Что значит равнобокая трапеция
Равнобедренная трапеция: формула, признаки, свойства, характеристика
Содержание:
В геометрии существуют десятки многоугольников с собственными названиями, характеристиками, свойствами. Одним из интереснейших четырёхугольников считается трапеция, имеющая одинаковые боковые стороны. Рассмотрим, что собой представляет равнобедренная трапеция, её особенности, свойства, признаки. Научимся проводить её расчёты: площадь, среднюю линию, радиусы описанной окружности.
Определение
Под описание подпадает и параллелограмм с одинаковыми диагоналями. В отличие от него у рассматриваемого 4-угольника боковые стороны не являются параллельными.
Иногда прямоугольник с квадратом причисляют к частным случаям равнобедренных трапеций, хотя под определение попадают частично.
Встречаются четырёхугольники, называемые трёхсторонними или триравнобедренными – верхняя сторона равная по длине боковым. Их получают посредством сечения четырёх последовательных вершин многоугольника минимум с пятью сторонами.
Основаниями четырёхугольника называют параллельные стороны, непараллельные – боковыми. Перпендикуляр, проводимый между параллельными сторонами, зовётся высотой геометрической фигуры; отрезок, что соединяет центры боковых сторон, именуют средней линией. Последняя разделяет геометрическую фигуру на две подобные.
Свойства равнобедренной трапеции
К свойствам диагоналей равнобедренной трапеции относятся:
Диагонали относятся как:
.
Получается: равнобокая трапеция – это равнодиагональный четырёхугольник.
Известно, что углы при основаниях любой равнобедренной трапеции обладают интересными свойствами:
Исходя из описанных свойств, существует множество способов расчёта рассматриваемого четырёхугольника.
Формулы равнобедренной трапеции
Площадь равняется одной второй произведения высоты геометрической фигуры на полусумму длин оснований.
Если высота неизвестна, но есть боковые стороны – c, прибегают к формуле Брахмагупты:
, здесь:
s – половина периметра 4-угольника:
Выражение напоминает упрощённую, благодаря равности боковых сторон, формулу Герона.
Радиус описанной окружности лежит на оси симметрии, вычисляется по формуле:
Диагонали вычисляются по указанной ниже формуле.
где:
Перпендикуляр OF, проведённый из точки, где пересекаются диагонали, к нижнему основанию, вычисляется по формуле:
.
Задача
Дана трапеция: AB = CD, AG = GB = DH = HC. Доказать, что GH || AD.
Исходя из условий задачи, перед нами равнобедренная трапеция, где GH – средняя линия. Докажем это. По теореме Фалеса отрезок GH делит AB с CD пополам, о чём сказано в условии, значит GH || BC || AD.
Равнобедренная трапеция. Формулы, признаки и свойства равнобедренной трапеции
Признаки равнобедренной трапеции
∠ABC = ∠BCD и ∠BAD = ∠ADC
∠ABD = ∠ACD, ∠DBC = ∠ACB, ∠CAD = ∠ADB, ∠BAC = ∠BDC
∠ABC + ∠ADC = 180° и ∠BAD + ∠BCD = 180°
Основные свойства равнобедренной трапеции
∠ABC + ∠BAD = 180° и ∠ADC + ∠BCD = 180°
AC 2 + BD 2 = AB 2 + CD 2 + 2BC · AD
Стороны равнобедренной трапеции
Формулы длин сторон равнобедренной трапеции:
a = b + 2 h ctg α = b + 2 c cos α
3. Формулы длины основ через площадь, высоту и другую основу:
a = | 2S | — b b = | 2S | — a |
h | h |
4. Формулы длины боковой стороны через площадь, среднюю линию и угол при основе:
с = | S |
m sin α |
5. Формулы длины боковой стороны через площадь, основания и угол при основе:
с = | 2S |
( a + b ) sin α |
Средняя линия равнобедренной трапеции
Формулы длины средней линии равнобедренной трапеции:
2. Формула средней линии трапеции через площадь и сторону:
m = | S |
c sin α |
Высота равнобедренной трапеции
Формулы определения длины высоты равнобедренной трапеции:
Диагонали равнобедренной трапеции
Формулы длины диагоналей равнобедренной трапеции:
4. Формула длины диагонали через высоту и основания:
d 1 = | 1 | √ 4 h 2 + ( a + b ) 2 |
2 |
Площадь равнобедренной трапеции
Формулы площади равнобедренной трапеции:
2. Формула площади через стороны и угол:
3. Формула площади через радиус вписанной окружности и угол между основой и боковой стороной:
S = | 4 r 2 | = | 4 r 2 |
sin α | sin β |
4. Формула площади через основания и угол между основой и боковой стороной:
S = | ab | = | ab |
sin α | sin β |
5. Формула площади ранобедренной трапеции в которую можно вписать окружность:
S = ( a + b ) · r = √ ab ·c = √ ab ·m
6. Формула площади через диагонали и угол между ними:
S = | d 1 2 | · sin γ | = | d 1 2 | · sin δ |
2 | 2 |
7. Формула площади через среднюю линию, боковую сторону и угол при основании:
S = mc sin α = mc sin β
Окружность описанная вокруг трапеции
Формула определения радиуса описанной вокруг трапеции окружности:
1. Формула радиуса через стороны и диагональ:
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Свойства равнобедренной (равнобокой) трапеции
В данной публикации мы рассмотрим определение и основные свойства равнобедренной трапеции.
Напомним, трапеция называется равнобедренной (или равнобокой), если ее боковые стороны равны, т.е. AB = CD.
Свойство 1
Углы при любом из оснований равнобедренной трапеции равны.
Свойство 2
Сумма противоположных углов трапеции равняется 180°.
Для рисунка выше: α + β = 180°.
Свойство 3
Диагонали равнобедренной трапеции имеют одинаковую длину.
Свойство 4
Высота равнобедренной трапеции BE, опущенная на основание большей длины AD, делит его на два отрезка: первый равняется половине суммы оснований, второй – половине их разности.
Свойство 5
Отрезок MN, соединяющий середины оснований равнобокой трапеции, перпендикулярен этим основаниям.
Прямая, проходящая через середины оснований равнобедренной трапеции, называется ее осью симметрии.
Свойство 6
Вокруг любой равнобедренной трапеции можно описать окружность.
Свойство 7
Если сумма оснований равнобокой трапеции равно удвоенной длине ее боковой стороны, в нее можно вписать окружность.
Радиус такой окружности равняется половине высоты трапеции, т.е. R = h/2.
Примечание: остальные свойства, которые применимы ко всем видам трапеций, приведены в нашей публикации – “Что такое трапеция: определение, виды, свойства”.
Равнобедренная трапеция, её ещё называют равнобокой, имеет равные боковые стороны. Кроме этого, у нее в арсенале есть еще множество интересных и полезных свойств, которые можно с легкостью применять на практике или при решении математических задач.
Определение, признаки и элементы трапеции
Трапецией в геометрии принято называть любой четырехугольник, у которого есть две параллельные друг другу стороны, при том что продолжения других двух сторон пересекаются.
Определение же равнобедренной трапеции идет от того, что у нее боковые стороны эквиваленты по длине.
Свойства равнобедренной трапеции
Существует всего несколько основных свойств, присущих именно данной фигуре. Сейчас мы рассмотрим каждое из них:
Периметр равнобедренной трапеции
Эту величину найти очень просто. Простейшей формулой будет сложение всех ее сторон. Однако иногда составители задач не дают нам информацию обо всех из сторон.
В таком случае нам следует в первую очередь найти все стороны фигуры, а затем уже приступать к их сложению.
Как найти стороны трапеции?
Существует множество различных способов решения данной задачи, однако мы предложим только некоторые из них.
В первую очередь можно найти стороны с помощью средней линии:
Есть альтернатива, если вам известны высота и угол при большем основании:
Средняя линия
Средней линией в трапеции называется параллельный основаниям отрезок, который делит боковые стороны фигуры на равные части.
У нее есть множество интересных свойств и теорем с нетрудным доказательством, таких как, например, решение задач на подобие, однако мы на них останавливаться не будем.
