Что значит прямое измерение

27.2. Виды измерений

Измерения различают по способу получения информации, по характеру изменений измеряемой величины в процессе измерений, по количеству измерительной информации, по отношению к основным единицам.

По способу получения информации измерения разделяют на прямые, косвенные, совокупные и совместные.

Прямые измерения — это непосредственное сравнение физической величины с ее мерой. Например, при определении длины предмета линейкой происходит сравнение искомой величины (количественного выражения значения длины) с мерой, т.е. линейкой.

Косвенные измерения отличаются от прямых тем, что искомое значение величины устанавливают по результатам прямых измерений таких величин, которые связаны с искомой определенной зависимостью, Так, если измерить силу тока амперметром, а напряжение вольтметром, то по известной функциональной взаимосвязи всех трех названных величин можно рассчитать мощность электрической цепи.

Совокупные измерения сопряжены с решением системы уравнений, составляемых по результатам одновременных измерений нескольких однородных величин. Решение системы уравнений дает возможность вычислить искомую величину.

Совместные измерения — это измерения двух или более неоднородных физических величин для определения зависимости между ними.

Совокупные и совместные измерения часто применяют в измерениях различных параметров и характеристик в области электротехники.

По характеру изменения измеряемой величины в процессе измерений бывают статистические, динамические и статические измерения.

Статистические измерения связаны с определением характеристик случайных процессов, звуковых сигналов, уровня шумов и т.д.

Статические измерения имеют место тогда, когда измеряемая величина практически постоянна.

Динамические измерения связаны с такими величинами, которые в процессе измерений претерпевают те или иные изменения.

Статические и динамические измерения в идеальном виде на практике редки.

По количеству измерительной информации различают однократные и многократные измерения.

Однократные измерения — это одно измерение одной величины, т.е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда сопряжено с большими погрешностями, поэтому следует проводить не менее трех однократных измерений и находить конечный результат как среднее арифметическое значение.

Многократные измерения характеризуются превышением числа измерений количества измеряемых величин. Обычно минимальное число измерений в данном случае больше трех. Преимущество многократных измерений — в значительном снижении влияний случайных факторов на погрешность измерения.

По отношению к основным единицам измерения делят на абсолютные и относительные.

Абсолютными измерениями называют такие, при которых используются прямое измерение одной (иногда нескольких) основной величины и физическая константа. Так, в известной формуле Эйнштейна Е=тс 2 масса (m) — основная физическая величина, которая может быть измерена прямым путем (взвешиванием), а скорость света (c) — физическая константа.

Относительные измерения базируются на установлении отношения измеряемой величины к однородной, применяемой в качестве единицы. Естественно, что искомое значение зависит от используемой единицы измерений.

С измерениями связаны такие понятия, как «шкала измерений», «принцип измерений», «метод измерений».

Шкала измерений — это упорядоченная совокупность значений физической величины, которая служит основой для ее измерения. Поясним это понятие на примере температурных шкал.

В шкале Цельсия за начало отсчета принята температура таяния льда, а в качестве основного интервала (опорной точки) — температура кипения воды. Одна сотая часть этого интервала является единицей температуры (градус Цельсия). В температурной шкале Фаренгейта за начало отсчета принята температура таяния смеси льда и нашатырного спирта (либо поваренной соли), а в качестве опорной точки взята нормальная температура тела здорового человека. За единицу температуры (градус Фаренгейта) принята одна девяносто шестая часть основного интервала. По этой шкале температура таяния льда равна + 32°F, а температура кипения воды + 212°F. Таким образом, если по шкале Цельсия разность между температурой кипения воды и таяния льда составляет 100°С, то по Фаренгейту она равна 180°F. На этом примере мы видим роль принятой шкалы как в количественном значении измеряемой величины, так и в аспекте обеспечения единства измерений. В данном случае требуется находить отношение размеров единиц, чтобы можно было сравнить результаты измерений, т.е. t o F/t°C.

В метрологической практике известны несколько разновидностей шкал: шкала наименований, шкала порядка, шкала интервалов, шкала отношений и др.

Шкала наименований — это своего рода качественная, а не количественная шкала, она не содержит нуля и единиц измерений. Примером может служить атлас цветов (шкала цветов). Процесс измерения заключается в визуальном сравнении окрашенного предмета с образцами цветов (эталонными образцами атласа

цветов). Поскольку каждый цвет имеет немало вариантов, такое сравнение под силу опытному эксперту, который обладает не только практическим опытом, но и соответствующими особыми характеристиками зрительных возможностей

Шкала порядка характеризует значение измеряемой величины в баллах (шкала землетрясений, силы ветра, твердости физических тел и т.п.).

Шкала интервалов (разностей) имеет условные нулевые значения, а интервалы устанавливаются по согласованию. Такими шкалами являются шкала времени, шкала длины.

Шкала отношений имеет естественное нулевое значение, а единица измерений устанавливается по согласованию. Например, шкала массы (обычно мы говорим «веса»), начинаясь от нуля, может быть градуирована по-разному в зависимости от требуемой точности взвешивания. Сравните бытовые и аналитические весы.

Источник

Классификация и основные характеристики измерений

Классификация измерений:

1. По признаку точности — равноточные и неравноточные измерения.

Равноточные измеренияопределенное количество измерений любой величины, произведенных аналогичными по точности средствами измерений в одинаковых условиях.

Неравноточные измеренияопределенное количество измерений любой величины, произведенных отличными по точности средствами измерений и (или) в различных условиях.

Методы обработки равноточных и неравноточных измерений несколько отличаются. Поэтому перед тем как начать обработку ряда измерений, обязательно нужно проверить, равноточные измерения или нет.

Это осуществляется с помощью статистической процедуры проверки по критерию согласия Фишера.

2. По числу измерений — однократные и многократные измерения.

Однократное измерениеизмерение, произведенное один раз.

Многократное измерениеизмерение одного размера величины, результат этого измерения получают из нескольких последующих однократных измерений (отсчетов).

Во многих случаях, особенно в быту, производятся чаще всего однократные измерения. Как пример, измерение времени по часам как правило делают однократно. Однако при некоторых измерениях для убеждения в правильности результата однократного измерения может быть недостаточно. Поэтому часто и в быту рекомендуется проводить не одно, а несколько измерений. Например, ввиду нестабильности артериального давления человека при его контроле целесообразно проводить два или три измерения и за результат принимать их медиану. От многократных измерений двукратные и трехкратные измерения отличаются тем, что их точность не имеет смысла оценивать статистическими методами.

3. По характеру изменения измеряемой величины — статические и динамические измерения.

Динамическое измерениеизмерение величины, размер которой изменяется с течением времени. Быстрое изменение размера измеряемой величины требует ее измерения с точнейшим определением момента времени. Например, измерение расстояния до уровня поверхности Земли с воздушного шара или измерение постоянного напряжения электрического тока. По существу динамическое измерение является измерением функциональной зависимости измеряемой величины от времени.

Статическое измерениеизмерение величины, которая принимается в соответствии с поставленной измерительной задачей за неизменяющуюся на протяжении периода измерения. Например, измерение линейного размера изготовленного изделия при нормальной температуре можно считать статическим, поскольку колебания температуры в цехе на уровне десятых долей градуса вносят погрешность измерений не более 10 мкм/м, несущественную по сравнению с погрешностью изготовления детали. Поэтому в этой измерительной задаче можно считать измеряемую величину неизменной. При калибровке штриховой меры длины на государственном первичном эталоне термостатирование обеспечивает стабильность поддержания температуры на уровне 0,005 °С. Такие колебания температуры обусловливают в тысячу раз меньшую погрешность измерений — не более 0,01 мкм/м. Но в данной измерительной задаче она является существенной, и учет изменений температуры в процессе измерений становится условием обеспечения требуемой точности измерений. Поэтому эти измерения следует проводить по методике динамических измерений.

4. По цели измерения — технические и метрологические измерения.

Технические измеренияизмерения с целью получения информациио свойствах материальных объектов, процессов и явлений окружающего мира.

Их производят, как пример, для контроля и управления экспериментальными разработками, контроля технологических параметров продукции или всевозможных производственных процессов, управления транспортными потоками, в медицине при постановке диагноза и лечении, контроля состояния экологии и др.

Технические измерения проводят, как правило, при помощи рабочих средств измерений. Однако нередко к проведению особо точных и ответственных уникальных измерительных экспериментов привлекают эталоны.

Метрологические измеренияизмерения для реализации единства и необходимой точности технических измерений.

• воспроизведение единиц и шкал физических величин первичными эталонами и передачу их размеров менее точным эталонам;

• калибровку средств измерений;

• измерения, производимые при калибровке или поверке средств измерений;

• другие измерения, выполняемые с этой целью (например, измерения при взаимных сличениях эталонов одинакового уровня точности) или удовлетворения других внутренних потребностей метрологии (например, измерения с целью уточнения фундаментальных физических констант и справочных стандартных сведений о свойствах материалов и веществ, измерения для подтверждения заявленных измерительных возможностей лабораторий).

Метрологические измерения проводят при помощи эталонов.

Очевидно, что продукция, предназначенная для потребления (промышленностью, сельским хозяйством, армией, государственными органами управления, населением и др.) создается с участием технических измерений. А система метрологических измерений — это инфраструктура системы технических измерений, необходимая для того, чтобы последняя могла существовать, развиваться и совершенствоваться.

5. По используемым размерам единиц — абсолютные и относительные измерения.

Относительное измерениеизмерение отношения величины к одноименной величине, занимающее место единицы. Например, относительным измерением является определение активности радионуклида в источнике методом измерения ее отношения к активности радионуклида в ином источнике, аттестованном как эталонная мера величины.

Противоположным понятием является абсолютное измерение.

При проведении этого измерения в распоряжении экспериментатора не имеется единицы измеряемой величины. По этому приходится ее воспроизводить непосредственно в процессе измерений.

Это возможно двумя способами:

• получать «непосредственно из природного мира», т.е. воспроизводить его на основе использования физических законов и фундаментальных физических констант (такое измерение в международном словаре метрологических терминов VIM [11] называется фундаментальным измерением);

• воспроизводить единицу на основании известной зависимости между нею и единицами других величин.

И связи с этим можно определить абсолютное измерение следующим образом:

Как пример, измерение силы с помощью динамометра будет относительным измерением, а ее измерение путем использования физической константы g (ускорение всемирного тяготения) и мер массы (основной величины SI) — абсолютным.

Внедрение и метрологическое обеспечение относительных измерений, как правило, являются наилучшим решением многих измерительных задач, поскольку они являются более простыми, точными и надежными, чем абсолютные измерения.

Абсолютные измерения в том смысле, которому больше соответствует понятие «фундаментальное измерение», на практике должны применяться в виде исключения. Их сфера применения — независимое воспроизведение основных единиц SI и открытие новых физических закономерностей.

6. По способу получения результата измерений — совокупные, совместные, косвенные и прямые измерения.

Прямое измерениеэто измерение, проведенное при помощи средства измерений, хранящего единицу или шкалу измеряемой величины. Как пример, измерение длины изделия штангенциркулем, электрического напряжения вольтметром и т.п.

Косвенное измерениеизмерение, когда значение величины определяют на основании результатов прямых величин, функционально связанных с искомой.

Совокупные измерения — когда проводят измерения одновременно нескольких однородных величин, когда значения этих величин находят путем решения системы уравнений, получаемых при измерениях различных сочетаний этих величин.

Классический пример совокупных измерений — калибровка набора гирь по одной эталонной гире, проводимая путем измерений различных сочетаний гирь этого набора,и решения полученных уравнений.

Совместные измерения — проводимые одновременно измерения двух или нескольких разнородных величин для определения зависимости между ними.

Другими словами, совместные измерения — это измерения зависимостей между величинами.

Примером совместных измерений является измерение температурного коэффициента линейного расширения (ТКЛР). Оно проводится путем одновременных измерений изменения температуры образца испытываемого материала и соответствующего приращения его длины и последующей математической обработки полученных результатов измерений.

Следует также различать область, вид и подвид измерений.

Под областью измерений понимают совокупность измерений физических величин, свойственных какой-то области техники или науки и имеющих свою специфику.

В настоящее время выделяют следующие области измерений:

• измерения пространственно-временных величин;

• механические измерения (в том числе измерения кинематических и динамических величин, механических свойств материалов и веществ, механических свойств и форм поверхностей);

• измерения теплоты (термометрия, измерения тепловой энергии, теплофизических свойств веществ и материалов);

• электрические и магнитные измерения (измерения электрических и магнитных полей, параметров электрических цепей, характеристик электромагнитных волн, электрических и магнитных свойств веществ и материалов);

• аналитические (физико-химические) измерения;

• оптические измерения (измерения величин физической оптики, когерентной и нелинейной оптики, оптических свойств веществ и материалов);

• акустические измерения (измерения величин физической акустики и акустических свойств веществ и материалов);

• измерения в атомной и ядерной физике (измерения ионизирующих излучений и радиоактивности, а также свойств атомов и молекул).

Вид измерений — это часть области измерений, которая имеет свои специфические особенности и которая отличается однородностью измеряемых величин.

Например, в области магнитных и электрических измерений возможно выделить измерения электрического сопротивления, электрического напряжения, ЭДС, магнитной индукции и т.д.

Подвид измерений — это часть вида измерений, которая выделяется спецификой измерений однородной величины (по диапазону, размеру величин, условиям измерений и др.).

Например, в измерениях длины выделяют измерения как больших длин (десятки, сотни и тысячи километров), так и малых и сверхмалых длин.

Источник

Метрология. Прямые и косвенные измерения.

Метрологией называется наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Измерением называется нахождение значения физической величины опытным путем с помощью специальных технических средств. Результатом измерения является количественная характеристика физической величины в виде числа единиц измеряемой величины и погрешность, с которой получено данное число.

Виды измерений. В зависимости от способа получения числового значения измеряемой величины измерения делятся на прямые, косвенные и совокупные измерения.

Прямыми называются измерения, при которых искомое значение величины получают из опытных данных. При прямых измерениях экспериментальные операции производятся над самой измеряемой величиной. Числовое значение измеряемой величины получают в экспериментальном сравнении с мерой или по показаниям приборов. Например, измерение тока амперметром, напряжения вольтметром, температуры термометром, массы на весах.

Косвенными называют такие измерения, при которых числовое значение измеряемой величины определяется по известной функциональной зависимости через другие величины, которые можно прямо измерить. При косвенных измерениях числовое значение измеряемой величины получают с участием оператора на основе прямых измерений – решением одного уравнения. К косвенным измерениям прибегают в тех случаях, когда неудобно или невозможно осуществить автоматическое вычисление известной зависимости между одной или несколькими входными величинами и измеряемой величиной. Например, мощность в цепях постоянного тока определяет оператор, умножая напряжение на ток, измеренные прямым измерением с помощью амперметра и вольтметра.

Отклонение результата измерения от истинного значения измеряемой величины называют погрешностью измерения.

Абсолютная погрешность измерения равна разности между результатом измерения Что значит прямое измерениеи истинным значением измеряемой величины Что значит прямое измерение: Что значит прямое измерение.

Относительная погрешность измерения Что значит прямое измерениепредставляет собой отношение абсолютной погрешности измерения Что значит прямое измерениек истинному значению измеряемой величины. Обычно относительная погрешность выражается в процентах Что значит прямое измерение%.

25. Основные понятия и определения: информация, алгоритм, программа, команда, данные, технические устройства.

Информация — от латинского слова «information», что означает сведения, разъяснения, изложение.

Применительно к компьютерной обработке данных под информацией понимают некоторую последовательность символических обозначений (букв, цифр, закодированных графических образов и звуков и т.п.), несущую смысловую нагрузку и представленную в понятном компьютеру виде. Каждый новый символ в такой последовательности символов увеличивает информационный объём сообщения.

Алгоритм — последовательность чётко определенных действий, выполнение которых ведёт к решению задачи. Алгоритм, записанный на языке машины, есть программа решения задачи.

Свойства алгоритмов: дискретность, понятность, результативность, определенность, массовость.

Программа — последовательность действий, инструкций, предписаний для некоторого вычислительного устройства; файл, содержащий эту последовательность действий.

Команда — это указание компьютерной программе действовать как некий интерпретатор для решения задачи. В более общем случае, команда — это указание некоему интерфейсу командной строки.

Технические устройства (средства информатизации) – это совокупность систем, машин, приборов, механизмов, устройств и прочих видов оборудования, предназначенных для автоматизации различных технологических процессов информатики, причем таких, выходным продуктом которых является именно информация (сведения, знания) или данные, используемые для удовлетворения информационных потребностей в разных областях предметной деятельности общества.

Все технические средства информатизации в зависимости от выполняемых функций можно разделить на шесть групп : устройства ввода информации, устройства вывода информации, устройства обработки информации, устройства передачи и приема информации, устройства хранения информации, многофункциональные устройства.

Источник

Метрология

Методы и средства измерений физических величин

Как и чем производят измерения?

Прямые измерения

Косвенные измерения

Прямые измерения более просты и сразу приводят к результату измерения, поэтому они имеют преимущественное распространение в машиностроении.
Однако в ряде случаев прямые измерения не могут быть осуществлены, например, при измерении штангенциркулем расстояния между осями отверстий, при измерениях на КИМ, при измерении валов большого диаметров и др.
Прямые измерения иногда уступают по точности косвенным измерениям, как это имеет место при измерении углов угломерами, погрешности которых в десятки раз превышают погрешности синусных линеек.
Косвенные измерения широко применяют при координатных измерениях, потому что результат измерения всегда получают расчетом по определенным при измерении координатам двух или нескольких точек.

Абсолютный метод измерения

При абсолютном методе весь измеряемый размер определяется непосредственно по показаниям прибора. В настоящее время большинство приборов и инструментов измеряют абсолютным методом – штангенинструмент, микрометры, широкодиапазонные индикаторы и преобразователи, высотомеры, КИМ, угловые энкодеры и др.

Относительный метод измерения

Относительный (сравнительный) метод измерения дает только отклонение размера от установочной меры или образца, по которым прибор был установлен на ноль. Определение размера в этом случае производится алгебраическим суммированием размера установочной меры и показаний прибора при измерении.

Приборы для относительных измерений требуют дополнительной затраты времени для предварительной настройки прибора по установочной мере, что существенно снижает производительность измерений при небольших партиях проверяемых деталей. Снижение производительности становится несущественным, если после настройки прибором производят большое число измерений.
Приборы для относительных измерений в ряде случаев позволяют получить более высокую точность, а при измерении больших партий деталей и более высокую производительность контроля, благодаря удобству отсчета отклонений размера по шкале прибора.

Относительный метод измерения применяется на контрольных приспособлениях и автоматах, в приборах активного контроля.

Комплексный метод измерения

Комплексный метод измерения заключается в сопоставлении действительного контура проверяемого объекта с его предельными контурами, определяемыми величинами и расположением полей допусков отдельных элементов этого объекта.
Что значит прямое измерениеКомплексный метод измерения обеспечивает проверку накопленных погрешностей взаимосвязанных элементов объекта, ограниченных суммарным допуском. Этот метод измерения является наиболее надежным с точки зрения обеспечения взаимозаменяемости и обычно осуществляется проходными калибрами, сконструированными по принципу подобия.
Примером комплексного метода измерения может служить проверка резьбы гайки проходной резьбовой пробкой.

Дифференцированный метод измерения

Дифференцированный метод измерения сводится к независимой проверке каждого элемента отдельно. Этот метод не может непосредственно гарантировать взаимозаменяемости изделий.
Например, при дифференцированной проверке среднего диаметра, шага и половины угла профиля резьбы необходимо дополнительно подсчитать приведенный средний диаметр резьбы, включающий отклонения перечисленных выше элементов резьбы, и убедиться, что он находится в заданных пределах.

При проверке изделий предельными калибрами обычно сочетаются комплексные и дифференцированные методы измерений.
Каждый из перечисленных выше методов измерения может осуществляться контактным или бесконтактны м способом.

Контактный метод измерения

Контактный метод измерения осуществляется путем непосредственного соприкосновения измерительных поверхностей (наконечников) прибора или инструмента с поверхностью контролируемого объекта.

Бесконтактный метод измерения

Измерительные средства

Измерительные средства, применяемые в металлообрабатывающей промышленности, можно разделить на три основные группы:

Мерами называются средства измерения, служащие для воспроизведения одного или нескольких известных значений данной величины.

Что значит прямое измерение

Калибрами называются меры, служащие для проверки правильности размеров, форм и взаимного расположения частей изделия.
Калибры долгое время являлись одними из наиболее распространенных измерительных средств, но с повышением точности металлообработки, распространением станков с ЧПУ, появлением индикаторов, электронных приборов и инструментов с цифровым отсчетом и КИМ применение калибров существенно снизилось.

Универсальные инструменты и приборы служат для определения значений измеряемой величины.
Они различаются по конструктивным признакам, по целевому назначению, по степени механизации, пределам измерения, цене деления аналогового или цифрового отсчета и прочим показателям.

Классификация средств измерения

Универсальные измерительные инструменты и приборы классифицируются по конструктивным признакам на:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *