Что значит прямое и косвенное измерение

Метрология. Прямые и косвенные измерения.

Метрологией называется наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Измерением называется нахождение значения физической величины опытным путем с помощью специальных технических средств. Результатом измерения является количественная характеристика физической величины в виде числа единиц измеряемой величины и погрешность, с которой получено данное число.

Виды измерений. В зависимости от способа получения числового значения измеряемой величины измерения делятся на прямые, косвенные и совокупные измерения.

Прямыми называются измерения, при которых искомое значение величины получают из опытных данных. При прямых измерениях экспериментальные операции производятся над самой измеряемой величиной. Числовое значение измеряемой величины получают в экспериментальном сравнении с мерой или по показаниям приборов. Например, измерение тока амперметром, напряжения вольтметром, температуры термометром, массы на весах.

Косвенными называют такие измерения, при которых числовое значение измеряемой величины определяется по известной функциональной зависимости через другие величины, которые можно прямо измерить. При косвенных измерениях числовое значение измеряемой величины получают с участием оператора на основе прямых измерений – решением одного уравнения. К косвенным измерениям прибегают в тех случаях, когда неудобно или невозможно осуществить автоматическое вычисление известной зависимости между одной или несколькими входными величинами и измеряемой величиной. Например, мощность в цепях постоянного тока определяет оператор, умножая напряжение на ток, измеренные прямым измерением с помощью амперметра и вольтметра.

Отклонение результата измерения от истинного значения измеряемой величины называют погрешностью измерения.

Абсолютная погрешность измерения равна разности между результатом измерения Что значит прямое и косвенное измерениеи истинным значением измеряемой величины Что значит прямое и косвенное измерение: Что значит прямое и косвенное измерение.

Относительная погрешность измерения Что значит прямое и косвенное измерениепредставляет собой отношение абсолютной погрешности измерения Что значит прямое и косвенное измерениек истинному значению измеряемой величины. Обычно относительная погрешность выражается в процентах Что значит прямое и косвенное измерение%.

25. Основные понятия и определения: информация, алгоритм, программа, команда, данные, технические устройства.

Информация — от латинского слова «information», что означает сведения, разъяснения, изложение.

Применительно к компьютерной обработке данных под информацией понимают некоторую последовательность символических обозначений (букв, цифр, закодированных графических образов и звуков и т.п.), несущую смысловую нагрузку и представленную в понятном компьютеру виде. Каждый новый символ в такой последовательности символов увеличивает информационный объём сообщения.

Алгоритм — последовательность чётко определенных действий, выполнение которых ведёт к решению задачи. Алгоритм, записанный на языке машины, есть программа решения задачи.

Свойства алгоритмов: дискретность, понятность, результативность, определенность, массовость.

Программа — последовательность действий, инструкций, предписаний для некоторого вычислительного устройства; файл, содержащий эту последовательность действий.

Команда — это указание компьютерной программе действовать как некий интерпретатор для решения задачи. В более общем случае, команда — это указание некоему интерфейсу командной строки.

Технические устройства (средства информатизации) – это совокупность систем, машин, приборов, механизмов, устройств и прочих видов оборудования, предназначенных для автоматизации различных технологических процессов информатики, причем таких, выходным продуктом которых является именно информация (сведения, знания) или данные, используемые для удовлетворения информационных потребностей в разных областях предметной деятельности общества.

Все технические средства информатизации в зависимости от выполняемых функций можно разделить на шесть групп : устройства ввода информации, устройства вывода информации, устройства обработки информации, устройства передачи и приема информации, устройства хранения информации, многофункциональные устройства.

Источник

Метрология

Методы и средства измерений физических величин

Как и чем производят измерения?

Прямые измерения

Косвенные измерения

Прямые измерения более просты и сразу приводят к результату измерения, поэтому они имеют преимущественное распространение в машиностроении.
Однако в ряде случаев прямые измерения не могут быть осуществлены, например, при измерении штангенциркулем расстояния между осями отверстий, при измерениях на КИМ, при измерении валов большого диаметров и др.
Прямые измерения иногда уступают по точности косвенным измерениям, как это имеет место при измерении углов угломерами, погрешности которых в десятки раз превышают погрешности синусных линеек.
Косвенные измерения широко применяют при координатных измерениях, потому что результат измерения всегда получают расчетом по определенным при измерении координатам двух или нескольких точек.

Абсолютный метод измерения

При абсолютном методе весь измеряемый размер определяется непосредственно по показаниям прибора. В настоящее время большинство приборов и инструментов измеряют абсолютным методом – штангенинструмент, микрометры, широкодиапазонные индикаторы и преобразователи, высотомеры, КИМ, угловые энкодеры и др.

Относительный метод измерения

Относительный (сравнительный) метод измерения дает только отклонение размера от установочной меры или образца, по которым прибор был установлен на ноль. Определение размера в этом случае производится алгебраическим суммированием размера установочной меры и показаний прибора при измерении.

Приборы для относительных измерений требуют дополнительной затраты времени для предварительной настройки прибора по установочной мере, что существенно снижает производительность измерений при небольших партиях проверяемых деталей. Снижение производительности становится несущественным, если после настройки прибором производят большое число измерений.
Приборы для относительных измерений в ряде случаев позволяют получить более высокую точность, а при измерении больших партий деталей и более высокую производительность контроля, благодаря удобству отсчета отклонений размера по шкале прибора.

Относительный метод измерения применяется на контрольных приспособлениях и автоматах, в приборах активного контроля.

Комплексный метод измерения

Комплексный метод измерения заключается в сопоставлении действительного контура проверяемого объекта с его предельными контурами, определяемыми величинами и расположением полей допусков отдельных элементов этого объекта.
Что значит прямое и косвенное измерениеКомплексный метод измерения обеспечивает проверку накопленных погрешностей взаимосвязанных элементов объекта, ограниченных суммарным допуском. Этот метод измерения является наиболее надежным с точки зрения обеспечения взаимозаменяемости и обычно осуществляется проходными калибрами, сконструированными по принципу подобия.
Примером комплексного метода измерения может служить проверка резьбы гайки проходной резьбовой пробкой.

Дифференцированный метод измерения

Дифференцированный метод измерения сводится к независимой проверке каждого элемента отдельно. Этот метод не может непосредственно гарантировать взаимозаменяемости изделий.
Например, при дифференцированной проверке среднего диаметра, шага и половины угла профиля резьбы необходимо дополнительно подсчитать приведенный средний диаметр резьбы, включающий отклонения перечисленных выше элементов резьбы, и убедиться, что он находится в заданных пределах.

При проверке изделий предельными калибрами обычно сочетаются комплексные и дифференцированные методы измерений.
Каждый из перечисленных выше методов измерения может осуществляться контактным или бесконтактны м способом.

Контактный метод измерения

Контактный метод измерения осуществляется путем непосредственного соприкосновения измерительных поверхностей (наконечников) прибора или инструмента с поверхностью контролируемого объекта.

Бесконтактный метод измерения

Измерительные средства

Измерительные средства, применяемые в металлообрабатывающей промышленности, можно разделить на три основные группы:

Мерами называются средства измерения, служащие для воспроизведения одного или нескольких известных значений данной величины.

Что значит прямое и косвенное измерение

Калибрами называются меры, служащие для проверки правильности размеров, форм и взаимного расположения частей изделия.
Калибры долгое время являлись одними из наиболее распространенных измерительных средств, но с повышением точности металлообработки, распространением станков с ЧПУ, появлением индикаторов, электронных приборов и инструментов с цифровым отсчетом и КИМ применение калибров существенно снизилось.

Универсальные инструменты и приборы служат для определения значений измеряемой величины.
Они различаются по конструктивным признакам, по целевому назначению, по степени механизации, пределам измерения, цене деления аналогового или цифрового отсчета и прочим показателям.

Классификация средств измерения

Универсальные измерительные инструменты и приборы классифицируются по конструктивным признакам на:

Источник

Лекция 2. Виды и методы измерений

Описание

1. Основные понятия и определения. Виды измерений.

2. Методы измерений.

3. Понятие о точности измерений.

4. Основы обеспечения единства измерений

Оглавление

1. Основные понятия и определения. Виды измерений

Измерение — совокупность операций по применению системы измерений для получения значения измеряемой физической величины.

Измерения могут быть классифицированы по метрологическому назначению на три категории:

Ненормированные – измерения при ненормированных метрологических характеристиках.

Технические – измерения при помощи рабочих средств измерений.

Метрологические – измерения при помощи эталонов и образцовых средств измерений.

Ненормированные измерения наиболее простые. В них не нормируются точность и достоверность результата. Поэтому область их применения ограничена. Они не могут быть применены в области, на которую распространяется требование единства измерений. Каждый из нас выполнял ненормированные измерения длины, массы, времени, температуры не задумываясь о точности и достоверности результата. Как правило, результаты ненормированных измерений применяются индивидуально, т.е. используются субъектом в собственных целях.

Технические измерения удовлетворяют требованиям единства измерений, т.е. результат бывает получен с известной погрешностью и вероятностью, записывается в установленных единицах физических величин, с определённым количеством значащих цифр. Выполняются при помощи средств измерений с назначенным классом точности, прошедших поверку или калибровку в метрологической службе. В зависимости от того, предназначены измерения для внутрипроизводственных целей или их результаты будут доступны для всеобщего применения, необходимо выполнение калибровки или поверки средств измерений. Средство измерений, прошедшее калибровку или поверку, называют рабочим средством измерений. Примером технических измерений является большинство производственных измерений, измерение квартирными счётчиками потреблённой электроэнергии, измерения при взвешивании в торговых центрах, финансовые измерения в банковских терминалах. Средство измерений, применяемое для калибровки других средств измерений, называют образцовым средством измерений. Образцовое средство измерений имеет повышенный класс точности и хранится отдельно, для технических измерений не применяется.

Метрологические измерения не просто удовлетворяют требованиям единства измерений, а являются одним из средств обеспечения единства измерений. Выполняются с целью воспроизведения единиц физических величин для передачи их размера образцовым и рабочим средствам измерений. Метрологические измерения выполняет метрологическая служба в стандартных условиях, сертифицированным персоналом.

В дисциплине «Метрология, стандартизация и сертификация» рассматриваются технические измерения.

Можно выделить следующие виды измерений.

1) По характеру зависимости измеряемой величины от времени методы измерений подразделяются на:

2) По способу получения результатов измерений (виду уравнений измерений) методы измерений разделяют на прямые, косвенные, совокупные и совместные.

При прямом измерении искомое значение величины находят непо­средственно из опытных данных (например, измерение диаметра штан­генциркулем).

При косвенном измерении искомое значение величины определяют на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям.

Совместными называют измерения двух или нескольких не одноимённых величин, производимые одновременно с целью нахождения функциональной зависимости между величинами (например, зависимости длины тела от температуры).

Совокупные – это такие измерения, в которых значения измеряемых величин находят по данным повторных измерений одной или нескольких одноименных величин (при различных сочетаниях мер или этих величин) путем решения системы уравнений.

3) По условиям, определяющим точность результата измерения, мето­ды делятся на три класса.

Измерении максимально возможной точности (например, эталонные измерения), достижимой при существующем уровне техники.

Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторое заданное значение.

Технические измерения, в которых погрешность результата определяется характеристиками средств измерения.

4) По способу выражения результатов измерений различают абсолютные и относительные измерения.

Абсолютное измерение основано на прямых измерениях величины и (или) использования значений физических констант.

При относительных измерениях величину сравнивают с одноименной, играющей роль единицы или принятой за исходную (например, измерение диаметра вращающейся детали по числу оборотов соприкасающегося с ней аттестованного ролика).

5) В зависимости от совокупности измеряемых параметров изделия различают поэлементный и комплексный методы измерения.

Поэлементный метод характеризуется измерением каждого параметра изделия в отдельности (например, эксцентриситета, овальности, огранки цилиндрического вала).

Комплексный метод характеризуется измерением суммарного пока­зателя качества (а не физической величины), на который оказывают влияние отдельные его составляющие (например, измерение радиального биения цилиндрической детали, на которое влияют эксцентриситет, овальность и др.).

2. Методы измерений

Метод измерений – прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализо­ванным принципом измерений. Можно выделить следующие методы из­мерений.

По способу получения значения измеряемых величин различают два основных метода измерений.

Метод непосредственной оценки – метод измерения, при котором значение величины определяют непосредственно по отсчетному устройству измерительного прибора прямого действия.

Метод сравнения с мерой – метод измерения, при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой.

Разновидности метода сравнения:

При измерении линейных величин независимо от рассмотренных методов различают контактный и бесконтактный методы измерений.

В зависимости от измерительных средств, используемых в процессе измерения, различают:

3. Понятие о точности измерений

Точность результата измерения – характеристика качества измерения, отражающая близость к нулю погрешности его результата.

Эти погрешности являются следствием многих причин: несовершенства средств измерений, метода измерений, опыта оператора; недостаточной тщательности проведения измерения; воздействия внешних условий и т.д. Для оценки степени приближения результатов измерения к истинному значению измеряемой величины используются методы теории вероятности и математической статистики, что позволяет с определенной достоверностью оценить границы погрешностей, за пределы которых они не выходят. Это дает возможность для каждого конкретного случая выбрать средства и методы измерения, обеспечивающие измерение результата, погрешности которого не превышают заданных границ с требуемой степенью доверия к результатам измерений (достоверностью).

Класс точности – обобщённая метрологическая характеристика средства измерения.

Класс точности определяется и обозначается по-разному. Наибольшее распространение получили три варианта, каждый представляет собой выраженное в процентах значение относительной погрешности:

– относительно измеренного значения (относительная погрешность),

– относительно максимального значения шкалы (приведённая погрешность),

– относительно участка шкалы (приведённая к участку шкалы погрешность).

Рассмотрим эти три варианта.

Вариант 1. Относительная погрешность.

Чтобы по классу точности определить значение абсолютной погрешности, результат измерения умножают на класс точности и делят на сто, чтобы избавиться от процентов. Например, вольтметром класса точности 0,1 получено значение 10,000 В.

Абсолютная погрешность составит: (10,000 В ∙ 0,1 %) / 100 % = 0,010 В. Запись результата: (10,000 ± 0,010) В, с вероятностью 95 % (эта вероятность по умолчанию назначается для технических измерений, исходя из этой вероятности определяется и класс точности). При нормировании по относительной погрешности, значение класса точности заключают в кружок. Как правило, обозначение класса точности размещают в правом нижнем углу на шкале средства измерений.

Вариант 2. Приведённая погрешность.

Чтобы по классу точности определить значение абсолютной погрешности, максимальное значение шкалы умножают на класс точности и делят на сто, чтобы избавиться от процентов. Например, вольтметром класса точности 0,1 получено значение 10,000 В. Максимальное значение шкалы составляет 20,000 В.

Абсолютная погрешность составит: (20,000 В ∙ 0,1 %) / 100 % = 0,020 В. Запись результата: (10,000 ± 0,020) В, с вероятностью 95 %. При нормировании по приведённой погрешности, значение класса точности не сопровождают никакими знаками.

Вариант 3. Приведённая к участку шкалы погрешность.

Чтобы по классу точности определить значение абсолютной погрешности, размер участка шкалы умножают на класс точности и делят на сто, чтобы избавиться от процентов. Рассмотрим два примера, для случая, когда вся шкала поделена на два участка.

Пример 1. Участок шкалы от 0,000 В до 12,000 В, отмечен галочкой. Вольтметром класса точности 0,1 получено значение 10,000 В.

Абсолютная погрешность составит: (12,000 В ∙ 0,1 %) / 100 % = 0,012 В. Запись результата: (10,000 ± 0,012) В, с вероятностью 95 %.

