Что значит рекуррентное соотношение

Рекуррентные соотношения и уравнения

В этом разделе вы найдете бесплатные примеры решений рекуррентных соотношений методом характеристического уравнения и подбора частного решения по правой части. Также приведены краткие алгоритмы решения для двух методов и пример их использования для последовательности Фибоначчи.

Как решать рекуррентные соотношения?

Для решения рекуррентных соотношений применяют один из двух основных способов:

В следующем разделе мы сравним, как выглядит процесс решения для одной и той же последовательности двумя методами.

Метод производящих функций

Метод характеристических функций

Этот метод практически полностью аналогичен методу решения линейных неоднородных дифференциальных уравнений с постоянными коэффициентами, кратко алгоритм выглядит так:

Решение для последовательности чисел Фибоначчи

Общая формула данной рекуррентной последовательности имеет вид6

Способ 1. Производящяя функция

$$\begin 1\cdot f_0 &= &0\cdot 1,\\ z\cdot f_1 &= &1\cdot z,\\ z\cdot f_n & = &(f_+f_)\cdot z^n, \quad n\geq2.\\ \end $$

Складываем все строчки:

На третьем шаге алгоритма приводим все суммы к замкнутому виду:

откуда выводим искомое выражение для производящей функции:

Теперь разложим ее в степенной ряд. Для этого сначала разложим знаменатель на множители. Найдем корни уравнения:

Чтобы разложить данные дроби в ряды, используем известное разложение для дроби:

Преобразуем данное выражение, используя то, что

Способ 2. Характеристическое уравнение

Тогда общее решение однородного рекуррентного уравнения имеет вид:

Решая систему, найдем

Итоговое выражение для последовательности чисел Фибоначчи:

Результаты обоих методов совпали, решение вторым методом оказалось проще и короче.

Примеры решений

Источник

Дискретная математика — рекуррентное соотношение

Определение

Рекуррентное отношение — это уравнение, которое рекурсивно определяет последовательность, в которой следующий член является функцией предыдущих членов (выражая F n как некоторую комбинацию F i с i n ).

Линейные рекуррентные отношения

Линейное рекуррентное уравнение степени k или порядка k — это рекуррентное уравнение в формате x n = A 1 x n − 1 + A 2 x n − 1 + A 3 x n − 1 + d o t s A k x n k ( A n — константа, а A k n e q 0 ) на последовательности чисел как полинома первой степени.

Вот некоторые примеры линейных рекуррентных уравнений —

Рецидив отношенийНачальные значенияРешения
F n = F n-1 + F n-2a 1 = a 2 = 1Число Фибоначчи
F n = F n-1 + F n-2а 1 = 1, а 2 = 3Номер Лукаса
F n = F n-2 + F n-3a 1 = a 2 = a 3 = 1Падовская последовательность
F n = 2F n-1 + F n-2a 1 = 0, a 2 = 1Число Пелла

Как решить линейное рекуррентное соотношение

Характеристическое уравнение для вышеуказанного рекуррентного соотношения —

Три случая могут возникнуть при поиске корней —

Характеристическое уравнение рекуррентного соотношения —

Итак, ( x − 3 ) ( x − 2 ) = 0

Корни реальны и различны. Итак, это в форме дела 1

F n = a x n 1 + b x n 2

Здесь F n = a 3 n + b 2 n ( A s x 1 = 3 a n d x 2 = 2 )

1 = F 0 = a 3 0 + b 2 0 = a + b

4 = F 1 = a 3 1 + b 2 1 = 3 a + 2 b

Решая эти два уравнения, мы получаем a = 2 и b = − 1

Следовательно, окончательное решение —

Характеристическое уравнение рекуррентного соотношения —

Следовательно, существует один действительный корень x 1 = 5

Поскольку существует единый действительный корень, он имеет вид случая 2

F n = a x n 1 + b n x n 1

Решая эти два уравнения, мы получаем a = 3 и b = 2 / 5

Характеристическое уравнение рекуррентного соотношения —

Источник

Термин « разностное уравнение» иногда (и для целей данной статьи) относится к определенному типу рекуррентного отношения. Однако «разностное уравнение» часто используется для обозначения любого рекуррентного отношения.

