Что значит растворение осадка

Образование и растворение осадков

Осадок малорастворимого электролита образуется только тогда, когда ионное произведение (ИП) превысит при данной температуре величину его произведения растворимости.

Если ИП ПР – р-р пересыщенный;

ИП Что значит растворение осадкаПР↓ – условие образования осадков.

Образование и растворение осадков находится в определенной зависимости от произведения растворимости. Чем меньше ПР для однотипных электролитов, тем быстрее и полнее образуется осадок.

Необходимо учитывать возможность образования пересыщенных растворов. Внесение затравки, потирание стенок сосуда стеклянной палочкой ускоряют выделение осадка.

Процесс растворения осадка противоположен процессу его образования. Для растворения осадка необходимо сместить равновесие в системе осадок Û насыщенный раствор. Этого можно достигнуть несколькими путями:

· добавление свежих порций растворителя, что делает раствор над осадком ненасыщенным и для восстановления равновесия часть осадка должна раствориться;

· выведение ионов из насыщенного раствора связыванием их в более прочные соединения. Это могут быть слабые электролиты, достаточно устойчивые комплексные ионы, осадки с меньшей растворимостью, чем исходный;

· переведение ионов осадка в соединения, разлагающиеся с выделением газа;

· изменение степени окисления ионов осадка, окисление или восстановление их в другие соединения, что также вызывает смещение равновесия в сторону растворения, т.к. ионы из раствора выводятся.

Растворение осадка разбавлением можно осуществлять двумя способами: одноразовым введением достаточного объема растворителя или последовательно добавлять и сливать с осадка свежие дробные порции растворителя. Второй способ дает больший эффект и обычно рекомендуется в аналитической практике. Но подходит он больше для растворения среднерастворимых соединений; так как при растворении малорастворимого электролита образуется большой объем очень разбавленного раствора, что затрудняет анализ. Таким способом промывают малорастворимые осадки от соосажденных примесей в качественном и, особенно, в количественном анализе.

Чем прочнее удается связать ионы в растворе над осадком, тем быстрее идет процесс растворения. Поэтому, чем меньше константа ионизации образующегося слабого электролита, чем меньше константа нестойкости комплексного иона и чем меньше растворимость образующегося соединения, тем легче и полнее протекает процесс растворения осадка. Проиллюстрировать приведенные способы можно следующими схемами уравнений реакций происходящих процессов: малорастворимые основания Mg(OH)2, Fe(OH)3, Al(OH)3, Mn(OH)2, Fe(OH)2, Cr(OH)3 и др. хорошо растворяются в растворах кислот, т.к. при этом ионы водорода связывают гидроксид-ионы в слабый электролит – Н2О:

Малорастворимые кислоты растворяются в растворах щелочей, процесс также идет за счет образования слабого электролита – Н2О:

Кислые соли некоторых слабых кислот растворяются не только в сильных кислотах, но и в щелочах:

Малорастворимые соли слабых кислот растворяются в сильных кислотах с образованием слабого электролита – кислоты:

Соли сильных кислот, нерастворимые в сильных кислотах, растворяются в соединениях, образующих с ионами осадка комплексные соли:

Такие соли сильных кислот, как BaSO4, CaSO4, PbSO4, SrSO4, нерастворимые в сильных кислотах и щелочах, переводят в другие малорастворимые соединения, которые, в свою очередь, растворяются в кислотах:

В этом случае, образующийся осадок AgCl затем растворяют в растворе аммиака (см. гл. VI, §5).

Сравнительно легко идет процесс растворения, если в результате реакции образующийся продукт выделяется в виде газа:

Исключение составляют малорастворимые соли слабых кислот с очень малой величиной произведения растворимости. Того ничтожно малого количества ионов, которое содержится в насыщенном растворе над осадком, недостаточно для образования слабой кислоты.

но нельзя таким образом осадить сульфиды ZnS, SnS, CdS, NiS, MnS из кислых растворов, т.к. эти соединения растворяются в кислотах.