Пример 2. Участок шкалы от 12,000 В до 20,000 В, также отмечен галочкой. Вольтметром класса точности 0,1 получено значение 15,000 В.

Абсолютная погрешность составит: (8,000 В ∙ 0,1 %) / 100 % = 0,008 В. Запись результата: (15,000 ± 0,008) В, с вероятностью 95 %. При нормировании по приведённой к участку шкалы погрешности, значение класса точности помещают над галочкой. Участки шкалы, относительно которых нормируется погрешность, обозначают галочками.

Варианты классов точности обусловлены отличием конструктивных, системных и схемотехнических решений средств измерений.

Корректная запись результатов

Запись результатов измерений производится по следующим правилам.

1) Погрешность указывается двумя значащими цифрами, если первая равна 1 или 2. Погрешность указывается одной значащей цифрой, если первая равна 3 или более. Все остальные цифры должны быть не значащими.

Значащей цифрой называется любая цифра числа, записанного в виде десятичной дроби, начиная слева с первой отличной от нуля цифры, независимо от того, где она находится – до запятой или после запятой.

2) Результат измерения округляется в соответствии с его погрешностью, т.е. записывается с той же точностью, что и погрешность.

Рассмотрим пример. Результат измерения: 10,645701, погрешность 0,012908.

1) Рассматриваем погрешность. Первая значащая цифра 1, поэтому оставляем две значащие цифры, округляя, записываем: 0,013.

2) Рассматриваем результат измерения. Погрешность записана с точностью до третьего знака после запятой, поэтому в результате также оставим три знака. Округляя, записываем: 10,646.

Корректная запись: 10,646 ± 0,013.

Корректная запись обеспечивает адекватность и сопоставимость результатов различных измерений и является одним из элементов единства измерений. Как правило, отбрасывание избыточных цифр не приводит к дополнительной погрешности, поскольку избыточные цифры обусловлены точностью вычислений, а не точностью измерений.

4. Основы обеспечения единства измерений

Специализация и кооперирование производства в масштабах страны, основанные на принципах взаимозаменяемости, требуют обеспечения и сохранения единства измерений.

Обеспечение единства измерений – деятельность метрологических служб, направленная на достижение и поддержание единства измерений в соответствии с правилами, требованиями и нормами, установленными государственными стандартами и другими нормативно-техническими документами в области метрологии.

В 1993 г. был принят Закон Российской Федерации «Об обеспечении единства измерений», который устанавливает правовые основы обеспечения единства измерений в нашей стране. Он состоит из семи разделов: общие положения; единицы величин, средства и методики выполнения измерений; метрологические службы; государственный метрологический контроль и надзор; калибровка и сертификация средств измерений; ответственность за нарушение закона и финансирование работ по обеспечению единства измерений. В Законе дано следующее определение понятия «единство измерения»:

«Единство измерения – состояние измерений, при котором их результаты выражены в узаконенных единицах величин и погрешности измерений не выходят за установленные границы с заданной вероятностью».

Обеспечение единства измерений является задачей метрологических служб.

Метрологическая служба – совокупность субъектов, деятельности и видов работ, направленных на обеспечение единства измерений.

Закон определяет, что Государственная метрологическая служба находится в ведении Госстандарта России и включает: государственные научные метрологические центры; органы Государственной метрологической службы регионов страны, а также городов Москва и Санкт-Петербург.

Источник

Классификация и основные характеристики измерений

Классификация измерений:

1. По признаку точности — равноточные и неравноточные измерения.

Равноточные измеренияопределенное количество измерений любой величины, произведенных аналогичными по точности средствами измерений в одинаковых условиях.

Неравноточные измеренияопределенное количество измерений любой величины, произведенных отличными по точности средствами измерений и (или) в различных условиях.

Методы обработки равноточных и неравноточных измерений несколько отличаются. Поэтому перед тем как начать обработку ряда измерений, обязательно нужно проверить, равноточные измерения или нет.

Это осуществляется с помощью статистической процедуры проверки по критерию согласия Фишера.

2. По числу измерений — однократные и многократные измерения.

Однократное измерениеизмерение, произведенное один раз.

Многократное измерениеизмерение одного размера величины, результат этого измерения получают из нескольких последующих однократных измерений (отсчетов).

Во многих случаях, особенно в быту, производятся чаще всего однократные измерения. Как пример, измерение времени по часам как правило делают однократно. Однако при некоторых измерениях для убеждения в правильности результата однократного измерения может быть недостаточно. Поэтому часто и в быту рекомендуется проводить не одно, а несколько измерений. Например, ввиду нестабильности артериального давления человека при его контроле целесообразно проводить два или три измерения и за результат принимать их медиану. От многократных измерений двукратные и трехкратные измерения отличаются тем, что их точность не имеет смысла оценивать статистическими методами.

3. По характеру изменения измеряемой величины — статические и динамические измерения.

Динамическое измерениеизмерение величины, размер которой изменяется с течением времени. Быстрое изменение размера измеряемой величины требует ее измерения с точнейшим определением момента времени. Например, измерение расстояния до уровня поверхности Земли с воздушного шара или измерение постоянного напряжения электрического тока. По существу динамическое измерение является измерением функциональной зависимости измеряемой величины от времени.

Статическое измерениеизмерение величины, которая принимается в соответствии с поставленной измерительной задачей за неизменяющуюся на протяжении периода измерения. Например, измерение линейного размера изготовленного изделия при нормальной температуре можно считать статическим, поскольку колебания температуры в цехе на уровне десятых долей градуса вносят погрешность измерений не более 10 мкм/м, несущественную по сравнению с погрешностью изготовления детали. Поэтому в этой измерительной задаче можно считать измеряемую величину неизменной. При калибровке штриховой меры длины на государственном первичном эталоне термостатирование обеспечивает стабильность поддержания температуры на уровне 0,005 °С. Такие колебания температуры обусловливают в тысячу раз меньшую погрешность измерений — не более 0,01 мкм/м. Но в данной измерительной задаче она является существенной, и учет изменений температуры в процессе измерений становится условием обеспечения требуемой точности измерений. Поэтому эти измерения следует проводить по методике динамических измерений.

4. По цели измерения — технические и метрологические измерения.

Технические измеренияизмерения с целью получения информациио свойствах материальных объектов, процессов и явлений окружающего мира.

Их производят, как пример, для контроля и управления экспериментальными разработками, контроля технологических параметров продукции или всевозможных производственных процессов, управления транспортными потоками, в медицине при постановке диагноза и лечении, контроля состояния экологии и др.

Технические измерения проводят, как правило, при помощи рабочих средств измерений. Однако нередко к проведению особо точных и ответственных уникальных измерительных экспериментов привлекают эталоны.

Метрологические измеренияизмерения для реализации единства и необходимой точности технических измерений.

• воспроизведение единиц и шкал физических величин первичными эталонами и передачу их размеров менее точным эталонам;

• калибровку средств измерений;

• измерения, производимые при калибровке или поверке средств измерений;

• другие измерения, выполняемые с этой целью (например, измерения при взаимных сличениях эталонов одинакового уровня точности) или удовлетворения других внутренних потребностей метрологии (например, измерения с целью уточнения фундаментальных физических констант и справочных стандартных сведений о свойствах материалов и веществ, измерения для подтверждения заявленных измерительных возможностей лабораторий).

Метрологические измерения проводят при помощи эталонов.

Очевидно, что продукция, предназначенная для потребления (промышленностью, сельским хозяйством, армией, государственными органами управления, населением и др.) создается с участием технических измерений. А система метрологических измерений — это инфраструктура системы технических измерений, необходимая для того, чтобы последняя могла существовать, развиваться и совершенствоваться.

5. По используемым размерам единиц — абсолютные и относительные измерения.

Относительное измерениеизмерение отношения величины к одноименной величине, занимающее место единицы. Например, относительным измерением является определение активности радионуклида в источнике методом измерения ее отношения к активности радионуклида в ином источнике, аттестованном как эталонная мера величины.

Противоположным понятием является абсолютное измерение.

При проведении этого измерения в распоряжении экспериментатора не имеется единицы измеряемой величины. По этому приходится ее воспроизводить непосредственно в процессе измерений.

Это возможно двумя способами:

• получать «непосредственно из природного мира», т.е. воспроизводить его на основе использования физических законов и фундаментальных физических констант (такое измерение в международном словаре метрологических терминов VIM [11] называется фундаментальным измерением);

• воспроизводить единицу на основании известной зависимости между нею и единицами других величин.

И связи с этим можно определить абсолютное измерение следующим образом:

Как пример, измерение силы с помощью динамометра будет относительным измерением, а ее измерение путем использования физической константы g (ускорение всемирного тяготения) и мер массы (основной величины SI) — абсолютным.

Внедрение и метрологическое обеспечение относительных измерений, как правило, являются наилучшим решением многих измерительных задач, поскольку они являются более простыми, точными и надежными, чем абсолютные измерения.

Абсолютные измерения в том смысле, которому больше соответствует понятие «фундаментальное измерение», на практике должны применяться в виде исключения. Их сфера применения — независимое воспроизведение основных единиц SI и открытие новых физических закономерностей.

6. По способу получения результата измерений — совокупные, совместные, косвенные и прямые измерения.

Прямое измерениеэто измерение, проведенное при помощи средства измерений, хранящего единицу или шкалу измеряемой величины. Как пример, измерение длины изделия штангенциркулем, электрического напряжения вольтметром и т.п.

Косвенное измерениеизмерение, когда значение величины определяют на основании результатов прямых величин, функционально связанных с искомой.

Совокупные измерения — когда проводят измерения одновременно нескольких однородных величин, когда значения этих величин находят путем решения системы уравнений, получаемых при измерениях различных сочетаний этих величин.

Классический пример совокупных измерений — калибровка набора гирь по одной эталонной гире, проводимая путем измерений различных сочетаний гирь этого набора,и решения полученных уравнений.

Совместные измерения — проводимые одновременно измерения двух или нескольких разнородных величин для определения зависимости между ними.

Другими словами, совместные измерения — это измерения зависимостей между величинами.

Примером совместных измерений является измерение температурного коэффициента линейного расширения (ТКЛР). Оно проводится путем одновременных измерений изменения температуры образца испытываемого материала и соответствующего приращения его длины и последующей математической обработки полученных результатов измерений.

Следует также различать область, вид и подвид измерений.

Под областью измерений понимают совокупность измерений физических величин, свойственных какой-то области техники или науки и имеющих свою специфику.

В настоящее время выделяют следующие области измерений:

• измерения пространственно-временных величин;

• механические измерения (в том числе измерения кинематических и динамических величин, механических свойств материалов и веществ, механических свойств и форм поверхностей);

• измерения теплоты (термометрия, измерения тепловой энергии, теплофизических свойств веществ и материалов);

• электрические и магнитные измерения (измерения электрических и магнитных полей, параметров электрических цепей, характеристик электромагнитных волн, электрических и магнитных свойств веществ и материалов);

• аналитические (физико-химические) измерения;

• оптические измерения (измерения величин физической оптики, когерентной и нелинейной оптики, оптических свойств веществ и материалов);

• акустические измерения (измерения величин физической акустики и акустических свойств веществ и материалов);

• измерения в атомной и ядерной физике (измерения ионизирующих излучений и радиоактивности, а также свойств атомов и молекул).

Вид измерений — это часть области измерений, которая имеет свои специфические особенности и которая отличается однородностью измеряемых величин.

Например, в области магнитных и электрических измерений возможно выделить измерения электрического сопротивления, электрического напряжения, ЭДС, магнитной индукции и т.д.

Подвид измерений — это часть вида измерений, которая выделяется спецификой измерений однородной величины (по диапазону, размеру величин, условиям измерений и др.).

Например, в измерениях длины выделяют измерения как больших длин (десятки, сотни и тысячи километров), так и малых и сверхмалых длин.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *