Что значит равносильно в алгебре

Алгебра и начала математического анализа. 10 класс

Конспект урока

Алгебра и начала математического анализа, 10 класс

Урок №19. Равносильные уравнения и неравенства

Перечень вопросов, рассматриваемых в теме

1) понятие равносильного уравнения;

2) понятие равносильного неравенства;

3) понятие уравнения-следствия;

4) основные теоремы равносильности.

Два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.

Если при переходе от одного уравнения к другому потери корней не происходит, то второе уравнение называет следствием первого уравнения. Иначе, если все корни первого уравнения являются корнями второго уравнения, то второе уравнения называется следствием первого уравнения.

Неравенства, имеющие одно и то же множество решений, называют равносильными. Неравенства, не имеющие решений, также являются равносильными.

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2014.

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Определение. Два уравнения с одной переменной

f(х) = g(х) и р(х) = h(х) называют равносильными, если множества их корней совпадают.

Иными словами, два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.

1) Уравнения Что значит равносильно в алгебреравносильны, т.к. каждое из них имеет только один корень х=3.

2) Уравнения Что значит равносильно в алгебретакже равносильны, т.к. у них одни и те же корни Что значит равносильно в алгебре.

3) А вот уравнения Что значит равносильно в алгебрене равносильны, потому что у первого уравнения корень х=2, а у второго уравнения два корня х=2 и х=-2.

Из определения равносильности следует, что два уравнения равносильны, если каждый корень первого уравнения является корнем второго уравнения, и наоборот.

Решение уравнения осуществляется в три этапа.

Второй этап — анализ решения. На этом этапе, анализируя проведенные преобразования, отвечают на вопрос, все ли они были равносильными.

Третий этап — проверка. Если анализ, проведенный на втором этапе, показывает, что некоторые преобразования могли привести к уравнению-следствию, то обязательна проверка всех найденных корней их подстановкой в исходное уравнение.

Реализация этого плана связана с поисками ответов на четыре вопроса.

Из курса средней школы мы знаем, что можно сделать следующие преобразования уравнений: любой член уравнения можно перенести из одной части в другую, изменив его знак на противоположный.

Обе части уравнения можно умножить или разделить на одной и то же число, не равное нулю.

Если при переходе от одного уравнения к другому потери корней не происходит, то второе уравнение называет следствием первого уравнения. Иначе, если все корни первого уравнения являются корнями второго уравнения, то второе уравнения называется следствием первого уравнения.

Из этого определения и определения равносильности уравнений следует, что:

При решении уравнений главное- не потерять корни, а наличие посторонних корней можно установить проверкой. Поэтому важно следить за тем, чтобы при преобразовании уравнения каждое следующее уравнение было следствием предыдущего.

Стоит отметить, что посторонние корни могут получиться при умножении обеих частей уравнения на выражение, содержащее неизвестное; а вот потеря корней может произойти при делении обеих частей уравнения на выражение, содержащее неизвестное.

Итак, сформулируем основные теоремы, которые используются при решении равносильных уравнений:

Определение. Областью определения уравнения f(х) = g(х) или областью допустимых значений переменной (ОДЗ) называют множество тех значений переменной х, при которых одновременно имеют смысл выражения

Теорема 1. Если какой-либо член уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному.

Теорема 2. Если обе части уравнения возвести в одну и туже нечетную степень, то получится уравнение, равносильное данному.

Теорема 3. Показательное уравнение Что значит равносильно в алгебре(где а > 0, a≠1)

равносильно уравнению f(x) = g(х).

Теорема 4. Если обе части уравнения f(x) = g(х) умножить на одно и то же выражение h(х), которое:

а) имеет смысл всюду в области определения (в области допустимых значений) уравнения f(x) = g(х)

б) нигде в этой области не обращается в 0, то получится уравнение f(x)h(x) = g(x)h(x), равносильное данному в его ОДЗ.

Следствием теоремы 4: если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Теорема 5. Если обе части уравнения f(x)=g(х) неотрицательны в ОДЗ уравнения, то после возведения обеих его частей в одну и ту же четную степень n получится уравнение Что значит равносильно в алгебреравносильное данному в его ОДЗ.

Краткая запись теорем 4, 5.

4. f(x) = g(x) ⇔h(x)f(x) = h(x)g(x), где h(x) ≠0

и h(x) имеет смысл в ОДЗ данного уравнения.

5. f(x) = g(x) ⇔ Что значит равносильно в алгебре, где f(x)≥0, g(x)≥0

и n=2k (чётное число).

Например, х – 1 = 3; х = 4

Умножим обе части на (х – 2):

(х – 2)(х – 1) = 3(х – 2); х = 4 и х = 2 – посторонний корень⇒ проверка!

Равносильность неравенств с неизвестным определяется аналогично.

Неравенства, имеющие одно и то же множество решений, называют равносильными. Неравенства, не имеющие решений, также являются равносильными.

Разбор решения заданий тренировочного модуля

Решим уравнение: Что значит равносильно в алгебре

Возведем в квадрат обе части уравнения, получим:

Что значит равносильно в алгебре, которое не будет равносильно исходному уравнению, потому что у этого уравнения два корня Что значит равносильно в алгебре, а у первоначального уравнения только один корень х=4.

Источник

Равносильные уравнения, преобразование уравнений

Некоторые преобразования позволяют нам перейти от решаемого уравнения к равносильным, а также к уравнениям-следствиям, благодаря чему упрощается решение первоначального уравнения. В данном материале мы расскажем, что из себя представляют эти уравнения, сформулируем основные определения, проиллюстрируем их наглядными примерами и поясним, как именно осуществляется вычисление корней исходного уравнения по корням уравнения-следствия или равносильного уравнения.

Понятие равносильных уравнений

Равносильными называются такие уравнения, имеющие одни и те же корни, или же те, в которых корней нет.

Определения такого типа часто встречаются в различных учебниках. Приведем несколько примеров.

Уравнения с одинаковыми корнями считаются равносильными. Также ими считаются два уравнения, одинаково не имеющие корней.

Когда мы говорим о совпадающем множестве корней, то имеем в виду, что если определенное число будет корнем одного уравнения, то оно подойдет в качестве решения и другому уравнению. Ни одно из уравнений, являющихся равносильными, не может иметь такого корня, который не подходит для другого.

Приведем несколько примеров таких уравнений.

Для наглядности рассмотрим несколько примеров неравносильных уравнений.

Определения, данные выше, подойдут и для уравнений с несколькими переменными, однако в том случае, когда мы говорим о двух, трех и более корнях, более уместно выражение «решение уравнения». Таким образом, подытожим: равносильные уравнения – это те уравнения, у которых одни и те же решения или их совсем нет.

Понятие уравнений-следствий

Процитируем несколько примеров определений уравнений-следствий, взятых из учебных пособий.

Следствием уравнения f ( x ) = g ( x ) будет уравнение p ( x ) = h ( x ) при условии, что каждый корень первого уравнения будет в то же время корнем второго.

Источник

Равносильность уравнений

Урок 28. Алгебра 11 класc

Что значит равносильно в алгебре

Что значит равносильно в алгебре

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Что значит равносильно в алгебре

Что значит равносильно в алгебре

Что значит равносильно в алгебре

Конспект урока «Равносильность уравнений»

• обобщить сведения о равносильности уравнений;

• повторить основные теоремы равносильности;

• рассмотреть причины потери и появления посторонних корней при решении уравнений.

В процессе изучения математики, начиная с младших классов, мы постоянно сталкиваемся с уравнениями с одной или двумя переменными, с неравенствами, с системами уравнений или неравенств. На сегодняшнем уроке мы постараемся обобщить все, что мы знаем об уравнениях.

Начнем с определения.

Два уравнения с одной переменной f(x) = g(x) и p(x) = h(x) называют равносильными, если множества их корней совпадают.

Другими словами, два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.

Что значит равносильно в алгебре

Дадим еще одно определение.

Если каждый корень уравнения f(x) = g(x) является в то же время корнем уравнения p(x) = h(x), то уравнение p(x) = h(x) называют следствием уравнения f(x) = g(x).

Что значит равносильно в алгебре

Очевидно, что справедливо следующее утверждение: два уравнения равносильны тогда и только тогда, когда каждое из них является следствием другого.

Таким образом, общую схему можно описать так. Исходное уравнение преобразовывается в более простое уравнение, полученное уравнение преобразовывается в еще более простое уравнение и так происходит до тех пор, пока не получится довольное простое уравнение, корни которого и находят.

Что значит равносильно в алгебре

Естественно возникает вопрос, а будут ли корни решенного простого уравнения корнями нашего исходного уравнения? Если все преобразования были равносильными, то есть все полученные уравнения равносильные, тогда да. Если же некоторые преобразования были равносильными, а в некоторых мы не уверены, но точно знаем, что переходили с их помощью к уравнениям-следствиям, то однозначного ответа на вопрос мы не получим.

Для того, чтобы на данный вопрос ответить точно, нужно все найденные корни проверить, подставив их в исходное уравнение. Если найденный корень последнего уравнения не удовлетворяет исходному уравнению, то его называют посторонним корнем и в ответ его включать не надо.

Что значит равносильно в алгебре

Как правило, решение уравнения осуществляется в три этапа.

1. Технический. На этом этапе осуществляется преобразование по схеме, которую мы описали выше.

2. Анализ решения. На этом этапе, анализируя проведенные преобразования, отвечают на вопрос, все ли они были равносильными.

3. Проверка. Если анализ, проведенный на втором этапе, показывает, что некоторые преобразования могли привести к уравнению-следствию, то обязательно проверка всех найденных корней их подстановкой в исходное уравнение.

Давайте теперь определимся: как же узнать, является ли переход от одного уравнения к другому равносильным преобразованием?

Попробуем вспомнить все теоремы, в которых уравнение заменяется равносильным уравнением. Эти теоремы были доказаны нами ранее, поэтому мы просто напомним их.

Теорема 1. Если какой-либо компонент уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному.

Теорема 2. Если обе части уравнения возвести в одну и ту же нечетную степень, то получится уравнение, равносильное данному.

Что значит равносильно в алгебре

Теперь давайте вспомним, что областью определения уравнения эф от икс равно жэ от икс или областью допустимых значений переменной (ОДЗ) называют множество тех значений переменной икс, при которых одновременно имеют смысл выражения f(x) и g(x).

Теорема 4. Если обе части уравнения f(x) = g(x) умножить на одно и тоже выражение h(x, которое: имеет смысл всюду в области определения (в области допустимых значений) уравнения f(x) = g(x); нигде в этой области не обращается в ноль, то получится уравнение f(x)h(x) = g(x)h(x), равносильное данному.

Следствием этой теоремы будет известный факт о том, что если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильно данному.

Что значит равносильно в алгебре

Что значит равносильно в алгебре

Теперь давайте вспомним, какие преобразования переводят уравнение в уравнение-следствие.

Если в процессе решения, мы воспользуемся последними теоремами, но не будем проверять выполнение необходимых условий, то получится уравнение-следствие.

Что значит равносильно в алгебре

Второй корень является посторонним для уравнения:

Что значит равносильно в алгебре

А появился он потому, что мы умножили обе части уравнения на одно и то же выражение, нарушив при этом условие теоремы 4.

В этой теореме содержится требование: выражение, на которое мы умножаем обе части уравнения, нигде не должно обращаться в ноль. А в нашем случае, выражение x – 2 обращается в ноль при x = 2, которое и оказалось посторонним корнем.

Теперь давайте обе части исходного уравнения возведем в квадрат. Получим:

Что значит равносильно в алгебре

Посторонний корень появился потому, что мы возвели обе части уравнения в одну и ту же четную степень, нарушив при этом условие теоремы пять. В этой теореме содержится требование: обе части уравнения должны быть неотрицательны. Про выражение x – 5 мы не можем этого утверждать.

Что значит равносильно в алгебре

Потенцируя, получим уравнение

Что значит равносильно в алгебре

Но этот корень является посторонним для исходного уравнения, поскольку оба выражения под знаками логарифмов принимают отрицательные значения.

Что значит равносильно в алгебре

А появился этот корень потому, что при потенцировании, мы нарушили условие шестой теоремы. В этой теореме содержится требование: выражения под знаками логарифмов должны быть положительными, о выражениях 2x – 4 и 3x – 5 этого утверждать мы не можем, так как они при одних значениях x положительны, при других – они отрицательны.

В нашем примере переход от логарифмического уравнения к уравнению 2x – 4 = 3x – 5 привел к расширению области определения уравнения.

Область определения логарифмического уравнения задается системой неравенств

Что значит равносильно в алгебре

решением которого будет промежуток

Что значит равносильно в алгебре

Областью определения уравнения 2x – 4 = 3x – 5 является множество всех действительных чисел. То есть у области определения логарифмического уравнения добавился луч от минус бесконечности до двух. В этом промежутке и находится корень уравнения x = 1.

Давайте попробуем сформулировать возможные причины расширения области определения уравнения:

1. Освобождение в процессе решения уравнения от знаменателей, содержащих переменную величину.

2. Освобождение в процессе решения уравнения от знаков корней четной степени.

3. Освобождение в процессе решения уравнения от знаков логарифмов.

Итак при решении уравнения обязательна проверка всех найденных корней, если:

1. Произошло расширение области определения уравнения.

2. Осуществлялось возведение обеих частей уравнения в одну и ту же четную степень.

3. Выполнялось умножение обеих частей уравнения на одно и то же выражение с переменной (имеющее смысл во всей области определения уравнения).

Что значит равносильно в алгебре

В рассмотренном примере, при проверке корней у нас были небольшие и несложные вычисления, а как же быть в случаях, когда проверка корней сопровождается значительными вычислительными трудностями? Существует несколько так называемых обходных путей проверки.

Например, при проверке корней в примере, мы не высчитывали значение левой части уравнения, а просто прикидывали чему равно получившееся выражение. Такая прикидка – один из обходных путей проверки.

Но этот корень можно было проверить и другим способом. Мы могли его проверить не по исходному уравнению, а по полученному в процессе преобразований уравнению-следствию.

Как правило, самый легкий путь проверки – по области определения исходного уравнения.

Каждый раз, при решении уравнений, явно выделять три этапа мы не будем. Но мысленно мы всегда такое разбиение будем делать.

Рассмотрим еще один пример.

Что значит равносильно в алгебре

Мы рассмотрели варианты, когда уравнение в процессе преобразований приобретает новые корни, но бывают случаи, когда уравнение теряет корни. Укажем причины потери корней при решении уравнений:

Что значит равносильно в алгебре

Что значит равносильно в алгебре

Можно сделать вывод, что применяя при решении уравнения какую-либо формулу, надо следить за тем, чтобы ОДЗ переменной для правой и левой частей формулы были одинаковыми.

Источник

1. Понятие уравнения и его корней

Равенство с переменной называ­ется уравнением. В общем виде урав­нение с одной переменной x записы­вают так: f (я) = g (я).

Под этой краткой записью пони­мают математическую запись задачи о нахождении значений аргумента, при которых значения двух данных функций равны.

2х = —1 — линейное уравнение; х 2 — 3х + 2 = 0 — квадратное уравнение; чJx + 2 = x — иррациональное уравнение (содер­жит переменную под знаком корня).

Корнем (или решением) уравне­ния с одной переменной называется значение переменной, при подста­новке которого в уравнение получа­ется верное равенство.

Решить уравнение — значит най­ти все его корни (и обосновать, что других корней нет) или доказать, что корней нет.

2. Область допустимых значений (ОДЗ)

Областью допустимых зна­чений (или областью опреде­ления) уравнения называется общая область определения для функций f (x) и g (x), стоя­щих в левой и правой частях уравнения.

Для уравнения л/x + 2 = x ОДЗ: x + 2 1 0, то есть x 1 —2, так как область определения функции f (x) = yj x + 2 опре­деляется условием: x + 2 1 0, а область определения функции g (x) = x — множе­ство всех действительных чисел.

Если каждый корень первого уравне­ния является корнем второго, то второе уравнение называется следствием пер­вого уравнения.

Если из правильности первого равенства следует правильность каждого последую­щего, то получаем уравнения-следствия.