СОДЕРЖАНИЕ

Определение

Легко изменить определение для получения последовательностей, начиная с члена индекса 1 или выше.

Примеры

Факториал

Факториала определяется рекуррентным соотношением

и начальное условие

Логистическая карта

Примером рекуррентного отношения является логистическая карта :

с заданной постоянной r ; при начальном члене x 0 каждый последующий член определяется этим соотношением.

Числа Фибоначчи

Повторяемость второго порядка, которой удовлетворяют числа Фибоначчи, является каноническим примером однородного линейного рекуррентного отношения с постоянными коэффициентами (см. Ниже). Последовательность Фибоначчи определяется с использованием повторения

В явном виде рекуррентность приводит к уравнениям

Получаем последовательность чисел Фибоначчи, которая начинается

Биномиальные коэффициенты

Связь с разностными уравнениями в узком смысле

который можно упростить до

Собственно, нетрудно заметить, что

эквивалентно рекуррентному соотношению

Уравнения суммирования относятся к разностным уравнениям, как интегральные уравнения относятся к дифференциальным уравнениям.

От последовательностей к сеткам

Решение

Решение однородных линейных рекуррентных соотношений с постоянными коэффициентами

Корни характеристического многочлена

Те же коэффициенты дают характеристический многочлен (также «вспомогательный многочлен» или «сопутствующий многочлен»)

Для порядка 1 повторение

Решения таких рекуррентных соотношений более высокого порядка находятся систематическими средствами, часто с использованием того факта, что a n = r n является решением для рекуррентности именно тогда, когда t = r является корнем характеристического многочлена. К этому можно подойти напрямую или с помощью производящих функций ( формальных степенных рядов ) или матриц.

Рассмотрим, например, рекуррентное отношение вида

должно быть истинным для всех n > 1.

а если они идентичны (когда A 2 + 4 B = 0 ), мы имеем

Это наиболее общее решение; две константы C и D могут быть выбраны на основе двух заданных начальных условий a 0 и a 1 для получения конкретного решения.

можно переписать как

можно упростить решение, данное выше, как

Тогда неоднородную рекуррентность можно переписать в однородном виде как

который можно решить, как указано выше.

Условие устойчивости, сформулированное выше в терминах собственных значений для случая второго порядка, остается в силе для общего случая n- го порядка: уравнение является устойчивым тогда и только тогда, когда все собственные значения характеристического уравнения меньше единицы по модулю.

Для однородного линейного рекуррентного отношения с постоянными коэффициентами порядка d пусть p ( t ) будет характеристическим многочленом (также «вспомогательным многочленом»)

В результате этой теоремы однородное линейное рекуррентное соотношение с постоянными коэффициентами может быть решено следующим образом:

Это не совпадение. Рассматривая ряд Тейлора решения линейного дифференциального уравнения:

Эту эквивалентность можно использовать для быстрого решения рекуррентного соотношения для коэффициентов в решении степенного ряда линейного дифференциального уравнения.

Эмпирическое правило (для уравнений, в которых полином, умножающий первый член, не равен нулю в нуле):

и в более общем плане

Пример: рекуррентное соотношение для коэффициентов ряда Тейлора уравнения:

Этот пример показывает, как проблемы, обычно решаемые с использованием метода решения степенного ряда, преподаваемого в классах нормальных дифференциальных уравнений, могут быть решены намного проще.

Пример: дифференциальное уравнение

Преобразование дифференциального уравнения в разностное уравнение коэффициентов Тейлора имеет вид

Решение с помощью линейной алгебры

Линейно рекурсивная последовательность y порядка n

Решение для коэффициентов,

Это описание действительно не отличается от общего метода, приведенного выше, однако оно более лаконично. Это также хорошо работает в таких ситуациях, как

где есть несколько связанных повторений.

Решение с z-преобразованиями

Решение неоднородных линейных рекуррентных соотношений с постоянными коэффициентами

Это неоднородное повторение. Если мы подставим nn +1, мы получим рекуррентность

Вычитание исходной рекуррентности из этого уравнения дает

Это однородная повторяемость, которую можно решить описанными выше методами. В общем случае, если линейная рекурсия имеет вид

— производящая функция неоднородности, производящая функция

с постоянными коэффициентами c i получается из

Решение неоднородных рекуррентных соотношений первого порядка с переменными коэффициентами

Более того, для общего неоднородного линейного рекуррентного соотношения первого порядка с переменными коэффициентами:

есть также хороший способ решить эту проблему:

Решение общих однородных линейных рекуррентных соотношений

Решение рациональных разностных уравнений первого порядка

Стабильность

Устойчивость линейных возвратов высшего порядка.

Устойчивость линейных матричных повторений первого порядка

В матричном разностном уравнении первого порядка

Устойчивость нелинейных возвратов первого порядка.

Рассмотрим нелинейное возвращение первого порядка

Нелинейное рекуррентное соотношение может также иметь цикл периода k для k > 1. Такой цикл является устойчивым, что означает, что он привлекает набор начальных условий положительной меры, если составная функция

с появлением f k раз является локально устойчивым по тому же критерию:

Связь с дифференциальными уравнениями

При численном решении обыкновенного дифференциального уравнения обычно встречается рекуррентное соотношение. Например, при решении задачи начального значения

с помощью метода Эйлера и шага h вычисляются значения

Приложения

Биология

Информатика

Цифровая обработка сигналов

Например, уравнение для гребенчатого БИХ- фильтра с прямой связью с задержкой T следующее :

Экономика

Источник

РЕКУРРЕНТНОЕ СООТНОШЕНИЕ

рекуррентная формула,- соотношение вида

Что значит рекуррентное соотношение

В случае, когда Р. с. линейно (см. Возвратная последовательность), задача описания множества всех последовательностей, удовлетворяющих данному Р. с., имеет аналогии с решением обыкновенного однородного линейного дифференциального уравнения с постоянными коэффициентами.

Лит.:[1] М а р к у ш е в и ч А. И., Возвратные последовательности, 2 изд., М., 1975. С. Н. Артемов.

Смотреть что такое «РЕКУРРЕНТНОЕ СООТНОШЕНИЕ» в других словарях:

рекуррентное соотношение — — [[http://www.rfcmd.ru/glossword/1.8/index.php?a=index d=23]] Тематики защита информации EN recurrence relation … Справочник технического переводчика

линейное рекуррентное соотношение — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN linear recurrence … Справочник технического переводчика

Многочлены Эрмита — Многочлены Эрмита определённого вида последовательность многочленов одной вещественной переменной. Многочлены Эрмита возникают в теории вероятностей, в комбинаторике, физике. Эти многочлены названы в честь Шарля Эрмита. Содержание 1… … Википедия

Правильная скобочная последовательность — (ПСП) частный случай скобочной последовательности. Правильные скобочные последовательности образуют язык Дика и формально определяются следующим образом: (пустая строка) ПСП ПСП, взятая в скобки одного типа ПСП ПСП, к которой… … Википедия

Ортогональные многочлены — Пафнутий Львович Чебышёв В математике последовательностью ортогональных многочленов называют бесконечную последовательность действительных многочленов … Википедия

Фибоначчи — (Fibonacci) Фибоначчи первый крупный математик средневековой Европы Десятичная система счисления, арабские цифры, числа, последовательность, уровни, ряд, линии и спираль Фибоначчи Содержание >>>>>>>>> … Энциклопедия инвестора

ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ — численные методы раздел вычислительной математики, посвященный методам отыскания экстремальных значений функционалов. Численные методы В. и. принято разделять на два больших класса: непрямые и прямые методы. Непрямые методы основаны на… … Математическая энциклопедия

ВОЛЬТЕРРА УРАВНЕНИЕ — интегральное уравнение вида (линейное интегральное В. у. I рода) или вида (линейное интегральное В. у. II род а). Здесь х, s, a действительные числа, (вообще говоря) комплексный параметр, неизвестная функция, заданные функции, суммируемые с… … Математическая энциклопедия

Задача о порядке перемножения матриц — Задача о порядке перемножения матриц классическая задача динамического программирования, в которой дана последовательность матриц и требуется минимизировать количество скалярных операций для вычисления их произведения. Матрицы… … Википедия

Число Стирлинга первого рода — Числа Стирлинга первого рода количество перестановок из n предметов, имеющие ровно k циклов. Содержание 1 Определение 2 Рекуррентное соотношение 3 Пример 4 Свойст … Википедия

Источник

Решение рекуррентных соотношений

Содержание

Определения [ править ]

[math] F_0 = 0,\qquad F_1 = 1,\qquad F_ = F_ + F_, \quad n\geqslant 2, \quad n\in Z[/math]

Для этого можно использовать метод производящих функций (англ. generating function method).

Метод производящих функций [ править ]

Примеры [ править ]

[math]1[/math] пример [ править ]

Производящие функции позволяют решать рекуррентные соотношение механически по одному и тому же алгоритму. Рассмотрим общую схему на простом примере, который позволит продемонстрировать базовые приёмы работы.

Задано линейное однородное рекуррентное соотношение порядка [math]2[/math] с постоянными коэффициентами:
[math]\begin a_0&<>=<>&0,\\ a_1&<>=<>&1,\\ a_n&<>=<>&5a_-6a_, \quad n\geqslant2.\\ \end [/math]

Будем искать производящую функцию последовательности в виде
[math] G(z)=\displaystyle\sum_^ <\infty>a_nz^n = a_0+a_1z+a_2z^2+\cdots, [/math]

Теперь сложим все уравнения для всех значений [math]n[/math] :
[math] \underbrace^<\infty>a_nz^n>_ <=>z+5\displaystyle\sum_^<\infty>a_z^n-6\displaystyle\sum_^<\infty>a_z^n. [/math]

Аналогичные манипуляции со второй суммой дают нам выражение
[math] \displaystyle\sum_^<\infty>a_z^n = z^2\displaystyle\sum_^<\infty>a_z^ = z^2\displaystyle\sum_^<\infty>a_z^=z^2G(z). [/math]

откуда получаем производящую функцию последовательности в замкнутом виде:
[math] G(z) = \dfrac<1-5z+6z^2>. [/math]

Теперь разобьём дробь на сумму простых дробей:
[math] \dfrac <(1-3z)(1-2z)>= \dfrac<1> <1-3z>— \dfrac<1><1-2z>. [/math]

Из этого разложения следует, что
[math] \dfrac<1><1-3z>= \displaystyle\sum_^<\infty>(3z)^n \quad\mbox< и >\quad \dfrac<1><1-2z>= \displaystyle\sum_^<\infty>(2z)^n. [/math]

С другой стороны, мы искали [math]G(z)[/math] в виде
[math] G(z)=\displaystyle\sum_^ <\infty>a_nz^n, [/math]
поэтому, в силу равенства рядов, [math]a_n=3^n-2^n[/math] (для [math]n\geqslant 0[/math] ).

[math]2[/math] пример: числа Фибоначчи [ править ]

Рассмотрим рекуррентное соотношение для чисел Фибоначчи:
[math]\begin f_0&<>=<>&0,\\ f_1&<>=<>&1,\\ f_n&<>=<>&f_+f_, \quad n\geqslant2.\\ \end [/math]

Первый шаг алгоритма мы уже выполнили, записав рекуррентное соотношение. Выполним второй шаг:
[math]\begin 1\cdot f_0&<>=<>&0\cdot 1,\\ z\cdot f_1&<>=<>&1\cdot z,\\ z^n\cdot f_n&<>=<>&(f_+f_)\cdot z^n, \quad n\geqslant2.\\ \end [/math]

Складываем все строчки:
[math] f_0 + f_1 z + \displaystyle\sum_^<\infty>f_nz^n = z + \displaystyle\sum_^<\infty>f_z^n+\displaystyle\sum_^<\infty>f_z^n. [/math]

Третий шаг алгоритма требует привести все суммы к замкнутому виду:
[math]\begin G(z) &<>=<>& z + z\displaystyle\sum_^<\infty>f_z^+z^2\displaystyle\sum_^<\infty>f_z^, \\ G(z) &<>=<>& z + z\displaystyle\sum_^<\infty>f_z^n+z^2\displaystyle\sum_^<\infty>f_z^n, \\ G(z)&<>=<>& \displaystyle z + z(G(z)-f_0)+z^2G(z),\\ G(z)&<>=<>& \displaystyle z + zG(z)+z^2G(z),\\ \end [/math]

откуда получаем замкнутое выражение для производящей функции:
[math] G(z) = \dfrac<1-z-z^2>. [/math]

Осталось разложить её в ряд (чего требует четвёртый шаг алгоритма). С этой целью нужно разложить знаменатель на множители. Найдем корни уравнения:
[math]\displaylines< 1-z-z^2 = 0 \cr z_1=-\dfrac<1-\sqrt<5>><2>, z_2=-\dfrac<1+\sqrt<5>><2>. > [/math]

Нам известно разложение следующей рациональной функции:
[math] \dfrac<1> <1-z>= \displaystyle\sum_^<\infty>z^n = 1 + z + z^2 + z^3 + \cdots. [/math]

Рассмотрим первую дробь и поделим в ней числитель и знаменатель на [math]z_1[/math] :
[math] \dfrac = \dfrac1\dfrac<1><1-\dfrac> = \dfrac1\displaystyle\sum_^<\infty>\dfrac. [/math]

Аналогично (но с делением на [math]z_2[/math] ) поступим со второй дробью:
[math] \dfrac = \dfrac1\dfrac1<1-\dfrac> = \dfrac1\displaystyle\sum_^<\infty>\dfrac. [/math]

[math]3[/math] пример [ править ]

Рекуррентное соотношение:
[math] \begin a_0 = f_0^2 = 1 \\ a_1 = f_1^2 = 1 \\ a_2 = f_2^2 = 4 \\ a_n = 2a_ + 2a_ — a_, \quad n\geqslant3.\\ \end [/math]

[math]4[/math] пример [ править ]

Рассмотрим следующее рекуррентное соотношение:
[math]\begin a_0&<>=<>&1,\\ a_1&<>=<>&2,\\ a_n&<>=<>&6a_-8a_+n, \quad n\geqslant2.\\ \end [/math]

Вспомним, что
[math] (z^n)’ = nz^, [/math]

поэтому
[math] \displaystyle\sum_^<\infty>nz^n=z\displaystyle\sum_^<\infty>nz^=z\displaystyle\sum_^<\infty>(z^n)’=z\biggl(\displaystyle\sum_^<\infty>z^n\biggr)’. [/math]

Последняя сумма может быть свёрнута:
[math] \displaystyle\sum_^<\infty>z^n=\displaystyle\sum_^<\infty>z^n-1-z=\dfrac<1><1-z>-1-z=\dfrac<1-z>. [/math]

Подставив свёрнутое выражение обратно, имеем,
[math] z\biggl(\displaystyle\sum_^<\infty>z^n\biggr)’ = z \biggl(\dfrac<1-z>\biggr)’=\dfrac<(1-z)^2>. [/math]

Это уравнение для производящей функции. Из него выражаем [math]G(z)[/math] :
[math] G(z) = \dfrac<1-6z+11z^2-5z^3><(1-6z+8z^2)(1-z)^2>. [/math]

Дальше мы знаем что делать со всеми этими дробями, кроме, разве лишь, первой. Рассмотрим её (без множителя) подробнее:
[math] \dfrac<1> <(1-z)^2>=(1-z)^ <-2>=\displaystyle\sum_^<\infty>\binom<-2>(-z)^n=\displaystyle\sum_^<\infty>(-1)^n\binom<1>(-z)^n =\displaystyle\sum_^<\infty>(n+1)z^n. [/math]

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *