Что значит реши задачу обратную данной
Что такое задачи, обратные данной?
Задачи, обратные данной — это задачи, в которых говорится об одном и том же, но известное и неизвестное меняются местами.
Поделиться в социальных сетях
Вашему вниманию представлена памятка по составлению схем-чертежей при решении простых и составных задач на.
ПАМЯТКА «РАБОТА НАД ОШИБКАМИ» (.
Вашему вниманию представлен тренажёр «Отличник». Какие плюсы данного тренажёра? Во- первых, после.
Традиционно в школах сентябрь — это месяц входных контрольных работ. Цель такого вида контроля —.
Чтобы побеждать в математических олимпиадах, необходимо много трудиться. С этой целью предлагаю онлайн-.
Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных.
Политика конфиденциальности.
Я, Алегина Лилия Фаритовна, учитель начальных классов в режиме 24/7, человек, который стремится сделать обучение детей с 1 по 4 класс современным, интересным и познавательным!
Что означает обратная задача в математике?
Что такое обратная задача?
Начиная со второго класса, детям регулярно задают на дом задания. Большое внимание педагоги уделяют решению задач, ведь именно за них ребенок получает больше баллов на контрольных и тестах.
Понятие «обратная задача» знакомо всем ученикам школы, в которой учатся мои дети, даже тем, кто не любит математику и далек от нее.
В качестве примера рассмотрим задачу с решением в одно действие: На столе было 5 груш и 4 яблока, сколько фруктов было всего. Решение простое: 5+4=9.
В данном случае, можно составить и решить две задачи обратные данной:
Чем больше данных в задаче, тем больше обратных задач можно к ней составить.
Обратные задачи просты и понятны большинству учеников младших классов.
Если же ваш ребенок пропустил эту тему, не понимает, что от него требуется, научить его составлять обратные задачи не составит труда, так как данная тема легко воспринимается даже детьми с гуманитарным складом ума.
Достаточно интересна и познавательна для родителей тема: «Как помочь ребенку преодолеть школьные проблемы», рекомендую с ней, по желанию, ознакомиться.
Математика. 2 класс
Конспект урока
Математика, 2 класс
Урок № 10. Задачи, обратные данной
Перечень вопросов, рассматриваемых в теме:
Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц):
1. Математика. 2 класс. Учебник для общеобразовательных организаций. В 2 ч. Ч.1/ М. И. Моро, М. А. Бантова, Г. В. Бельтюкова и др. –8-е изд. – М.: Просвещение, 2017. – с.26, 27
2. Математика. Проверочные работы. 2 кл: учебное пособие для общеобразовательных организаций/ Волкова А.Д.-М.: Просвещение, 2017, с. 16, 17
3. Математика. Рабочая тетрадь. 2 кл. 1 часть: учебное пособие для общеобразовательных организаций/ Волкова С.И.-М.: Просвещение, 2017.-с.31
Теоретический материал для самостоятельного изучения
Составим по рисунку первую задачу.
В классе 10 девочек и 8 мальчиков. Сколько всего детей в классе?
Составим схематический рисунок.
Ответ: 18 детей в классе.
Составим вторую задачу.
В классе 18 детей. Девочек 10, остальные-мальчики. Сколько мальчиков в классе?
Ответ: 8 мальчиков в классе.
Составим третью задачу.
Ответ: 10 девочек в классе.
Посмотрим еще раз на схемы к каждой задаче. Обратим внимание на то, что во всех задачах одинаковый сюжет, но то, о чем спрашивается в первой задаче стало известным во второй и третьей задачах, а узнать во второй задаче, сколько мальчиков и в третьей задаче сколько девочек в классе надо то, что известно в первой задаче.
Задачи, в которых известно то, о чем спрашивается в первой задаче и надо узнать то, что в первой задаче известно, называют обратными первой.
Сделаем вывод: задачи, обратные данной — считаются те задачи, в которых говорится об одних и тех же предметах, но известное и неизвестное меняются местами.
1. Решите задачу. Выберите задачи, обратные данной.
Кате подарили 8 воздушных шариков красного и синего цвета. Красных шариков было 5. Сколько синих шариков у Кати?
1. Кате подарили 5 шариков красного цвета и 3 шарика синего цвета. Сколько шариков у Кати?
2. У Кати было 8 шариков. 3 шарика она подарила. Сколько шариков осталось у Кати?
3. Кате подарили 8 воздушных шариков красного и синего цвета. Синих шариков было 3. Сколько красных шариков у Кати?
1. Кате подарили 5 шариков красного цвета и 3 шарика синего цвета. Сколько шариков у Кати?
3. Кате подарили 8 воздушных шариков красного и синего цвета. Синих шариков было 3. Сколько красных шариков у Кати?
1.В июне было 10 пасмурных дней и 20 ясных дней. Сколько дней в ________?
2. В июне ____ дней. Из них 10 дней были пасмурными. Сколько______ дней было в июне?
3. В июне 30 дней. Ясными были ____ дней. Сколько ____ дней было в июне?
30, 20, ясных, пасмурных, июне
1. В июне было 10 пасмурных дней и 20 ясных дней. Сколько дней в июне?
2. В июне 30 дней. Из них 10 дней были пасмурными. Сколько ясных дней было в июне?
3. В июне 30 дней. Ясными были 20 дней. Сколько пасмурных дней было в июне?
Решение взаимно обратных задач в начальной школе (простые задачи)
ХОД УРОКА
1. Введение.
Перед нашей школой всегда стояла задача построения такой методической системы, которая обеспечивала бы резкое повышение качества знаний при значительной экономии времени, расходуемого на изучение материала. В наше время при все возрастающем потоке информации эта проблема стоит особенно остро.
Еще в 60-е годы Комиссией по определению содержания обучения математике, работающей в АПН СССР, был разработан проект программы по математике. Авторы проекта одним из главных средств ускоренного и сознательного изучения материала в школе считали изменение структуры существующих программ, осуществление более целесообразной группировки вопросов, рациональной группировки вопросов, рациональной последовательности разделов, то есть применение метода противопоставления на уроках математики.
Общепринятая традиционная система обучения математике соблюдает принцип раздельного изучения взаимосвязанных понятий или преобразований. При одновременном изучении взаимосвязанных вопросов в пределах одних и тех же уроков дидактической единицей усвоения становится более крупная единица знаний, чем в случае раздельного изучения их. Переход в обучении к более крупным дидактическим единицам усвоения знаний дает экономию сил и времени.
При изучении задач в курсе математики, как простых, так и сложных, как обычных арифметических, так и типовых оказывается высоко эффективным систематическое применение так называемого метода обратных задач.
Успех обучения решению задач посредством преобразования прямой задачи в обратные задачи объясняется как первопричиной тем, что такой путь заставляет поднимать из сферы подсознания наибольшее разнообразие связей, заключенных в содержании задачи. Это и обеспечивает – на языке дидактики – глубокое и прочное усвоение материала.
На составление и решение обратной задачи уходит несравненно меньше времени, чем на решение новой задачи, так как числовые данные и сюжет остаются прежними; производится здесь лишь логическая операция по переосмыслению ролей чисел; неизвестное в прямой задаче становится известным и наоборот.
Поэтому я взяла для изучения и последующей работы тему “Решение взаимно обратных задач в начальной школе”.
На мой взгляд, самое трудное в начальной школе – научить ребенка грамотно писать, а самое трудное в математике – научить решать задачи.
В процессе работы мне хотелось повысить процент способных детей и уменьшить процент слабых.
Кроме того, в своей работе я стремлюсь к тому, чтобы как можно больший процент детей имел качественный показатель знаний по математике. Далее я опишу, как я этого добиваюсь и каковы результаты молей работы.
Я ознакомилась с мнением различных ученых-методистов (смотреть список литературы) по вопросу классификации задач и решению взаимно обратных задач, как по традиционной, так и по развивающей методике.
Работа со взаимно обратными задачами просматривается у Аритской Н.И., у Свечникова А.А., но у Аритской И.И. нет четкой классификации задач, также, как у Истоминой Н.Б.
Классификация сложных задач в принципе сходна у Эрдниева П.М., Свечникова А.А., Баитовой М.А. но простые задачи Свечников А.А. и Баитова М.А. классифицируют несколько иначе, чем Эрдниев П.М.
За основу я взяла работу над задачами по Эрдниеву П.М., так как на сегодняшний день более четкой классификации задач и методики работы над взаимно обратными задачами я пока не вижу.
Следует отметить существенно важные дидактические достоинства метода обратных задач.
Во время преобразования задачи учащийся выявляет и использует взаимно обратные связи между величинами задачи:
Задачи, обратные данной
Урок 4. Математика 2 класс ФГОС
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Задачи, обратные данной»
— Вот незадача… Точнее, задача…
— Минус, к тебе можно зайти?
— Здравствуй, Минус. Ты чем это так расстроен?
— Понимаешь, наша царица-Математика задала мне задачу. А получилась прямо какая-то незадача. Я не понимаю, что мне делать. Может быть, ты мне поможешь разобраться?
— Конечно! Все, что в моих силах. Ну рассказывай!
— Вот прочитай задачу.
Ну и что же здесь трудного? Совсем простенькая задача!
— Задачка-то простенькая. Но царица-Математика приказала мне составить к этой задаче какие-то обратные. Я понимаю, что можно куда-нибудь пойти, а потом вернуться обратно. Или кому-нибудь что-то подарить, а потом потребовать эту вещь обратно. Но вот что такое обратные задачи…
— Да ладно, я это знаю. Я просто неудачно пошутил. Давай все-таки поговорим про задачи, обратные данной.
— Для того, чтобы ты понял, что такое задачи, обратные данной, надо составить краткое условие к задаче. О чем говорится в задаче.
— О том, что на болото царевны-лягушки прилетели стрелы.
— Значит, задача про стрелы. Давай еще раз прочитаем задачу, найдем в ней числа и выделим главные, опорные слова, которые помогут составить краткое условие. Читай первое предложение.
— На болото царевны-лягушки прилетело восемь стрел.
— Из них 5 стрел прилетело из тридевятого царства. Но это тоже прилетело.
Читаю дальше: сколько стрел прилетело из тридесятого государства?
— Нам надо узнать, сколько стрел прилетело из тридесятого государства. Получается вот такая запись.
Ну, теперь давай решим эту задачу.
Ну вот, задача решена. А где же обратные задачи?
— А теперь давай посмотрим еще раз на краткое условие задачи. В ней было известно, сколько всего стрел прилетело и сколько прилетело из тридевятого царства. А узнать надо было, сколько прилетело из тридесятого государства. Теперь мы и это знаем.
А вот чтобы составить задачи, обратные данной, надо изменить условие задачи так, чтобы то, что в первой задаче было известным, в обратной задаче, наоборот, становилось неизвестным. А то, что было неизвестным, становилось известным.
— Ну, и эту задачку решить очень легко. Опять известно, сколько всего стрел, и известна та часть стрел, которую прислали из тридесятого государства. А узнать надо ту часть стрел, которая прилетела из тридевятого царства. Часть, как обычно, находим вычитанием. Я, Минус, на посту. Получили:
Отлично! Спасибо, Плюсик! Ты, как всегда, меня выручаешь!
— Не спиши, Минус! Ведь мы составили только одну задачу, обратную данной. Но в задаче есть еще одно число, которое ни разу пока не было неизвестным.
— Ну да, не было неизвестным общее количество стрел.
В этой задаче известна часть стрел, прилетевшая из тридевятого царства. И та часть стрел, которая прилетела из тридесятого государства. Надо узнать, сколько всего стрел прилетело.
Э-э, да мне в этой задаче делать нечего. Твоя очередь, Плюс.
— Конечно, эта задача решается со знаком плюс, ведь известны части, а надо узнать целое, т.е., сколько всего. Получаем:
— Ничего себе! Была одна задача, а стало три!
— Ну, Минус, ты понял, что такое обратная задача?
— Кажется понял. В задачах, обратных данной, каждое число по очереди становится неизвестным.
— А сейчас без моей помощи попробуй составить такие обратные задачи. Вот тебе задача. Слушай:
Петя играл в боулинг. 7 раз он сбивал кегли, а 3 раза промахнулся. Сколько всего раз бросал шар Петя?
— Так, составляю краткое условие:
А можно слово всего я напишу не снизу, а объединю две строчки фигурной скобкой?
— Конечно, так даже понятнее будет.
— Ой-ёй-ёй, Плюс, здесь нужен ты, ведь надо узнать, сколько всего.
— Теперь составляю обратные задачи.
В первой задаче неизвестным будет число удачных бросков, когда Петя сбивал кегли, а остальные числа будут известны.
Вот в этой задаче уже нужен я, Минус, так как надо узнать только часть брошенных шаров. Получаем:
А еще одна задача нужна?
— Так-так. Еще неизвестным не было количество промахов. Изменяю краткое условие:
И опять здесь надо узнать часть бросков, поэтому задачу надо решать вычитанием. Получим:
— Молодец, Минус! Так как мы составляем обратные задачи?
— В задачах, обратных данной, по очереди каждое данное становится неизвестным. А еще я заметил, что обратные задачи являются проверкой первой задачи.
— Абсолютно верно. И не забудь, обычно задач столько, сколько данных в задаче, включая неизвестное.
— Теперь я все понял. Пойду доложу царице-Математике о том, что ее задание выполнено. Спасибо, Плюсик! Пока.