При использовании уравнений-след­ствий не происходит потери корней ис­ходного уравнения, но возможно появление посторонних корней. Поэтому при исполь­зовании уравнений-следствий проверка полученных корней подстановкой их в ис­ходное уравнение является составной час­тью решения (см. пункт 5 этой таблицы).

► Возведем обе части уравне­ния в квадрат:

Понятно, что каждый корень данного уравнения принадлежит как об­ласти определения функции f (x), так и области определения функции g (x) (иначе мы не сможем получить верное числовое равенство). Поэтому каж­дый корень уравнения обязательно принадлежит ОДЗ этого уравнения. Это позволяет в некоторых случаях применить анализ ОДЗ уравнения при его решении.

Это происходит поэтому, что, используя уравнения-следствия, мы гаран­тируем только то, что корни заданного уравнения не теряются (каждый корень первого уравнения является корнем второго). Но второе уравнение, кроме корней первого уравнения, имеет еще и другой корень, который не яв­ляется корнем первого уравнения. Для первого уравнения этот корень явля­ется посторонним, и, чтобы его отсеять, выполняется проверка подстановкой корней в исходное уравнение. (Более полно причины появления посторон­них корней рассмотрены в таблице 7 на с. 54.) Таким образом, чтобы пра­вильно применять уравнения-следствия для решения уравнений, необходи­мо помнить еще один о р и е н т и р: при использовании уравнений-следствий возможно появление посторонних корней, и поэтому проверка подстанов­кой корней в исходное уравнение является составной частью решения.

Схема применения этих ориентиров дана в таблице 6. В пункте 3 этой таблицы приведено решение уравнения

Замечание. Переход от данного уравнения к уравнению-следствию мож­но обозначить специальным значком ^, но его использование для записи решения не является обязательным. Вместе с тем, если этот значок запи­сан, то это свидетельствует о том, что мы воспользовались уравнениями- следствиями, и поэтому обязательно в запись решения необходимо вклю­чить проверку полученных корней.

С понятием равносильности вы знакомы еще из курса алгебры 7 класса, где равносильными назывались те уравнения, которые имели одни и те же корни. Заметим, что равносильными считались и такие два уравнения, ко­торые не имели корней. Формально будем считать, что и в этом случае урав­нения имеют одни и те же корни, поскольку ответы к таким уравнениям одинаковы: «уравнения не имеют корней» (точнее: одинаковыми являются множества корней таких уравнений — они оба пустые, что обозначается символом 0).

В курсе алгебры и начал математического анализа мы будем рассматри­вать более общее понятие равносильности, а именно: равносильность на определенном множестве.

Два уравнения называются равносильными на некотором множе-
стве, если на этом множестве они имеют одни и те же корни, то
есть каждый корень первого уравнения является корнем второго

и, наоборот, каждый корень второго уравнения является корнем
первого.

Для уравнений, заданных на множестве всех действительных чисел (например, для линейных), мы можем однозначно дать ответ на вопрос: «Равносильны ли данные уравнения?» Например, уравнения х + 3 = 0 и 2х + 6 = 0 — равносильные, поскольку оба имеют одинаковый корень х = —3 и других корней не имеют, таким образом, каждое из них имеет те же решения, что и второе.

При рассмотрении равносильности уравнений на множестве, которое от­личается от множества всех действительных чисел, ответ на вопрос «Равно­сильны ли данные уравнения?» может существенно зависеть от того, на каком множестве мы рассматриваем эти уравнения. Например, если рас­смотреть уравнения:

то, как было показано выше, уравнение (3) имеет единственный корень х = 1, а уравнение (4) — два корня: х = 1 и х = —1. Таким образом, на множестве всех действительных чисел эти уравнения не являются равносильными, по­скольку у уравнения (4) есть корень х = —1, которого нет у уравнения (3). Но на множестве положительных действительных чисел эти уравнения равно­

сильны, поскольку на этом множестве уравнение (3) имеет единственный положительный корень х = 1 и уравнение (4) также имеет единственный положительный корень х = 1. Следовательно, на множестве положительных чисел каждое из этих уравнений имеет те же решения, что и второе.

Укажем, что множество, на котором рассматривается равносильность уравнений, как правило, не задается искусственно (как в последнем слу­чае), а чаще всего таким множеством является ОДЗ исходного уравнения. Договоримся, что далее

все равносильные преобразования уравнений (а также неравенств и си­стем уравнений и неравенств) мы будем выполнять на ОДЗ исходного урав­нения (неравенства или системы). Отметим, что в том случае, когда ОДЗ за­данного уравнения является множество всех действительных чисел, мы не всегда будем ее записывать (как не записывали ОДЗ при решении линейных или квадратных уравнений). И в других случаях главное — не записать ОДЗ в решение уравнения, а реально учесть ее при выполнении равносильных преобразований данного уравнения.

Для выполнения равносильных преобразований попробуем выделить общие ориентиры, аналогичные соответствующим ориентирам получения уравнений-следствий.

По определению равносильности уравнений необходимо гарантировать, чтобы каждый корень первого уравнения был корнем второго и наоборот — каждый корень второго уравнения был корнем первого. Для первой части этого требования мы уже выделили общий ориентир: достаточно гарантиро­вать сохранение правильности равенства при переходе от первого уравнения ко второму (с. 49).

Но тогда, чтобы выполнить вторую часть этого требования, достаточно второе уравнение рассмотреть как верное равенство (то есть взять такое значение переменной, которое является корнем второго уравнения) и га­рантировать, что при переходе к первому верное равенство сохраняется (этот корень остается и корнем первого уравнения). Фактически из опреде­ления равносильности уравнений получаем, что каждое из равносильных уравнений является следствием другого уравнения). Таким образом, при

Например, чтобы решить с помощью равносильных преобразований урав-

——- = 0, достаточно учесть его ОДЗ: х + 1 Ф 0 и условие равенства

дроби нулю (дробь равна нулю тогда и только тогда, когда числитель дроби равен нулю, а знаменатель не равен нулю). Также следует обратить внима­ние на то, что на ОДЗ все необходимые преобразования можно выполнить как в прямом, так и в обратном направлениях с сохранением правильности равенства.

Запись решения в этом случае может быть такой:

= 0. ► ОДЗ: х + 1 Ф 0. Тогда х 2 —1 = 0. Отсюда х = 1 (удовлетворяет

Получим х 2 — 6х = 0, х1 = 0, х2 = 6

к уравнению, ОДЗ которого шире, чем ОДЗ заданного уравнения;

Приведение обе­их частей урав­нения к обще­му знаменателю (при сокращении знаменателя)

4 + 7 = 4 x + 2 x + 3 x 2 + 5x + 6 Умножим обе части уравнения на общий знаменатель всех дробей (х + 2)(х + 3).

Возведение обеих частей иррацио­нального уравне­ния в квадрат

yj2x +1 =Vx. 2х + 1 = х,

б) выполне­ние преоб­разований, при которых происходит неявное умно­жение на нуль;

Умножение обеих частей уравнения на выражение с пере­менной

х 2 + х + 1 = 0. Умножим обе части уравнения на х —1.

(х — 1)(х 2 + х + 1) = 0. Получим х 3 — 1 = 0, х = 1

Как получить правильное (или полное) решение

Пример правильного (или полного) решения

при решении уравнения

х1 = 0 не является корнем заданного уравнения

Выполнить про­верку подстановкой корней в заданное уравнение

► х 2 — 6х = 0, х1 = 0, х2 = 6. Проверка показывает, что х1 = 0 — посторонний корень, х2 = 6 — корень.

Ответ: 6. x + 2 x + 3 x 2 + 5x + 6

Явное или неяв­ное сужение ОДЗ заданного урав­нения, в частно­сти выполнение преобразований, в ходе которых происходит не­явное деление на нуль

1. Деление обеих ча­стей уравнения на выражение с пе­ременной

Поделив обе части уравнения на х, получим

2. Сложение, вычи­тание, умноже­ние или деление обеих частей уравнения на выражение, ОДЗ которого уже, чем ОДЗ задан­ного уравнения

Если к обеим частям уравнения прибавить \[x, то получим уравнение

x 2 + yfx = 1 + yfx, у которого только один корень х = 1

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *