Что значит разложить на линейные множители

Разложение многочлена на множители

Для того, чтобы разложить на множители, необходимо упрощать выражения. Это необходимо для того, чтобы можно было в дальнейшем сократить. Разложение многочлена имеет смысл тогда, когда его степень не ниже второй. Многочлен с первой степенью называют линейным.

Статья раскроет все понятия разложения, теоретические основы и способы разложений многочлена на множители.

Теория

Замечание

Корни многочлена могут повторяться. Рассмотрим доказательство теоремы алгебры, следствия из теоремы Безу.

Основная теорема алгебры

Любой многочлен со степенью n имеет как минимум один корень.

Теорема Безу

Следствие из теоремы Безу

Разложение на множители квадратного трехчлена

Отсюда видно, что само разложение сводится к решению квадратного уравнения впоследствии.

Произвести разложение квадратного трехчлена на множители.

Для выполнения проверки нужно раскрыть скобки. Тогда получим выражение вида:

После проверки приходим к исходному выражению. То есть можно сделать вывод, что разложение выполнено верно.

Чтобы найти корни, надо определить значение дискриминанта. Получим, что

Произвести разложение многочлена 2 x 2 + 1 на множители.

Теперь нужно решить квадратное уравнение 2 x 2 + 1 = 0 и найти его корни. Получим, что

Для начала необходимо решить квадратное уравнение вида x 2 + 1 3 x + 1 = 0 и найти его корни.

Получив корни, запишем

Если значение дискриминанта отрицательное, то многочлены останутся многочленами второго порядка. Отсюда следует, что раскладывать их не будем на линейные множители.

Способы разложения на множители многочлена степени выше второй

Если корень не нашли, тогда применяются другие способы разложения на множители: группировка, дополнительные слагаемые. Данная тема полагает решение уравнений с высшими степенями и целыми коэффициентами.

Вынесение общего множителя за скобки

Данный способ считается вынесением общего множителя за скобки.

Разложение на множители многочлена с рациональными корнями

Когда многочлен имеет целые корни, тогда их считают делителями свободного члена.

Так как дискриминант получаем отрицательный, значит, действительных корней нет.

Этот случай имеет место быть для дробно-рациональных дробей.

4 f ( x ) = 2 3 · x 3 + 19 · 2 2 · x 2 + 82 · 2 · x + 60 = = y 3 + 19 y 2 + 82 y + 60 = g ( y )

Когда получившаяся функция вида g ( y ) = y 3 + 19 y 2 + 82 y + 60 имеет целые корни, тогда их нахождение среди делителей свободного члена. Запись примет вид:

Перейдем к вычислению функции g ( y ) в этих точка для того, чтобы получить в результате ноль. Получаем, что

Что значит разложить на линейные множители

2 x 3 + 19 x 2 + 41 x + 15 = x + 5 2 ( 2 x 2 + 14 x + 6 ) = = 2 x + 5 2 ( x 2 + 7 x + 3 )

Отсюда следует, что

Искусственные приемы при разложении многочлена на множители

Рациональные корни не присущи всем многочленам. Для этого необходимо пользоваться специальными способами для нахождения множителей. Но не все многочлены можно разложить или представить в виде произведения.

Способ группировки

Бывают случаи, когда можно сгруппировывать слагаемые многочлена для нахождения общего множителя и вынесения его за скобки.

Отсюда видно, что корней нет, необходимо использовать другой способ разложения и решения.

Необходимо провести группировку:

После группировки исходного многочлена необходимо представить его как произведение двух квадратных трехчленов. Для этого нам понадобится произвести разложение на множители. получаем, что

Простота группировки не говорит о том, что выбрать слагаемы достаточно легко. Определенного способа решения не существует, поэтому необходимо пользоваться специальными теоремами и правилами.

Заданный многочлен не имеет целых корней. Следует произвести группировку слагаемых. Получаем, что

После разложения на множители получим, что

Использование формул сокращенного умножения и бинома Ньютона для разложения многочлена на множители

Внешний вид зачастую не всегда дает понять, каким способом необходимо воспользоваться при разложении. После того, как были произведены преобразования, можно выстроить строчку, состоящую из треугольника Паскаля, иначе их называют биномом Ньютона.

Необходимо выполнить преобразование выражения к виду

После применения разности квадратов, получим

Рассмотрим выражение, которое находится во второй скобке. Понятно, что там коней нет, поэтому следует применить формулу разности квадратов еще раз. Получаем выражение вида

Займемся преобразованием выражения. Получаем, что

Необходимо применить формулу сокращенного умножения разности кубов. Получаем:

Способ замены переменной при разложении многочлена на множители

При замене переменной производится понижение степени и разложение многочлена на множители.

x 6 + 5 x 3 + 6 = y = x 3 = y 2 + 5 y + 6

x 6 + 5 x 3 + 6 = y = x 3 = y 2 + 5 y + 6 = = y + 2 y + 3 = x 3 + 2 x 3 + 3

Необходимо применить формулу сокращенного умножения суммы кубов. Получим выражения вида:

То есть получили искомое разложение.

Рассмотренные выше случаи помогут в рассмотрении и разложении многочлена на множители разными способами.

Источник

Математика

Далее, усложняя дело, составим многочлен из трех членов: в одном буква x пусть входит во второй степени, в другом – в первой, а третий член вовсе этой буквы не содержит, напр.:

3x² – 5x + 7 или x² + 2x – 1
или 5y² + 7y + 8 или z² – 5z – 2 и т. д.

Затем, мы можем составить кубический четырехчлен, напр.:

x³ + 2x² – x + 1 или 3x³ – 5x² – 2x – 3 и т. д.,

многочлен четвертой степени, напр.:

x 4 – 2x³ – 3x² + 4x – 5 и т. д.

1) общий вид линейного относительно x двучлена ax + b,

2) общий вид квадратного трехчлена (относительно x ): ax² + bx + c,

3) общий вид кубического трехчлена (относительно x ): ax³ + bx² + cx + d и т. д.

Заменяя в этих формулах буквы a, b, c, d … различными числами, получим всевозможные линейные двучлены, квадратные трехчлены и т. д. Напр., в формуле ax² + bx + c, выражающей общий вид квадратного трехчлена, заменим букву a числом +3, букву b числом –2 и букву c числом –1, получим квадратный трехчлен 3x² – 2x – 1. В частном случае возможно получить и двучлен, заменяя одну из букв нулем, напр., если a = +1, b = 0 и c = –3, то получим квадратный двучлен x² – 3.

Можно научиться раскладывать некоторые квадратные трехчлены довольно быстро на линейные множители. Ограничимся, однако, рассмотрением только таких квадратных трехчленов, которые удовлетворяют следующим условиям:

1) коэффициентом при старшем члене (при x²) служит +1,

2) можно подыскать такие два целых числа (со знаками, или два относительных целых числа), чтобы их сумма равнялась коэффициенту при x в первой степени и их произведение равнялось члену, свободному от x (где буквы x вовсе нет).

Примеры. 1. x² + 5x + 6; легко в уме подыскать два числа (со знаками), чтобы их сумма равнялась +5 (коэффициенту при x ) и чтобы их произведение = +6 (члену, свободному от x), – эти числа суть: +2 и +3 [в самом деле, +2 + 3 = +5 и (+2) ∙ (+3) = +6]. При помощи этих двух чисел заменим член +5x двумя членами, а именно: +2x + 3x (конечно, +2x + 3x = +5x); тогда наш техчлен искусственно будет обращен в четырехчлен x² + 2x + 3x + 6. Применим теперь к нему прием группировки, относя первые два члена в одну группу и последние два – в другую:

x² + 5x + 6 = x² + 2x + 3x + 6 = x (x + 2) + 3 (x + 2) = (x + 2) (x + 3).

В первой группе мы вынесли за скобку x и во второй +3, получили два члена, у которых оказался общий множитель (x + 2), который также вынесли за скобку, и наш трехчлен x² + 5x + 6 разложился на 2 линейных множителя: x + 2 и x + 3.

2. x² – x – 12. Здесь надо подыскать два числа (относительных), чтобы их сумма равнялась –1 и чтобы их произведение равнялось –12. Такие числа суть: –4 и +3.

Проверка: –4 + 3 = –1; (–4) (+3) = –12. При помощи этих чисел заменим член –x двумя членами: –x = –4x + 3x, – получим:

x² – x – 12 = x² – 4x + 3x – 12 = x (x – 4) + 3 (x – 4) = (x – 4) (x + 3).

3. x² – 7x + 6; здесь нужные числа суть: –6 и –1. [Проверка: –6 + (–1) = –7; (–6) (–1) = +6].

x² – 7x + 6 = x² – 6x – x + 6 = x (x – 6) – (x – 6) = (x – 6) (x – 1).

Здесь члены второй группы –x + 6 пришлось заключить в скобки, со знаком минус перед ними.

4. x² + 8x – 48. Здесь нужно подыскать два числа, чтобы их сумма равнялась +8 и чтобы их произведение равнялось –48. Так как произведение должно иметь знак минус, то искомые числа должны быть с разными знаками, так как сумма наших чисел имеет знак +, то абсолютная величина положительного числа должна быть больше. Раскладывая арифметическое число 48 на два множителя (а это можно сделать по-разному), получим: 48 = 1 ∙ 48 = 2 ∙ 24 = 3 ∙ 16 = 4 ∙ 12 = 6 ∙ 8. Из этих разложений легко выбрать подходящее к нашим требованиям, а именно: 48 = 4 ∙ 12. Тогда наши числа суть: +12 и –4. Дальнейшее просто:

x² + 8x – 48 = x² + 12x – 4x – 48 = x (x + 12) – 4 (x + 12) = (x + 12) (x – 4).

5. x² + 7x – 12. Здесь надо найти 2 числа, чтобы их сумма равнялась +7 и произведение = –12; 12 = 1 ∙ 12 = 2 ∙ 6 = 3 ∙ 4. По-видимому, подходящими числами являлись бы 3 и 4, но их надо взять с разными знаками, чтобы их произведение равнялось –12, а тогда их сумма ни в коем случае не может равняться +7 [–3 + (+4) = +1, +3 + (–4) = –1]. Другие разложения на множители также не дают требуемых чисел; поэтому мы приходим к заключению, что данных квадратных трехчлен мы еще не умеем разложить на линейные множители, так как к нему наш прием не применим (он не удовлетворяет второму из условий, какие были установлены вначале).

Источник

Разложение многочлена на множители

Разложить многочлен на множители означает представить его в виде произведения двух или нескольких многочленов.

Примером разложения многочлена на множители является вынесение общего множителя за скобки, поскольку исходный многочлен обращается в произведение двух сомножителей, один из которых является одночленом, а другой многочленом.

Разложение многочлена на множители способом вынесения общего множителя за скобки

При вынесении общего множителя за скобки образуется произведение из двух сомножителей, один из которых является одночленом, а другой многочленом. Например:

В рамках изучения многочленов, одночлен принято считать многочленом, состоящим из одного члена. Поэтому, когда в многочлене выносится за скобки общий множитель, то говорят что исходный многочлен представлен в виде произведения многочленов.

Что значит разложить на линейные множители

Разложение многочлена на множители способом группировки

Некоторые многочлены содержат группу членов, имеющих общий множитель. Такие группы можно заключать в скобки и далее выносить общий множитель за эти скобки. В результате получается разложение исходного многочлена на множители, которое называют разложением на множители способом группировки.

Рассмотрим следующий многочлен:

Далее в многочлене ax + ay + 3 x + 3 y члены 3x и 3y имеют общий множитель 3. Выпишем эти члены и тоже заключим их в скобки:

Теперь соединим выражения (ax + ay) и (3x + 3y) знаком «плюс»

Что значит разложить на линейные множители

Далее замечаем, что двучлен (x + y) является общим множителем. Вынесем его за скобки. Продолжаем решение в исходном примере. В результате получим:

Что значит разложить на линейные множители

Запишем решение покороче, не расписывая подробно, как каждый член был разделен на общий множитель. Тогда решение получится более компактным:

Что значит разложить на линейные множители

Пример 2. Разложить многочлен 9x + ax − 9y − ay на множители способом группировки.

В первой группе (9x − 9y) вынесем за скобки общий множитель 9. Во второй группе (ax − ay) вынесем за скобки за скобки общий множитель a

Далее вынесем за скобки двучлен (x − y)

Пример 3. Разложить многочлен ab − 3b + b 2 − 3a на множители способом группировки.

Во втором произведении b(−3 + b) в сомножителе (−3 + b) изменим порядок следования членов. Тогда получим b(b − 3)

Теперь вынесем за скобки общий множитель (b − 3)

Пример 4. Разложить многочлен x 2 y + x + xy 2 + y + 2xy + 2 на множители способом группировки.

Сгруппируем первый член многочлена со вторым, третий с четвёртым, пятый с шестым:

Что значит разложить на линейные множители

Что значит разложить на линейные множители

Далее замечаем, что многочлен (xy + 1) является общим множителем. Вынесем его за скобки:

Что значит разложить на линейные множители

Разложение многочлена на множители по формуле квадрата суммы двух выражений

Формулы сокращённого умножения, которые мы рассматривали в прошлом уроке, можно применять для разложения многочленов на множители.

Вспомним, как выглядит формула квадрата суммы двух выражений:

Поменяем местами левую и правую часть, получим:

Левая часть этого равенства является многочленом, а правая часть — произведением многочленов, поскольку выражение (a + b) 2 представляет собой перемножение двух сомножителей, каждый из которых равен многочлену (a + b).

Пример 1. Разложить на множители многочлен 4x 2 + 12xy + 9y 2

Полностью решение можно записать так:

Пример 2. Разложить на множители многочлен x 2 + 12x + 36

Разложение многочлена на множители по формуле квадрата разности двух выражений

Как и по формуле квадрата суммы двух выражений, многочлен можно разложить на множители по формуле квадрата разности двух выражений.

Формула квадрата разности двух выражений выглядит так:

Если в этой формуле поменять местами левую и правую часть, то получим:

Поскольку правая часть это произведение двух сомножителей, каждый из которых равен (a − b), то многочлен вида a 2 − 2ab + b 2 можно разложить на множители (a − b) и (a − b).

Пример 1. Разложить на множители многочлен 9x 2 − 12xy + 4y 2

Полностью решение можно записать так:

Пример 2. Разложить на множители многочлен x 2 − 4x + 4

Воспользуемся формулой квадрата разности двух выражений:

Разложение многочлена на множители по формуле куба суммы двух выражений

Вспомним, как выглядит формула куба суммы двух выражений:

Поменяем местами левую и правую часть, получим:

Левая часть этого равенства является многочленом, а правая часть — произведением многочленов, поскольку выражение (a + b) 3 представляет собой перемножение трёх сомножителей, каждый из которых равен многочлену (a + b).

Пример 1. Разложить на множители многочлен m 3 + 6m 2 n + 12mn 2 + 8n 3

Прежде чем применять формулу куба суммы, следует проанализировать данный многочлен. А именно, убедиться что перед нами действительно куб суммы двух выражений.

Первый член данного многочлена является результатом возведения в куб одночлена m

Последний член 8n 3 является результатом возведения в куб одночлена 2n

Второй член 6m 2 n является утроенным произведением квадрата первого выражения m и последнего 2n

Третий член 12mn 2 является утроенным произведением первого выражения m и квадрата последнего выражения 2n

Пример 2. Разложить на множители многочлен 125x 3 + 75x 2 + 15x + 1

Первый член данного многочлена является результатом возведения в куб одночлена 5x

Последний член 1 является результатом возведения в куб одночлена 1

Второй член 75x 2 является утроенным произведением квадрата первого выражения 5x и последнего 1

Третий член 15x является утроенным произведением первого выражения 5x и квадрата второго выражения 1

Разложение многочлена на множители по формуле куба разности двух выражений

Как и по формуле куба суммы двух выражений, многочлен можно разложить на множители по формуле куба разности двух выражений.

Вспомним, как выглядит формула куба разности двух выражений:

Если в этой формуле поменять местами левую и правую часть, то получим:

Поскольку правая часть это произведение трёх сомножителей, каждый из которых равен (a − b), то многочлен вида a 3 − 3a 2 b + 3ab 2 − b 3 можно разложить на множители (a − b), (a − b) и (a − b).

Пример 1. Разложить на множители многочлен 64 − 96x + 48x 2 − 8x 3

Прежде чем применять формулу куба разности, следует проанализировать данный многочлен. А именно, убедиться что перед нами действительно куб разности двух выражений.

Первый член данного многочлена является результатом возведения в куб одночлена 4

Последний член 8x 3 является результатом возведения в куб одночлена 2x

Второй член 96x является утроенным произведением квадрата первого выражения 4 и последнего 2x

Третий член 48x 2 является утроенным произведением первого выражения 4 и квадрата второго выражения 2x

3 × 4 × (2x) 2 = 3 × 4 × 4x 2 = 48x 2

Пример 2. Разложить на множители многочлен 27 − 135x + 225x 2 − 125x 3

Первый член данного многочлена является результатом возведения в куб одночлена 3

Последний член 125 является результатом возведения в куб одночлена 5x

Второй член 135x является утроенным произведением квадрата первого выражения 3 и последнего 5x

Третий член 225x 2 является утроенным произведением первого выражения 3 и квадрата второго выражения 5x

3 × 3 × (5x) 2 = 3 × 3 × 25x 2 = 225x 2

Разложение многочлена на множители по формуле разности квадратов двух выражений

Вспомним, как выглядит формула умножения разности двух выражений на их сумму:

Если в этой формуле поменять местами левую и правую часть, то получим:

Эту формулу называют разностью квадратов. Она позволяет разложить выражение вида a 2 − b 2 на множители (a − b) и (a + b).

Пример 1. Разложить на множители многочлен 16x 2 − 25y 2

Первый член 16x 2 является результатом возведения в квадрат одночлена 4x

Второй член 25y 2 является результатом возведения в квадрат одночлена 5y

Полностью решение можно записать так:

Пример 2. Разложить на множители многочлен x 2 − y 2

Чаще всего члены, из которых состоит исходная разность, являются результатами возведения во вторую степень каких-нибудь одночленов. Чтобы узнать чему в таком случае равны a и b, нужно как в первом примере представить члены исходной разности в виде одночленов возведённых в квадрат.

Полностью решение можно записать так:

Несмотря на простоту разложения по формуле разности квадратов, частые ошибки приходятся именно на эти задачи. Чтобы убедиться, что задача решена правильно, не мешает выполнить умножение в получившемся разложении. Если задача решена правильно, то должен получиться изначальный многочлен.

Проверим умножением данный пример. У нас должен получиться многочлен 4x 4 − 9y 6

Пример 4. Разложить на множители многочлен 81 − 64

Представим члены исходной разности в виде одночленов возведенных в квадрат. Далее воспользуемся формулой разности квадратов:

81 − 64 = 9 2 − 8 2 = (9 − 8)(9 + 8)

Разложение многочлена на множители по формуле сумме кубов двух выражений

Мы помним, что произведение суммы двух выражений и неполного квадрата их разности равно сумме кубов этих выражений:

Если в этой формуле поменять местами левую и правую часть, то получим формулу, называемую суммой кубов двух выражений:

Пример 1. Разложить на множители многочлен 27x 3 + 64y 3

Представим члены 27x 3 и 64y 3 в виде одночленов, возведённых в куб

Пример 2. Разложить на множители многочлен 125 + 8

Представим члены 125 и 8 в виде одночленов, возведённых в куб:

Далее воспользуемся формулой суммы кубов:

125 + 8 = 5 3 + 2 3 = (5 + 2)(25 − 10 + 4)

Разложение многочлена на множители по формуле разности кубов двух выражений

Произведение разности двух выражений и неполного квадрата их суммы равно разности кубов этих выражений:

Если в этой формуле поменять местами левую и правую часть, то получим формулу, называемую разностью кубов двух выражений:

Пример 1. Разложить на множители многочлен 64x 3 − 27y 3

Представим члены 64x 3 и 27y 3 в виде одночленов, возведённых в куб:

Пример 2. Разложить на множители многочлен 64 − 27

Представим члены 64 и 27 в виде одночленов, возведённых в куб:

64 − 27 = 4 3 − 3 3 = (4 − 3)(16 + 12 + 9)

Пример 3. Разложить на множители многочлен 125x 3 − 1

Представим члены 125x 3 и 1 в виде одночленов, возведённых в куб:

Разложение многочлена на множители различными способами

К некоторым многочленам можно применять различные способы разложения на множители. Например, к одному многочлену можно применить способ вынесения общего за скобки, а затем воспользоваться одной из формул сокращённого умножения.

Пример 1. Разложить на множители многочлен ax 2 − ay 2

При этом в скобках образовался многочлен, который является разностью квадратов. Применив формулу разности квадратов. Тогда получим:

Пример 2. Разложить на множители многочлен 3x 2 + 6xy + 3y 2

Вынесем за скобки общий множитель 3

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *