Что значит расщепление источника тока
Для чего на линиях электропередач сверхвысокого напряжения расщепляют фазу
А вы знаете по какой причине на линиях сверхвысокого напряжения (СВН) применяют не один провод в фазе, а сразу два, четыре и даже сразу восемь проводников? Сейчас я все подробно расскажу.
Что такое СВН линии
Но для лучшего понимания вкратце расскажу, что такое СВН. К линиям сверхвысокого напряжения причисляют такие высоковольтные линии, класс напряжения оных равен: 330 кВ, 500 кВ, 750 кВ и 1150 кВ.
Линии такого напряжения также называют системообразующими, так как с помощью них происходит объединение всей энергетической системы нашей страны. Кроме этого, по таким линиям также выполняется энергосвязь с системами других стран.
Предназначение таких линий заключено в передаче больших мощностей с минимальными потерями. Из всего вышесказанного следует, что поломка одной подобной линии окажется довольно чувствительным ударом для всей энергосистемы страны.
Внешний вид линии сверхвысокого напряжения
Именно по этой причине к надежности подобных линий предъявляются достаточно строгие требования. И одним из необычных конструктивных решений, которое призвано предоставить максимально возможную надежность и решить целый комплекс серьезных проблем – это разделение одного фазного проводника на несколько отдельных.
Для чего вообще расщепляют фазу
Конструктивно расщепленная фаза – это конструкция из нескольких проводников, которые закреплены таким образом, что каждый из проводов является вершиной правильного многоугольника.
Чтобы определить, на сколько проводов нужно разделить фазу, выполняется целый комплекс расчетов. Конечно, уже давно все рассчитано, и чтобы не писать здесь кучу страшных формул, скажу, что фазы СВН в зависимости от напряжения расщепляют следующим образом:
Зачем вообще нужно расщепление
Итак, за счет расщепления фазы на несколько проводников решаются следующие задачи:
А сейчас давайте поговорим о причинах более подробно
Итак, уже ясно, что данные линии нужны для перетока огромной мощности. Так расчетная токовая нагрузка на линию 500 кВ лежит в пределах 1000-1200 А, для СВН 750 кВ уже в пределах 200-2500 А, а для самой мощной линии в 1150кВ токовая нагрузка может достигать 5000 А.
Ну а теперь на минутку вообразите, какое должно быть сечение у провода, чтобы выдержать такие огромные токи.
Согласно ему, ток будет протекать по внешнему радиусу проводника и получается, что центральная часть окажется просто не задействована.
Кроме этого, из-за повышенного напряжения вокруг такого единичного проводника будет сформировано электрическое поле высокой мощности, и это станет причиной появления коронных разрядов на проводнике.
Причем разряд имеет также прямо пропорциональную зависимость от диаметра фазного проводника.
Но, как оказалось, если расположить провода одной фазы в вершинах правильного многоугольника, то полученную таким нехитрым способом систему вполне допустимо представить как единый проводник.
Кроме этого, чем больше показатель напряженности, при котором зарождается коронный разряд, тем ниже потери на корону.
Безусловно, во время проведения подсчетов учитывается огромное количество факторов и именно по этой причине СВН уникальны в своем виде и так кардинально отличаются от привычных для многих линий 6/10/34/110/220 кВ.
Статья оказалась для вас полезной и интересной? Тогда подпишитесь на канал и оцените его. Спасибо за ваше внимание!
Идеализированные активные элементы
Содержание:
Идеализированные активные элементы:
Идеальный источник напряжения
Идеальные источники тока и напряжения представляют собой идеализированные источники энергии. Они обладают способностью отдавать энергию подключенным к ним участкам электрической цепи, другими словами, потребляемая ими энергия может быть отрицательной. Таким образом, идеальные источники тока и напряжения относятся к идеализированным активным элементам.
Идеальный источник напряжения (источник напряжения, источник э. д. с. ) представляет собой идеализированный активный элемент, напряжение на зажимах которого не зависит от протекающего через него тока. Напряжение и на зажимах источника напряжения равно электродвижущей силе е (t) и может быть произвольной функцией времени. В частном случае е (t) = Е_ может не зависеть от времени. Источник такого типа называется источником постоянного напряжения (источником постоянной э. д. с.). Условное графическое обозначение источника напряжения приведено на рис. 1.12, а. Стрелка внутри кружка на рисунке указывает направление э. д. с. Для источников постоянного напряжения она направлена от зажима с меньшим потенциалом к зажиму с более высоким потенциалом, в то время как напряжение на внешних зажимах источника направлено от зажима с более высоким потенциалом к зажиму с меньшим потенциалом.
Внешней характеристикой любого источника электрической энергии называется зависимость напряжения на его зажимах 01 тока источника. Внешняя характеристика источника постоянного напряжения является прямой линией, параллельной оси токов (Рис. 1.12, б).
Если подключить к зажимам источника э. д. с. сопротивление нагрузки
С уменьшением ток нагрузки и выделяемая в ней мощность неограниченно возрастают. Вследствие этого источник напряжения иногда называют источником бесконечной мощности.
Идеальный источник тока
Идеальный источник тока (источник тока) — это идеализированный активный элемент, ток которого не зависит от напряжения на его зажимах. Ток источника i=j(t) может быть произвольной функцией времени, в частном случае он может не зависеть от времени i(t) = J_ (источник постоянного тока). Внешняя характеристика источника постоянного тока показана на рис. 1.14, б.
Условное графическое обозначение источника тока приведено на рис. 1.14, а. Двойная стрелка на рисунке показывает направление тока внутри источника. У источников постоянного тока это направление совпадает с направлением перемещения положительных зарядов внутри источника, т. е. с направлением от зажима с меньшим потенциалом к зажиму с большим потенциалом.
Ток источника тока и напряжение источника напряжения являются параметрами идеализированных активных элементов подобно тому, как сопротивление, емкость и индуктивность являются параметрами одноименных идеализированных пассивных элементов.
Если подключить к внешним выводам источника тока сопротивление нагрузки (рис. 1.15), то согласно (1.9), (1.11) напряжение на сопротивлении нагрузки и выделяемая в нагрузке мощность будут равны соответственно:
С увеличением напряжение на нагрузке и выделяемая в ней мощность неограниченно увеличиваются, поэтому источник тока, так же как и источник напряжения, является источником бесконечной мощности).
Зависимость тока источника тока от напряжения имеет такой же вид, как и зависимость напряжения источника напряжения от тока, поэтому эти источники являются дуальными элементами.
Схемы замещения реальных источников
Идеализированные источники тока и напряжения можно рассматривать как упрощенные модели реальных источников энергии. При определенных условиях, в достаточно узком диапазоне токов и напряжений, внешние характеристики ряда реальных источников энергии могут приближаться к характеристикам идеализированных активных элементов. Так, внешняя характеристика гальванического элемента в области малых токов имеет вид, близкий к внешней характеристике источника напряжения (см. рис. 1.12,6), а внешняя характеристика выходного каскада на транзисторе в определенном диапазоне напряжений приближается к внешней характеристике источника тока (см рис. 1.14,6).
В то же время свойства реальных источников энергии значительно отличаются от свойств идеализированных активных элементов. Реальные источники энергии обладают конечной мощностью; их внешняя характеристика, как правило, не параллельна оси токов или оси напряжений, а пересекает эти оси в двух характерных точках, соответствующих режимам холостого хода и короткого замыкания (иногда в источниках энергии применяют специальные виды защиты, исключающие работу в предельных режимах или в одном из них).
С достаточной для практики точностью внешние характеристики большинства реальных источников энергии могут быть приближенно представлены прямой линией, пересекающей оси токов и напряжений в точках 1 и 2 (рис. 1.16, а):
соответствующих режимам холостого хода и короткого замыкания источника. Источники, имеющие линейную внешнюю характеристику, в дальнейшем будем называть линеаризованными источниками энергии (реальными).
Покажем, что линеаризованный источник энергии может быть представлен моделирующей цепью, состоящей из идеализированного источника напряжения Е и внутреннего сопротивления или идеализированного источника тока J и внутренней проводимости Действительно, уравнение прямой, проходящей через две точки с координатами имеет вид
Подставляя (1.28), (1.29) в (1.30) и представляя напряжение u как функцию тока i, находим аналитическое выражение для внешней характеристики линеаризованного источника
В соответствии с (1.31) напряжение линеаризованного источника состоит из двух составляющих. Первая их имеет размерность напряжения и не зависит от тока, протекающего через источник. Ее можно интерпретировать как напряжение некоторого идеального источника напряжения с э. д. с. Вторая составляющая напряжения источника прямо пропорциональна току. Ее можно рассматривать как падение напряжения на некотором сопротивлении через которое протекает ток источника i (это сопротивление в дальнейшем будем называть внутренним сопротивлением источника). Итак, уравнению (1.31) может быть поставлена в соответствие схема замещения линеаризованного источника, изображенная на рис. 1.16,б. Такая схема замещения получила название
последовательной. Можно убедиться, что зависимость напряжения на зажимах этой цепи от тока определяется уравнением
равносильным уравнению (1.31) и, следовательно, внешняя характеристика цепи имеет вид, показанный на рис. 1.16, а.
Из анализа выражения (1.32) видно, что с уменьшением внутреннего сопротивления источника внешняя характеристика линеаризованного источника приближается к внешней характеристике идеального источника напряжения (рис. 1.17, а). При = 0 источник с линейной внешней характеристикой вырождается в идеальный источник напряжения. Таким образом, идеальный источник напряжения можно рассматривать как источник энергии, внутреннее сопротивление которого равно нулю.
Рассмотрим другую схему замещения линеаризованного источника, в которой содержится идеальный источник тока. Для этого, используя (1.31), выразим ток i как функцию напряжения на зажимах источника:
Как видно из выражения (1.33), ток линеаризованного источника состоит из двух составляющих. Первая не зависит от напряжения на зажимах источника. Ее можно рассматривать как ток некоторого идеального источника тока Вторая составляющая тока и прямо пропорциональна напряжению на зажимах источника, поэтому ее можно интерпретировать как ток, текущий через некоторую (внутреннюю) проводимость к которой приложено напряжение u. Итак, выражению (1.33) можно поставить в соответствие схему замещения, изображенную на рис. 1.16, в. Такая схема замещения называется параллельной.
Зависимость между током и напряжением на зажимах соответствующей моделирующей цепи определяется уравнением, равносильным уравнению (1.33):
Из уравнения (1.34) видно, что с уменьшением внутренней проводимости источника внешняя характеристика линеаризованного источника приближается к внешней характеристике идеального источника тока (рис. 1.17, б). В пределе, при = 0, линеаризованный источник энергии вырождается в идеальный источник тока. Таким образом, идеальный источник тока можно рассматривать как источник энергии с бесконечно малой внутренней проводимостью (бесконечно большим внутренним сопротивлением).
Обе рассмотренные схемы замещения линеаризованного источника были получены из одного уравнения (1.30), имеют одну и ту же внешнюю характеристику и, следовательно, их поведение относительно внешних зажимов совершенно одинаково. Выбор той или иной схемы замещения может быть сделан совершенно произвольно, однако в процессе исследования цепи может возникнуть необходимость перехода от одной схемы к другой. Используя выражения (1.31)—(1.34), можно найти формулы перехода от последовательной схемы замещения к параллельной
и от параллельной схемы к последовательной
Необходимо обратить внимание на то, что переход от одной схемы замещения к другой возможен только для источников, внутреннее сопротивление которых имеет конечное значение
Соотношения для взаимного преобразования схем замещения источников энергии (1.35) и (1.36) применимы для источников постоянного тока и напряжения. Аналогичные соотношения могут быть получены и для источников, в которых напряжение u и ток i являются произвольными функциями времени.
Анализируя выражения (1 32), (1.34), можно установить, что цепь, составленная из источника напряжения с последовательно включенным сопротивлением и цепь, представляющая собой параллельное соединение источника тока и проводимости являются дуальными.
Управляемые источники тока и напряжения
Идеальные источники тока и напряжения могут быть либо неуправляемыми (независимыми) либо управляемыми (зависимыми). Неуправляемый источник представляет собой идеализированный элемент с одной парой выводов, параметр которого (ток или напряжение) не зависит ни от каких других гоков или напряжений, действующих в цепи. Управляемый источник тока или напряжения — это идеализированный активный элемент, параметр которого является определенной функцией тока или напряжения некоторого участка цепи. В общем случае управляемый источник — это идеализированный элемент с двумя парами выводов. К одной паре выводов (выводы источника) присоединяют идеализированный источник, параметр которого является заданной функцией напряжения или тока другой пары выводов (управляющие выводы). Как и для неуправляемых
источников, внутреннее сопротивление управляемого источника напряжения равно нулю, а внутреннее сопротивление управляемого источника тока равно бесконечности.
Различают четыре типа управляемых источников:
В теории цепей к управляемым источникам относят только те, параметр которых зависит от действующих в цепи токов и напряжений. Источники, параметр которых зависит от какой-либо неэлектрической величины, не связанной с токами или напряжениями рассматриваемой цепи, относят к неуправляемым.
Вид функциональной зависимости между током или напряжением управляемого источника и управляющим воздействием в принципе может быть произвольным, однако в теории цепей и во всех ее приложениях наибольшее распространение получили линейно управляемые источники, параметр которых у прямо пропорций^ лен управляющему воздействию х:
Коэффициент пропорциональности между параметром источника е или j и внешним воздействием называется коэффициентом управления В зависимости от типа источника этот коэффициент может иметь размерность сопротивления (источник напряжения, управляемый током), проводимости (источник тока, управляемый напряжением) или быть безразмерной величиной (источник напряжения,
управляемый напряжением, и источник тока, управляемый током). Если управляющее воздействие линейно управляемого источника равно нулю, то параметр источника также будет равен нулю. Таким образом, линейно управляемые источники не могут отдавать энергию в отсутствие управляющего воздействия.
Управляемые источники тока и напряжения широко используют при построении эквивалентных схем различных электровакуумных и полупроводниковых приборов (рис. 1.19).
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.