Высота трапеции
Высотой трапеции называется самый короткий по длине отрезок, который продолжается ровно от одного основания до другого. Он выполняет своеобразную вспомогательную роль в задачах вплоть до 10 класса с неизвестными сторонами и в тех задачах, где нужно дополнить фигуру до прямоугольника, например.
Для нахождения длины этого отрезка нам необходимо знать оба основания (a и b), а также боковую сторону c. Также полезно было бы знать угол при большем основании α. Формулы здесь довольно простые и не нуждаются в доказательстве.
Диагональ трапеции
Эта линия просто идет от одного угла трапеции к другому, причем эти углы противоположны. В равнобедренной трапеции довольно приятным фактом является то, что диагонали в ней равны друг другу.
А каким образом можно найти длину диагонали? Есть один очень простой способ. Мы можем сделать это, зная все три величины: боковую сторону и каждое из оснований:
Площадь равнобедренной трапеции
Самой простой формулой является полусумма оснований, умноженная на высоту. Она подходит к любым трапециям.
Для второй формулы нужно знать все стороны трапеции. Это по сути усложненная версия первой, но подойдет она в том случае, если вы не знаете высоту.
Это самые базовые формулы, поэтому очень часто используются в различных задачах.
Вписанная и описанные окружности
Интересно, что вписать в трапецию окружность можно только при определенном условии. И это условие выполняется, если мы попарно сложим противоположные стороны нашего четырехугольника, и эти суммы окажутся равны.
Найти радиус этой окружности не составит труда. Нужно просто разделить высоту пополам.
А вот с описанной окружностью все не так гладко. Есть различные полезные формулы. Например, если диагональ составляет с основанием прямой угол, то диаметр описанной окружности будет равен противоположному основанию трапеции.
Теперь разберемся с формулой нахождения радиуса. К слову, она здесь не очень простая. Сначала найдем p — полупериметр ∆DBC, а затем просто применим его в следующей формуле:
Математика бесспорно является матерью всех современных наук. Она по праву занимает свой престол и управляет абсолютно всеми мировыми законами.
Одной из наиболее интересных подразделений математики принято считать именно геометрию. Ее фигуры также подчиняются математическим правилам и формулам, поэтому она необходима при различных сложных расчетах.
Трапеция. Определение, виды, свойства
Определения
Определение 1. Трапецией называется четырехугольник, у которого две стороны параллельны а две другие − нет.
На Рис.1 четырехугольники ABCD и EFGH являются трапециями.
Параллельные стороны трапеции называются основаниями трапеции, а непараллельные стороны − боковыми сторонами (Рис.2).
В трапеции ABCD (Рис.1) углы A и B называют углами при основании AB, а углы C и D называют углами при основании CD.
Определение 2. Высотой трапеции называется перпендикуляр, отпущенный из любой точки прямой, проходящей через один из оснований трапеции, на прямую, проходящую через другое основание.
На Рис.3 отрезки DM, ON, QP являются вершинами трапеции ABCD. Поскольку величина каждой из этих отрезков является расстоянием между параллельными прямыми, проходящими через основания трапеции, то они равны друг другу.
Определение 3. Средней линией трапеции называется отрезок, соединяющий средние точки боковых сторон.
На рисунке Рис.4 \( \small MN \) является средней линией трапеции \( \small ABCD, \) причем \( \small AM=MD,\;\; BN=NC. \)
Виды трапеций
Если боковые стороны трапеции равны, то трапеция называется равнобокой или равнобедренной (Рис.5).
Трапеция называется прямоугольной, если одна из боковых сторон перпендикуляна основаниям трапеции (Рис.6).
Трапеция называется разносторонней, если длина всех сторон разные (т.е. если трапеция не прямоульная и не равнобедренная)(Рис.7).
Свойства трапеции
Свойство 1. Средняя линия трапеции параллельна основаниям и равна половине их суммы.
Доказательство. Пусть MN средняя линия трапеции ABCD (Рис.8). Докажем, что \( \small MN || AB, \) \( \small MN=\frac12 (AB+CD). \)
Проведем прямую DN и обозначим точку ее пересечения с прямой AB точкой P. Так как MN является средней линией трапеции ABCD, то
Углы 3 и 4 являются накрест лежащими, при рассмотрении параллельных прямых BP и CD пересеченные секущей CB, тогда (теорема 1 статьи Теоремы об углах, образованных двумя параллельными прямыми и секущей).
Исходя из равенств (1),(2) и (3) получим, что треугольники CND и NPC равны, по второму признаку равенства треугольников. Тогда BP = DC, DN = NP. Из равенств AM = MD и DN = NP следует, что MN является средней линией треугольника ADP. Тогда \( \small MN \ || \ AP \) ( или \( \small MN \ || \ AB \)) и \( \small MN =\frac 12 AP \). Но \( \small AP=AB +BP=AB+CD \). Тогда \( \small MN =\frac 12 (AB+CD).\)
Свойство 2. Сумма углов трапеции, прилежащих к одной боковой стороне равна 180°.
Доказательство. Рассмотрим трапецию ABCD (Рис.9).
Углы A и D являутся односторонними углами, при рассмотрении параллельных прямых AB и CD пересеченные секущей AD (теорема 3 статьи Теоремы об углах, образованных двумя параллельными прямыми и секущей). Тогда \( \small \angle A+ \angle D=180°.\)
Свойство 3. Отрезок, слединяющий середины диагоналей трапеции лежит на средней линии трапеции и равен половине разности оснований.
Доказательство. Рассмотрим трапецию ABCD (Рис.10).
Поскольку точки P и Q являются средними точками диагоналей AC и BD, соответственно, то:
MP − является средней линией треугольника ADC, так как , . Тогда
QN − является средней линией треугольника BCD, так как , Тогда
Из и следует, что P находится на прямой, проходящей через среднюю линию MN, поскольку из точки M можно провести только одну прямую, параллельно CD (Аксиома 1 статьи Аксиома параллельных прямых).
Аналогично, из и следует, что Q находится на прямой, проходящей через среднюю линию MN, поскольку из точки N можно провести только одну прямую, параллельно CD.
Далее, учитывая (4) и (5), получим:
Далее, учитывая свойство 1, получим:
Свойства равнобокой (равнобедренной) трапеции
Свойсво 1′. В равнобокой трапеции углы при каждом основании равны.
Доказательство. Рассмотрим равнобедренную (равнобокую) трапецию ABCD, где AD = BC (Рис.11).
Проведем высоты DM и CN. Поскольку DM = CN и AD = BC, то прямоугольники ADM и NCB равны гипотенузе и катету (см. статью Прямоугольный треугольник. Свойства, признаки равенства). Тогда \( \small \angle A=\angle B. \) Докажем, далее, что \( \small \angle ADC=\angle DCB. \) \( \small \angle A +\angle ADC=180° \) поскольку углы A и ADC являются односторонними углами, при рассмотрении параллельных прямых AB и CD пересеченные секущей AD (теорема 3 статьи Теоремы об углах, образованных двумя параллельными прямыми и секущей). Аналогично \( \small \angle B +\angle DCB=180°. \) Учитывая, что \( \small \angle A=\angle B \), получим \( \small \angle ADC=\angle DCB. \)
Свойсво 2′. В равнобокой трапеции диагонали равны.
Доказательство. Рассмотрим треугольники ADC и DCB (Рис.12). Имеем CD общая сторона для обеих треугольников, AD = CB, \( \small \angle ADC=\angle DCB. \) Тогда треугольники равны по двум сторонам и углу между ними. Следовательно диагонали AC и DB трапеции ABCD равны.
Свойсво 3′. В равнобокой трапеции высота, приведенная из вершины тупого угла на основание, делит основание трапеции на отрезки, больший из которых равен половине суммы оснований, а меньший равен половине разности оснований.
Доказательство. Рассмотрим четырехугольник DMNC (Рис.11). Имеем:
Тогда четырехугольник DMNC является прямоугольником. Следовательно DC = MN. Поскольку треугольники ADM и NCB равны (см. доказательство следствия 1), то AM = NB. Следовательно: