уравнение с одной переменной;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующие значения второй переменной.
Пример : Решим систему уравнений
1) Второе уравнение является уравнением первой степени. В ней выражаем переменную x через y:
2) в первом уравнении вместо x подставляем полученное выражение 1 – 2y:
Раскрываем скобки и упрощаем:
Приравниваем уравнение к нулю и решаем получившееся квадратное уравнение:
3) Решив квадратное уравнение, найдем его корни:
4) Осталось найти значения x. Для этого в одно из двух уравнений системы просто подставляем значение y. Второе уравнение проще, поэтому выберем его. Итак, подставляем значения y в уравнение x + 2y = 1 и получаем: 1) х + 2(-0,125) = 1 х – 0,25 = 1 х = 1 + 0,25 х1 = 1,25.
Способы решения системы уравнений с двумя уравнениями второй степени.
1. Замена системы уравнений равносильной совокупностью двух систем.
Пример : Решим систему уравнений
Здесь нет уравнений первой степени, поэтому решать их вроде бы сложнее. Но в первом уравнении многочлен можно разложить на линейные множители и применить метод группировки:
(Пояснение-напоминание: x – 3y встречается в выражении дважды и является общим множителем в многочлене (x – 3y)(x + 3y) – 1(x – 3y). По правилу группировки, мы умножили его на сумму вторых множителей и получили равносильное уравнение).
В результате наша система уравнений обретает иной вид:
Первое уравнение равно нулю только в том случае, если x – 3y = 0 или x + 3y – 1 = 0.
Значит, нашу систему уравнений мы можем записать в виде двух систем следующего вида:
Мы получили две системы, где первые уравнения являются уравнениями первой степени. Мы уже можем легко решить их. Понятно, что решив их и объединив затем множество решений этих двух систем, мы получим множество решений исходной системы. Говоря иначе, данная система равносильна совокупности двух систем уравнений.
Итак, решаем эти две системы уравнений. Очевидно, что здесь мы применим метод подстановки, подробно изложенный в предыдущем разделе.
Обратимся сначала к первой системе. В уравнении первой степени выразим х через у:
Подставим это значение во второе уравнение и преобразим его в квадратное уравнение:
Как решается квадратное – см.раздел «Квадратное уравнение». Здесь мы сразу напишем ответ:
Теперь подставим полученные значения у в первое уравнение первой системы и решим его:
Итак, у нас есть первые ответы:
Переходим ко второй системе. Не будем производить вычисления – их порядок точно такой же, что и в случае с уравнениями первой системы. Поэтому сразу напишем результаты вычислений:
Сложим почленно левые и правые части первого уравнения системы и нашего нового уравнения:
Сводим подобные члены и получаем уравнение следующего вида:
Упростим уравнение еще, для этого сокращаем обе части уравнения на 5 и получаем:
Приравняем уравнение к нулю:
Это уравнение можно представить в виде x(x – 2y) = 0.
Здесь мы получаем ситуацию, с которой уже сталкивались в предыдущем примере: уравнение верно только в том случае, если x = 0 или x – 2y = 0.
Значит, исходную систему опять-таки можно заменить равносильной ей совокупностью двух систем:
Обратите внимание: во второй системе уравнение x – 2y = 0 мы преобразовали в x = 2y.
Итак, в первой системе мы уже знаем значение x. Это ноль. То есть x1 = 0. Легко вычислить и значение y: это тоже ноль. Таким образом, первая система имеет единственное решение: (0; 0).
Решив вторую систему, мы увидим, что она имеет два решения: (0; 0) и (–1; –0,5).
Таким образом, исходная система имеет следующие решения: (0; 0) и (–1; –0,5).
3. Решение методом подстановки.
Этот метод был применен в начале раздела. Здесь мы выделяем его в качестве одного из способов решения. Приведем еще один пример.
│х + у = 9 │у 2 + х = 29
Первое уравнение проще, поэтому выразим в нем х через у:
Теперь произведем подстановку. Подставим это значение х во второе уравнение, получим квадратное уравнение и решим его:
у 2 + 9 – у = 29 у 2 – у – 20 = 0
D = b 2 – 4ас = 1 – 4 · 1 · (–20) = 81
Осталось найти значения х. Первое уравнение проще, поэтому им и воспользуемся:
Изящные способы решения систем уравнений с двумя переменными второй степени
Разделы: Математика
Ход урока
Решение систем, содержащих два уравнения с двумя переменными второй степени весьма трудная задача, но в некоторых случаях системы могут быть решены с помощью простых и изящных приемов. Открыть некоторые из них – это цель сегодняшнего урока.
I. Проверка домашнего задания.
Решить систему уравнений способом подстановки и графически.
Первый ученик показывает решение системы уравнений:
(1)
— способом подстановки.
1) ху=-3;
2)
умножим обе части уравнения на ,получим:пусть и 0,тогда по теореме, обратной теореме Виета, получим:
Если z =9,то ,
z =1, то
-3,-1,1,3 отличны от нуля, значит, они являются корнями уравнения
3) Если то
то
то
то
Ответ:(3;-1), (-3;1), (-1;3), (1;-3)-решения системы (1).
Второй ученик показывает решение системы уравнений:
— графическим способом.
-графиком этого уравнения является окружность с центром в точке (0;0) и радиусом .
В треугольнике АВС,АВС =90°, АВ=1, ВС=3, АС=.
Длину отрезка АС= возьмем за радиус окружности .
ху=3; у=; — графиком этого уравнения является гипербола, ветви которой расположены во II и IV координатных углах.
Графики изображены на рисунке 1.
Графики и пересекаются в четырех точках (они обозначены буквами А, В, С, Д), следовательно, данная система уравнений имеет четыре решения:
Интересно заметить, что решения данной системы симметричны. Точки С и В и А и Д симметричны относительно начала координат. Точки С и А и Д и В симметричны относительно биссектрисы I и III координатных углов (прямой у=х), поэтому их координаты “меняются местами”.
II. “Открытие” новых способов решения этой же системы.
Решить систему новым способом (на работу 5-7мин.).
Свое решение на доске показывает одна из групп:
(1)
Система (1) “распадается” на две более простые системы:
(2)
(3)
Каждое решение системы (1) является решением хотя бы одной из систем (2) или (3).И каждое решение системы (2) и (3) является решением системы (1).
Системы (2) и (3) является симметричными, решим каждую из них:
(1)
(2)
Пусть и корни уравнения
Пусть и корни уравнения
и его корни,
решения системы (1).
и его корни,
Для того чтобы понять содержательную сторону приведенного решения, обратимся к графической иллюстрации. На рис.2 в одной системе координат показано графическое решение систем.
и
Каждая прямая х+у =2 и х+у =-2 пересекает гиперболу ху=-3 в двух точках, а всего мы имеем четыре точки пересечения (они обозначены буквами А, В, С, Д). Это те же точки, которые получились при пересечение гиперболы и окружности (смотри рис.1).
Еще один способ решения данной системы представил один из учеников, для которого это было домашнее индивидуальное задание.
Из первого уравнения получаем, что
Из второго уравнения получаем, что
Рассматривая каждое уравнение первой строки совместно с каждым уравнение второй строки приходим к четырем системам линейных уравнений:
Решив каждую из них получим следующие решения исходной системы:
Решение проиллюстрировано графически на рис.3.
Теперь мы видим, что четыре прямые при попарном пересечении указывают нам те же самые точки, которые получились при пересечении окружности и гиперболы (смотри рис.1).
И еще разберем один из способов решения системы
Данная система является симметричной и решается она очень красиво с помощью введения новых переменных. Пусть , и учитывая, что ,получим:
Если u=-3, то или тогда получим:
и
Полученные системы тоже являются симметричными системами, которые мы уже решали. Итак,(3;1), (-1;3), (-3;1),(1;-3)-решения данной системы.
1 задание. Решить систему уравнений:
2 задание. На рисунке 4 построены: окружность парабола и прямая у=2х+10.Составьте всевозможные системы двух уравнений с двумя переменными и укажите их решения.
3 задание. Система уравнений. где b-произвольное число, может иметь одно, два, три или четыре решения, а также может не иметь решений. Запишите конкретную систему, которая имела бы два решения. Проиллюстрируйте решение системы, графически на рисунке 5.
1 задание. Решить систему уравнений:
2 задание. На рисунке 6 построены кубическая парабола у=х, гипербола у= и прямая у=2х.
Составьте всевозможные системы двух уравнений с двумя переменными и укажите их решения.
3 задание. Система уравнений где b- произвольное число, может иметь одно, два, три или четыре решения, а также может не иметь решений. Запишите конкретную систему, которая имела бы одно решение. Проиллюстрируйте решение графически на рисунке 5.
IV. Подведение итогов урока.
Для анализа урока мы будем использовать идею Эдварда де Боно, которую он назвал “Шесть шляп”.
Зелёная шляпа-символ свежей листвы, изобилия и плодородия. Она символизирует творческое начало и расцвет новых идей.
Итак, первая группа ответит на вопросы: пригодятся ли нам знания, полученные на уроке, умения исследовать и находить различные способы решения систем уравнений?
Итак, вторая группа отметит какие положительные моменты были на уроке и обоснует свой оптимизм.
Итак, третья группа должна изложить происходящее на уроке опираясь и подкрепляя свой ответ цифрами и фактами.
Красная шляпа-символ восприятия действительности на уровне чувств. В ней можно отдать себя во власть эмоций.
Итак, четвёртая группа постарается высказать свои эмоции по поводу данного урока.
Итак, пятая группа должна высказать свое мнение о том, что получилось на уроке или что требует доработки.
Итак, шестая группа при подведении итогов урока должна указать, на что необходимо обратить внимание при изучении данной темы?
V. Домашнее задание.
А.П. Ершова, В.В. Голобородько “Самостоятельные и контрольные работы по алгебре и геометрии для 9 класса” (разноуровневые дидактические материалы). С-9,стр. 19 (по уровням сложности)
Прежде чем перейти к разбору как решать системы уравнений, давайте разберёмся, что называют системой уравнений с двумя неизвестными.
Системой уравнений называют два уравнения с двумя неизвестными (чаще всего неизвестные в них называют « x » и « y »), которые объединены в общую систему фигурной скобкой.
Например, система уравнений может быть задана следующим образом.
x + 5y = 7
3x − 2y = 4
Чтобы решить систему уравнений, нужно найти и « x », и « y ».
Как решить систему уравнений
Существуют два основных способа решения систем уравнений. Рассмотрим оба способа решения.
Способ подстановки или «железобетонный» метод
Первый способ решения системы уравнений называют способом подстановки или «железобетонным».
Название «железобетонный» метод получил из-за того, что с помощью этого метода практически всегда можно решить систему уравнений. Другими словами, если у вас не получается решить систему уравнений, всегда пробуйте решить её методом подстановки.
Разберем способ подстановки на примере.
x + 5y = 7
3x − 2y = 4
Выразим из первого уравнения « x + 5y = 7 » неизвестное « x ».
Чтобы выразить неизвестное, нужно выполнить два условия:
Перенесём в первом уравнении « x + 5 y = 7 » всё что содержит « x » в левую часть, а остальное в правую часть по правилу переносу.
При « x » стоит коэффициент равный единице, поэтому дополнительно делить уравнение на число не требуется.
x = 7 − 5y
3x − 2y = 4
Теперь, вместо « x » подставим во второе уравнение полученное выражение « x = 7 − 5y » из первого уравнения.
x = 7 − 5y
3(7 − 5y) − 2y = 4
Подставив вместо « x » выражение « (7 − 5y) » во второе уравнение, мы получили обычное линейное уравнение с одним неизвестным « y ». Решим его по правилам решения линейных уравнений.
x = 7 − 5y
3(7 − 5y) − 2y = 4 (*)
Мы нашли, что « y = 1 ». Вернемся к первому уравнению « x = 7 − 5y » и вместо « y » подставим в него полученное числовое значение. Таким образом можно найти « x ». Запишем в ответ оба полученных значения.
x = 7 − 5y
y = 1
x = 7 − 5 · 1
y = 1
x = 2
y = 1
Ответ: x = 2; y = 1
Способ сложения
Рассмотрим другой способ решения системы уравнений. Метод называется способ сложения. Вернемся к нашей системе уравнений еще раз.
x + 5y = 7
3x − 2y = 4
По правилам математики уравнения системы можно складывать. Наша задача в том, чтобы сложив исходные уравнения, получить такое уравнение, в котором останется только одно неизвестное.
Давайте сейчас сложим уравнения системы и посмотрим, что из этого выйдет.
При сложения уравнений системы левая часть первого уравнения полностью складывается с левой частью второго уравнения, а правая часть полностью складывается с правой частью.
x + 5y = 7
(x + 5y) + (3x − 2y) = 7 + 4
+ =>
x + 5y + 3x − 2y = 11
3x − 2y = 4
4x + 3y = 11
При сложении уравнений мы получили уравнение « 4x + 3y = 11 ». По сути, сложение уравнений в исходном виде нам ничего не дало, так как в полученном уравнении мы по прежнему имеем оба неизвестных.
Вернемся снова к исходной системе уравнений.
x + 5y = 7
3x − 2y = 4
Чтобы при сложении неизвестное « x » взаимноуничтожилось, нужно сделать так, чтобы в первом уравнении при « x » стоял коэффициент « −3 ».
Для этого умножим первое уравнение на « −3 ».
При умножении уравнения на число, на это число умножается каждый член уравнения.
x + 5y = 7 | ·(−3)
3x − 2y = 4
x · (−3) + 5y · (−3) = 7 · (−3)
3x − 2y = 4
−3x −15y = −21
3x − 2y = 4
Теперь сложим уравнения.
−3x −15y = −21
(−3x −15y ) + (3x − 2y) = −21 + 4
+ =>
− 3x − 15y + 3x − 2y = −21 + 4
3x − 2y = 4
−17y = −17 |:(−17)
y = 1
Мы нашли « y = 1 ». Вернемся к первому уравнению и подставим вместо « y » полученное числовое значение и найдем « x ».
x = 7 − 5y
y = 1
x = 7 − 5 · 1
y = 1
x = 2
y = 1
Ответ: x = 2; y = 1
Пример решения системы уравнения способом подстановки
Выразим из первого уравнения « x ».
x = 17 + 3y
x − 2y = −13
Подставим вместо « x » во второе уравнение полученное выражение.
x = 17 + 3y
(17 + 3y) − 2y = −13 (*)
Подставим в первое уравнение полученное числовое значение « y = −30 » и найдем « x ».
x = 17 + 3y
y = −30
x = 17 + 3 · (−30)
y = −30
x = 17 −90
y = −30
x = −73
y = −30
Ответ: x = −73; y = −30
Пример решения системы уравнения способом сложения
Рассмотрим систему уравнений.
3(x − y) + 5x = 2(3x − 2)
4x − 2(x + y) = 4 − 3y
Раскроем скобки и упростим выражения в обоих уравнениях.
3x − 3y + 5x = 6x − 4
4x − 2x − 2y = 4 − 3y
8x − 3y = 6x − 4
2x −2y = 4 − 3y
8x − 3y − 6x = −4
2x −2y + 3y = 4
2x − 3y = −4
2x + y = 4
Мы видим, что в обоих уравнениях есть « 2x ». Наша задача, чтобы при сложении уравнений « 2x » взаимноуничтожились и в полученном уравнении осталось только « y ».
Для этого достаточно умножить первое уравнение на « −1 ».
2x − 3y = −4 | ·(−1)
2x + y = 4
2x · (−1) − 3y · (−1) = −4 · (−1)
2x + y = 4
−2x + 3y = 4
2x + y = 4
Теперь при сложении уравнений у нас останется только « y » в уравнении.
−2x + 3y = 4
(−2x + 3y ) + (2x + y) = 4 + 4
+ =>
− 2x + 3y + 2x + y = 4 + 4
2x + y = 4
4y = 8 | :4
y = 2
Подставим в первое уравнение полученное числовое значение « y = 2 » и найдем « x ».