Произведение растворимости и растворимость некоторых сульфидов

Для растворения малорастворимых сульфидов Ag, Hg, Pb, Bi, Cu, As, Sb применяют обычно окислители:

В качестве окислителя может использоваться азотная кислота:

Очень сильным окислителем является «царская водка». Рассмотрим далее детально процесс растворения сульфида ртути в «царской водке»:

3HgS↓ + 2HNO3 + 6HCl = 3HgCl2 + 3S↓ + 2NO↑ + 4H2O

Малорастворимые оксиды Al2O3, Cr2O3, Fe2O3 и др. сплавляют с гидросульфатом натрия NaHSO4, калия KHSO4 или с пиросульфатом калия K2S2O7 при t ≈ 700 o C. Остывший плав растворяют в горячей воде. Для ускорения процесса добавляют несколько капель соляной или серной кислоты.

Для растворения оксида кремния – SiO2 и силикатов, не разлагаемых кислотами, пользуются методом сплавления их с Na2CO3. Полученный плав растворяют в соляной или фтороводородной кислоте.

Источник

Растворимости. Условия образования и растворения осадков.

Что значит растворение осадка Что значит растворение осадка Что значит растворение осадка Что значит растворение осадка

Что значит растворение осадка

Что значит растворение осадка

Растворение труднорастворимого электролита (ТРЭ) в количестве растворителя происходит до состояния насыщения.В насыщенном растворе электролит находится в динамическом равновесии с твердой фазой. Растворимость электролита определяет концентрацию ионов в насыщенном растворе электролита, значит его электропроводность. Чем меньше растворимость ТРЭ, тем он слабее.

При растворении электролита, например, соли, в раствор переходят не молекулы, а ионы. В этом случае в насыщенном растворе равновесие устанавливается между ионами соли в кристаллической фазе и ионами, перешедшими в раствор: СаСО3 кр ↔ Ca 2+ р-р + СО3 2- р-р.

Константа равновесия этого процесса:

Любой раствор может быть насыщенным, ненасыщенным и перенасыщенным.

Насыщенным называют раствор, в котором скорость реакции растворения равна скорости реакции осаждения.

Концентрация насыщенного раствора для данного вещества при данной температуре есть величина постоянная, следовательно, в насыщенном растворе концентрации ионов данного электролита являются константами.

Перенасыщенными называют растворы, которые содержат осадок.

Насыщенные растворы трудно растворимых электролитов характеризуется величиной, называемой произведением растворимости.

Добавление в раствор одноимённых ионов труднорастворимого электролита способствует выпадению в осадок иона противоположного знака

[Pb 2+ ] Что значит растворение осадка.

Условием образования осадка является превышение произведения концентраций ионов (ПК) малорастворимого электролита над его произведением растворимости, т.е.ПК > ПР.

Источник

Растворение осадков

В ходе анализа необходимо не только получить осадок, осадив определяемый компонент в виде малорастворимого соединения, но и вновь растворить его. Для растворения осадков необходимо, чтобы произведение концентраций ПК осадка стало меньше произведения растворимости ПК

Но ведь OH-ионы можно также связывать путем введения в растворе ионов аммония, причем образунтся сравнительно мало диссоциированное соединение – гидроксид аммония:

Т.е. гидроксид магния растворяется в солях аммония. Однако NH4OH ионизирован гораздо сильнее, чем вода. Поэтому не происходит такого сильного понижения концентрации гидроксильных ионов в растворе, как при добавлении кислоты. Следовательно, растворяющее действие солей аммония значительно слабее действия кислот. В солях аммония растворяются только некоторые, наиболее растворимые основания. Наоборот, Mg(OH)2, Mn(OH)2. Fe(OH)3, Cr(OH)3, Al(OH)3 не растворяются в солях аммония и в уксусной кислоте, а растворяются в сильных минеральных кислотах. Т.е. чем меньше константа диссоциации образующегося электролита, тем легче протекает растворение осадка.

Малорастворимые кислые соли растворяются и в кислотах, и в щелочах. Например, калий обнаруживают в растворах реакцией с гидротартратом натрия. Происходит реакция и выпадает белый кристаллический осадок:

Осадок выпадает только в нейтральной или слабощелочной среде (рН 4 –7) при достаточно большой концентрации K + в растворе. И в щелочной, и в кислой среде осадок растворяется:

ZnS↓ + H + ó Zn 2+ + HS –

3. Протекание реакций комплексообразования.

В то же время менее растворимые галогениды серебра AgBr и AgI аммиак не растворяет.

Свежеосажденный фторид кальция не растворим в кислотах, но растворим в солях алюминия вследствие образования прочных фторидных комплексов:

Фторид кальция растворим также в ЭДТА вследствие образования комплексоната кальция:

CaF2↓ + H2Y 2 – ó [CaY] 2 – + 2H + + 2F –

4. Протекание реакций окисления-восстановления.

Сульфиды 4й группы не растворяются в соляной кислоте, но растворяются в кислоте-окислителе – азотной кислоте:

5. Комбинированное растворение.

Когда осадок не растворяется ни в одном из приведенных случаев, применяют комбинированное растворение, в котором сочетают несколько факторов, способствующих растворению – окисление-восстановление, образование малодиссоциирующих соединений и др.

Например, HgS не растворим в кислотах, но хорошо растворяется в смеси KI + HCl;

6. Превращение одних малорастворимых соединений в другие.

При осаждении сульфатов катионов 3й аналитической группы возникают трудности с растворением осадка, т.к. сульфат бария не растворим в кислотах. Для решения этой проблемы сульфаты бария, стронция и кальция вначале переводят в карбонаты обработкой насыщенным раствором карбоната натрия:

Карбонаты легко растворяются в кислотах. Константа равновесия этой реакции

Что значит растворение осадка

Домножим и разделим это выражение на одну и ту же величину – равновесную концентрацию ионов бария

Что значит растворение осадка

Из значения константы равновесия следует, что обработку карбонатом натрия следует проводить несколько раз при кипячении, удаляя каждый раз надосадочную жидкость. Это позволит сдвинуть равновесие реакции вправо.

1. Пилипенко А.Т., Пятницкий И.В. Аналитическая химия. В 2-х книгах. – М.: Химия, 1990. – Кн.1.– С. 158-188.

2. Пономарев В.Д. Аналитическая химия. В 2-х частях. – М.: Высшая школа, 1982. – Ч.1. – С. 109-124.

3. Харитонов Ю.Я. Аналитическая химия. Аналитика. В 2-х книгах. – М.: Высшая школа, 2001. – Кн.1. – С. 84-101.

4. Основы аналитической химии. В 2-х книгах / Под ред. Ю.А.Золотова. – М.: Высш.шк., 2004. – Кн.1. – С. 188-204.

5. Васильев В.П. Аналитическая химия. В 2-х книгах. – М.: Дрофа, 2002. – Кн.1. – С. 252-274.

6. Алексеев В.Н. Курс качественного химического полумикроанализа. – М.:Химия, 1973. – С. 148-184.

Дата добавления: 2017-03-12 ; просмотров: 3904 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Химическая реакция растворения

Растворение — что это за процесс

Растворы — однородные (гомогенные) системы, в состав которых входят: растворенные вещества, растворитель и (возможно) продукты химической реакции, протекающей между ними.

Особенностью растворенного вещества является равномерное распределение в объеме вещества, которое играет роль растворителя. Для раствора характерно содержание двух и более компонентов.

Растворитель представляет собой вещество, сохраняющее стабильность агрегатного состояния в процессе растворения.

Когда смешивают вещества с идентичными агрегатными состояниями, к примеру, жидкость с жидкостью, газ с газом, твердый материал с твердым, роль растворителя играет компонент с большим содержанием. Процесс, при котором образуется раствор, определяется особенностью взаимодействия частиц растворителя с частицами растворенного вещества и их природой.

Растворение является физико-химическим процессом, в котором можно наблюдать взаимодействие частиц между собой, что приводит к образованию раствора.

Растворение представляет собой результат взаимодействия молекул вещества, играющего роль растворителя, с частицами растворенного вещества. При растворении твердых веществ наблюдают увеличение энтропии. В процессе растворения газообразных веществ энтропия уменьшается. Растворение сопровождается исчезновением межфазной границы, изменением физических свойств раствора, в том числе плотности, вязкости, в некоторых случаях, окраски.

Когда растворитель и растворенное вещество участвуют в химическом взаимодействии, можно наблюдать изменение химических свойств раствора. В качестве примера можно привести растворение газа хлороводорода в воде, результатом которого является образование жидкой соляной кислоты.

Теплота растворения зависит от природы компонентов раствора.

Например: если растворяются кристаллические вещества с растворимостью, увеличивающейся при повышении температуры, то раствор охлаждается. Это объясняется тем, что раствор обладает большей внутренней энергией по сравнению с аналогичными характеристиками кристаллического вещества и растворителя, взятых по отдельности. Как пример, можно рассмотреть кипяток, в котором происходит растворение сахара. В результате раствор значительно охлаждается.

Основные этапы: физическая и химическая стадия

Этапы растворения кристаллических веществ в водной среде:

Классификация растворов в зависимости от механизма растворения:

Физическим растворением называют процесс разрыва и образования лишь межмолекулярных связей, в том числе, водородных.

Физическое растворение можно наблюдать только в случае определенных веществ, выполняющих роль растворителя и растворенного вещества, не вступающих в химические реакции между собой. К примеру, нафталин растворяется в спирте.

Химическое растворение является видом растворения, которое предполагает разрушение исходных химических связей в процессе химического превращения.

Например: химическое растворение протекает при электрической диссоциации растворяемого вещества.

При растворении имеет место следующая закономерность: подобное хорошо растворяется в подобном. Так, в неполярных растворителях хорошо растворяются неполярные вещества. Полярными растворителями целесообразно растворять полярные вещества. Благодаря исследованиям механизмов растворения, природы растворяемых веществ и растворителей, определяют степень растворимости одного вещества в другом.

Признаки химического взаимодействия при растворении

Физические признаки растворения выражаются в виде диффузии. Процесс заключается в распределении частиц растворенного вещества между молекулами вещества, которое является растворителем. В результате «качества» растворенного вещества проявляются в растворе.

Признаками химических явлений являются:

Когда концентрированная серная кислота растворяется в водной среде, температура раствора значительно повышается. Данное явление нашло практическое применение в «химических грелках».

Процесс растворения нитрата аммония в воде сопровождается сильным поглощением теплоты, что объясняет охлаждение раствора. На данном эффекте основан принцип действия гипотермического пакета, который входит в состав автомобильной аптечки для оказания первой медицинской помощи.

Безводный сульфат меди (II) обладает белой окраской. Когда вещество растворяют в воде, раствор окрашивается в голубой цвет.

В современной науке имеет место теория, объединяющая две точки зрения. Ее называют физико-химической теорией растворов. Предпосылки к данной теории были сформулированы еще в 1906 году Д.И. Менделеевым в учебнике «Основы химии».

Факторы растворимости веществ

Растворимость представляет собой свойство вещества растворяться в каком-либо растворителе.

Мера растворимости при заданных условиях определена содержанием данного вещества в насыщенном растворе. Существует условная классификация веществ в зависимости от их способности растворяться:

Когда вещество контактирует с водной средой, можно получить следующий результат:

Коэффициент растворимости определяется, как отношение массы растворенного вещества к массе растворителя (к примеру, 10 г соли на 100 г воды).

В зависимости от того, какой концентрацией обладает растворенное вещество, растворы условно разделяют на:

Ненасыщенные растворы — это те, в которых концентрация растворенного вещества меньше по сравнению с концентрацией в соответствующем насыщенном растворе. Особенность ненасыщенного раствора заключается в возможности при заданных условиях растворить в нем еще определенное количество растворенного вещества.

Насыщенные растворы представляют собой растворы с максимальной концентрацией растворенного вещества при заданных условиях.

В некоторых случаях нет необходимости создавать специальные условия для приготовления насыщенного раствора. Эксперимент можно поставить в домашних условиях.

При смешивании поваренной соли с водой образуется раствор. Когда смесь становится насыщенной, поваренная соль перестает растворяться в воде, так как достигнута ее максимальная концентрация.

Перенасыщенным раствором называют такой раствор, в котором растворенное вещество находится в концентрации, превышающей его концентрацию в насыщенном растворе.

Излишки растворенного вещества достаточно просто выпадают в виде осадка. Для получения перенасыщенного раствора можно, к примеру, охладить насыщенный раствор, компонентами которого являются поваренная соль и вода. В том случае, когда температура снижается, уменьшается растворимость поваренной соли. В результате получают перенасыщенный раствор.

В зависимости от концентрации растворенного вещества растворы бывают:

Концентрированные растворы являются растворами, для которых характерно относительно высокое содержание растворенного вещества.

Разбавленные растворы представляют собой растворы, в которых растворенное вещество характеризуется относительно низким содержанием.

Подобная классификация является условной и не зависит от деления раствора по насыщенности. Разбавленный раствор может являться насыщенным. Концентрированный раствор не во всех случаях можно отнести к насыщенным растворам.

где m р.в. определяет массу растворенного вещества, г;

m р-ля является массой растворителя, г.

Растворимость некоторых веществ в воде при температуре 20 °C:

Растворимость веществ зависит от нескольких факторов:

Абсолютно нерастворимых веществ не существует. Все вещества лишь условно классифицируют на растворимые, малорастворимые и нерастворимые. Даже такие материалы, как серебро и золото, частично растворяются в воде. С другой стороны, растворимость этих металлов столь мала, что ей допустимо пренебречь.

Растворимость, которой характеризуются твердые вещества, определяется структурой этих веществ, то есть типом кристаллической решетки. К примеру, вещества с металлическими кристаллическими решетками, в том числе железо и медь, отличаются малой растворимостью в воде. Вещества, для которых характерна ионная кристаллическая решетка, обычно хорошо растворяются в воде.

Подобное хорошо растворяется в подобном.

Согласно озвученному правилу, вещества, обладающие связями ионного или ковалентного полярного типа, хорошо растворяются в полярных растворителях. В качестве примера можно привести соли, которые характеризуются хорошей растворимостью в воде. С другой стороны, неполярные вещества в распространенных случаях способны хорошо растворяться в неполярных растворителях.

В большинстве своем соли щелочных металлов и аммония хорошо растворяются в водной среде. Высокой степенью растворимости характеризуются практически все нитраты, нитриты, многие галогениды, за исключением галогенидов серебра, ртути, свинца, таллия, и сульфаты, кроме сульфатов щелочноземельных металлов, серебра и свинца. Сульфиды, фосфаты, карбонаты, некоторые другие соли переходных металлов обладают небольшими показателями растворимости.

Растворимость газообразных веществ в жидких средах определяется их природой. К примеру, в 100 объемах воды при температуре 20 °C можно растворить 2 объема водорода, 3 объема кислорода. При аналогичных условиях в 1 доле воды можно растворить 700 объемов аммиака.

Процесс растворения газообразных веществ в воде, как результат гидратации молекул растворяемого газа, протекает с выделением теплоты. В связи с этим, когда температура повышается, растворимость газообразных веществ снижается.

Температурный режим неодинаково влияет на способность твердых веществ растворяться в воде. В распространенных случаях можно наблюдать повышение растворимости при нагреве твердых веществ.

Растворимость твердых и жидких веществ в жидких средах почти не меняется при перепадах давления. Это связано с незначительным изменением объема в процессе растворения. Когда в жидкости растворяют газы, объем системы уменьшается. В связи с этим, при повышении давления увеличивается растворимость газообразных веществ. Общий вид зависимости растворимости газов от давления описан законом У. Генри (Англия, 1803 г.).

Закон У. Генри: растворимость газа при стабильной температуре прямо пропорциональна его давлению над жидкостью.

Рассмотренная закономерность справедлива для небольших давлений в случае газообразных веществ со сравнительно небольшой растворимостью и при условии отсутствия химического взаимодействия между молекулами растворяемого газа и растворителя.

В том случае, когда вода содержит примеси других веществ, например, соли, кислоты и щелочи, газы хуже растворяются в такой среде. Газообразный хлор характеризуется растворимостью в насыщенном водном растворе поваренной соли, которая в 10 раз меньше по сравнению с аналогичным показателем в чистой воде.

Эффект, предполагающий снижение растворимости в присутствии солей, называют высаливанием. Ухудшение свойств растворимости связано с гидратацией солей, которая является причиной уменьшения количества свободных молекул воды. Молекулы воды, образовавшие связи с ионами электролита, не являются растворителем для каких-либо веществ.

Примеры растворения твердых веществ в воде

Данные о растворимости веществ необходимы для решения многих задач по химии, связанных с записью уравнений реакций. Таблица растворимости содержит информацию о зарядах веществ, которую используют для корректной записи реагентов и схем химического взаимодействия. По растворимости в воде определяют способность соли или основания диссоциировать.

Водные соединения, проводящие ток, являются сильными электролитами. Существует и другой тип веществ, которые отличаются тем, что плохо проводят ток. Такие соединения являются слабыми электролитами. Сильные электролиты представляет собой вещества, практически полностью ионизирующиеся в воде. В отличие от них, слабые электролиты проявляют это свойство лишь в малой степени.

Существует несколько видов уравнений:

Краткие ионные уравнения являются сокращенным вариантом полных ионных уравнений. В полном уравнении принято записывать все ионы из которых состоят реагенты и продукты реакции.

В виде отдельных ионов можно записывать только сильные электролиты.

Затем, сократив одинаковые ионы, присутствующие в обоих частях химического уравнения, получают уравнение в кратком виде.

В молекулярных уравнениях все, без исключения, вещества записаны в молекулярном виде.

Источник

Условия растворения осадков

В насыщенном растворе гетерогенной системы

1) связыванием этих ионов в другой, менее растворимый осадок;

2) связыванием ионов металлов в комплексное соединение;

3) связыванием аниона в малодиссоциированную кислоту;

4) окислением или восстановлением катиона или аниона. Рассмотрим подробно каждый из этих методов.

CaSO4 Что значит растворение осадкаCa 2+ + SO 2- 4

Наблюдаются два гетерогенных однотипных конкуриру­ющих равновесия. Конкуренцию за общий ион SO 2- 4 «выигрывает» тот ион (в нашем случае Sr 2+ ), который образует малорастворимый электролит с меньшим значением Ks.

Сравнение значений констант растворимости Ks имеет смысл только в том случае, если рассматриваемые электролиты дают при диссоциации одинаковое число ионов. Например: a) AgI, AgCl, CaSO4, BaSO4; 6) Ag2CrO4, РbСl2, Pbl2, Ag2CO3; в) Ca3(PO4)2, Ba3(PO4)2, Mg3(PO4)2.

При рассмотрении конкурирующих однотипных гетерогенных равновесий с участием разнотипных электролитов (например, Са3(РО4)2 и CaSO4) математический аппарат значительно усложняется.

2. Связывание ионов металла малорастворимого сильного электролита в комплексное соединение. Присутствие веществ, способных образовывать с ионами, входящими в состав осадка, прочные комплексные соединения, значительно изменяет условия образования осадка. Чем прочнее комплексное соединение (чем меньше константа нестойкости), тем больше равновесие будет сдвинуто в сторону образования комплекса и растворения осадка.

В качестве примера рассмотрим систему из двух разнотипных равновесий:

При пропускании аммиака через насыщенный раствор AgCl (первое гетерогенное равновесие) образуется комплексный ион [Ag(NH3)2] + и возникает новое, уже гомогенное равновесие, обусловленное диссоциацией ком­плексного иона [Ag(NH3)2] + (второе равновесие).

В результате образования комплексного иона активность ионов серебра в растворе уменьшится, что вызовет растворение осадка хлорида серебра AgCl. По мере добавления новых порций аммиака данный осадок можно полностью растворить.

В общем виде процесс растворения осадка с образованием комплексного соединения можно выразить схемой:

Что значит растворение осадка

3. Связывание аниона в малодиссоциированную кислоту. Растворимость труднорастворимых солей, образованных анионами слабых кислот (СО 2- 3, РО 3- 4, С2О 2- 4 ), зависит от значения рН раствора, что объясняется конкуренцией за анион между катионами металла и протонами.

Что значит растворение осадка

Эту конкуренцию за анионы, например карбонат-ион СО 2- 3, можно представить следующей схемой:

Что значит растворение осадка

Вначале раствор, соприкасающийся с осадком карбоната кальция СаСО3, является насыщенным относительно этого осадка. Это означает, что произведение концентраций ионов С(Са 2+ ) • С(СО 2- 3) равно константе растворимости карбоната кальция Ks(CaCO3). При приливании хлороводородной кислоты ионы водорода начинают связывать карбонат-ионы СО 2- 3 в молекулы угольной кислоты, которая в конечном итоге распадается на СO2 и Н2О. В растворе уменьшается концентрация карбонат-ионов и гетерогенное равновесие 1 сместится в сторону образования новых ионов кальция и карбонат-ионов, т.е. часть осадка переходит в раствор. Возникает новое, уже гомогенное равновесие 2. При добавлении определенного количества кислоты, т.е. при определенном значении рН, может произойти полное растворение осадка карбоната кальция.

Что значит растворение осадка

В некоторых случаях растворимость определяется соотношением констант растворимости Кs соединений высшей и низшей степени окисления. Например, Hg2Cl2 растворяется под действием пероксида водорода Н2О2, так как растворимость хлорида ртути HgCl2 значительно выше.

Дата добавления: 2014-11-13 ; просмотров: 68 ; Нарушение авторских прав

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *