Что значит прямая призма

Призма. Виды призмы

Если вы уже знакомы с призмой, и хотите для себя просто что-то уточнить, то вам вполне может хватить таблицы, что дана в конце статьи.

Мы же поведем подробный разговор.

Призмой (n-угольной призмой) называется многогранник, составленный из двух равных многоугольников Что значит прямая призмаи Что значит прямая призма, лежащих в параллельных плоскостях, и Что значит прямая призмапараллелограммов Что значит прямая призма.

Что значит прямая призма

Боковые грани – все грани, кроме оснований ( являются параллелограммами ).

Боковые ребра – общие стороны боковых граней ( параллельны между собой и равны ).

Диагональ – отрезок, соединяющий две вершины призмы, не принадлежащие одной грани.

Что значит прямая призма

Высота призмы – перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания.

Что значит прямая призма

Диагональная плоскость – плоскость, проходящая через боковое ребро призмы и диагональ основания.

Диагональное сечение –пересечение призмы и диагональной плоскости.

Что значит прямая призма

Перпендикулярное сечение – пересечение призмы и плоскости, перпендикулярной ее боковому ребру.

Что значит прямая призма

Различают призмы прямые (боковые ребра перпендикулярны плоскости основания) и наклонные (не прямые).

Что значит прямая призма

Среди прямых призм выделяют правильные.

Правильная призма – это прямая призма, основанием которой является правильный многоугольник (равносторонний треугольник, квадрат, правильный шестиугольник и т.п.).

Что значит прямая призма

Параллелепипед – это призма, основаниями которой являются параллелограммы.

Среди параллелепипедов выделяют наклонные, прямые и прямоугольные параллелепипеды.

Что значит прямая призма

Прямой параллелепипед — это параллелепипед, у которого 4 боковые грани — прямоугольники.

Прямоугольный параллелепипед — это параллелепипед, у которого все грани — прямоугольники (или прямой параллелепипед с прямоугольником в основании).

Наклонный параллелепипед — это параллелепипед, боковые грани которого не перпендикулярны основаниям.

Частный случай прямоугольного параллелепипеда – куб.

Куб – прямоугольный параллелепипед, все грани которого – квадраты.

Что значит прямая призма

Далее – обещанная таблица, в которой собраны все основные виды призмы, с которыми приходится встречаться на ЕГЭ по математике.

Что значит прямая призма

Что значит прямая призмаСмотрите также «Объем призмы. Площадь поверхности призмы».

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Источник

Призма и ее виды

Что значит прямая призма

Что значит прямая призма

Рассматриваемый класс фигур представлен призмами нескольких видов. Перечислим их кратко:

Каждая фигура относится к одному из перечисленных трех видов классификации. Во время решения геометрических задач проще всего выполнять расчеты для правильных и прямых призм. Последние подробнее рассмотрим в следующих пунктах статьи.

Выше было сказано, что с прямыми фигурами удобно работать при решении задач. Это связано с тем, что высота совпадает с длиной бокового ребра. Последний факт облегчает процесс вычисления объема фигуры и площади ее боковой поверхности.

Что значит прямая призма

Объем прямой призмы

То есть произведение высоты на площадь основания даст искомое значение V. Поскольку у прямой призмы основания равны, то для определения площади So можно брать любое из них.

Преимущество использования приведенной выше формулы именно для прямой призмы в сравнении с другими ее видами заключается в том, что высоту фигуры найти очень просто, так как она совпадает с длиной бокового ребра.

Площадь боковой поверхности

Предположим, что в основании призмы лежит произвольный n-угольник, стороны которого равны ai. Индекс i пробегает значения от 1 до n. Площадь одного прямоугольника вычисляется так:

Площадь поверхности боковой Sb нетрудно вычислить, если сложить все площади Si прямоугольников. В таком случае получаем конечную формулу для Sb прямой призмы:

Таким образом, чтобы определить площадь боковой поверхности для прямой призмы, необходимо умножить ее высоту на периметр одного основания.

Задача с треугольной призмой

Что значит прямая призма

Для начала вычислим объем прямой призмы. Треугольник (прямоугольный), находящийся в ее основаниях, имеет площадь:

So = a1*a2/2 = 12*8/2 = 48 см2.

Как можно догадаться, a1 и a2 в этом равенстве являются катетами. Зная площадь основания и высоту (см. условие задачи), можно воспользоваться формулой для V:

V = So*h = 48*15 = 720 см3.

Полная площадь фигуры образована двумя частями: площадями оснований и боковой поверхностью. Площади двух оснований равны:

S2o = 2*So = 48*2 = 96 см2.

Для вычисления площади боковой поверхности необходимо знать периметр прямоугольного треугольника. Вычислим по теореме Пифагора его гипотенузу a3, имеем:

a3 = √(a12 + a22) = √(122 + 82) = 14,42 см.

Тогда периметр треугольника основания прямой призмы составит:

P = a1 + a2 + a3 = 12 + 8 + 14,42 = 34,42 см.

Применяя формулу для Sb, которая была записана в предыдущем пункте, получаем:

Sb = h*P = 15*34,42 = 516,3 см.

Сложив площади S2o и Sb, мы получим полную площадь поверхности изучаемой геометрической фигуры:

S = S2o + Sb = 96 + 516,3 = 612,3 см2.

Что значит прямая призма

Треугольная призма, которую изготавливают из специальных видов стекла, применяется в оптике при изучении спектров излучающих свет объектов. Такие призмы способны разлагать свет на составляющие частоты благодаря явлению дисперсии.

Источник

Призма

Призма

Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется высотой призмы.

Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой, в противном случае – наклонной. Высота прямой призмы равна ее боковому ребру.

Формулы вычисления объема и площади поверхности призмы:

Чтобы были понятны формулы, введем обозначения:

В основании призмы могут лежать различные многоугольники, рассмотрим площади некоторых из них.

В основании лежит треугольник.

В основании лежит четырехугольник

1. Прямоугольник

2. Ромб

3. Трапеция

Прямая призма называется правильной, если ее основания – правильные многоугольники.

Рассмотрим площади правильных многоугольников:

3. Правильный шестиугольник

Шестиугольник разделим на шесть правильных треугольников и найдем площадь как:

Построим прямую призму, в основании которой лежит ромб.

Распишем формулу площади полной поверхности:

Чтобы найти периметр основания, надо узнать сторону ромба. Рассмотрим один из прямоугольных треугольников, получившихся, при пересечении диагоналей и воспользуемся теоремой Пифагора.

Теперь найдем площадь основания: площадь ромба равна половине произведения его диагоналей.

Далее подставим все найденные величины в формулу полной поверхности и вычислим ее:

Средняя линия треугольника параллельна основанию и равна его половине.

Подобие треугольников

Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника больше сходственных сторон другого треугольника в некоторое число раз.

Прямоугольный треугольник и его свойства:

В прямоугольном треугольнике катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.

Некоторые свойства прямоугольного треугольника:

Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

Соотношение между сторонами и углами в прямоугольном треугольнике:

Значения тригонометрических функций некоторых углов:

$α$$30$$45$$60$
$sinα$$<1>/<2>$$<√2>/<2>$$<√3>/<2>$
$cosα$$<√3>/<2>$$<√2>/<2>$$<1>/<2>$
$tgα$$<√3>/<3>$$1$$√3$
$ctgα$$√3$$1$$<√3>/<3>$

Теорема синусов

Во всяком треугольнике стороны относятся как синусы противолежащих углов:

Теорема косинусов

Квадрат одной из сторон треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

Источник

Призмы

Что значит прямая призма

Основные определения и свойства призм. Теорема Эйлера

Что значит прямая призма

Что значит прямая призма

Что значит прямая призма

Что значит прямая призма

Что значит прямая призма

Что значит прямая призма

Утверждение 1. Каждый из n четырехугольников

Для остальных четырехугольников доказательство проводится аналогично.

Это утверждение непосредственно вытекает из утверждения 1.

Замечание 1. В случае, когда не требуется делать специальных уточнений,

боковые грани и основания призмы называют гранями призмы

совокупность всех граней призмы (всех боковых граней и оснований) называют полной поверхностью призмы,

n – угольные призмы называют призмами.

Доказательство. Заметим, что у n – угольной призмы 2n вершин, n боковых граней, 2 основания, 2n ребер основания и n боковых ребер. Следовательно, у n – угольной призмы (n + 2) грани и 3n ребер.

то теорема Эйлера доказана.

Замечание 2. С различными формулами для вычисления объема призмы и площадей боковой и полной поверхности призмы можно ознакомиться в разделе «Формулы для объема, площади боковой поверхности и площади полной поверхности призмы».

Замечание 3. С определением сечения призмы и способами построения сечений призмы ожно ознакомиться в разделе «Сечения призмы. Перпендикулярные сечения призмы».

Виды призм. Прямые и наклонные призмы. Правильные призмы

Существует следующая классификация призм.

Что значит прямая призма

Что значит прямая призма

Замечание 4. Все боковые грани прямой призмы являются прямоугольниками. Высота прямой призмы равна длине бокового ребра.

Определение 9. Правильной призмой называют прямую призму, основаниями которой служат правильные многоугольники.

Определение 10. Диагональю призмы называют отрезок, соединяющий две вершины призмы, не принадлежащие одной грани.

Примеры призм. Треугольные призмы. Четырехугольные призмы.
Параллелепипеды

ABС – произвольный треугольник.

ABС – произвольный треугольник.

ABСD – произвольный четырехугольник.

ABСD – произвольный четырехугольник.

Боковые грани правильной четырехугольной призмы – прямоугольники.

Противоположные грани параллелепипеда равны.

Все грани прямоугольного параллелепипеда являются прямоугольниками.

Правильный параллелепипед, у которого все грани равные квадраты.

У куба все ребра равны и попарно перпендикулярны.

ПризмаРисунокСвойства
Наклонная треугольная призмаЧто значит прямая призма
Правильная треугольная призмаЧто значит прямая призма
Наклонная четырехугольная призмаЧто значит прямая призма
Прямая четырехугольная призмаЧто значит прямая призма
Правильная четырехугольная призмаЧто значит прямая призма
Прямоугольный параллелепипедЧто значит прямая призма
Наклонная треугольная призма
Что значит прямая призма

ABС – произвольный треугольник.

Прямая треугольная призмаЧто значит прямая призма

Правильная треугольная призмаЧто значит прямая призма

Что значит прямая призма

Что значит прямая призма

ABСD – произвольный четырехугольник.

Что значит прямая призма

Что значит прямая призма

Правильная четырехугольная призмаЧто значит прямая призма

Что значит прямая призма

Что значит прямая призма

Свойства:
Наклонная четырехугольная призма, все грани которой паралллелограммы.
Противоположные грани параллелепипеда равны.

Что значит прямая призма

Что значит прямая призма

Что значит прямая призма

Что значит прямая призма

Все грани прямоугольного параллелепипеда являются прямоугольниками.

Правильный параллелепипедЧто значит прямая призма

КубЧто значит прямая призма

Свойства:
Правильный параллелепипед, у которого все грани равные квадраты.
У куба все ребра равны и попарно перпендикулярны.
Высота куба равна длине ребра.

Источник

Геометрия. 10 класс

Конспект урока

Геометрия, 10 класс

Перечень вопросов, рассматриваемых в теме:

Призма – многогранник, составленный из равных многоугольников, расположенных в параллельных плоскостях, и n параллелограммов.

Боковые грани – все грани, кроме оснований.

Боковые ребра – общие стороны боковых граней.

Основания призмы – равные многоугольники, расположенные в параллельных плоскостях.

Прямая призма – призма, боковые ребра которой перпендикулярны основаниям.

Правильная призма – прямая призма, в основании которой лежит правильный многоугольник.

Площадь полной поверхности призмы – сумма площадей всех ее граней.

Площадь боковой поверхности призмы – сумма площадей ее боковых граней.

Параллелепипед – призма, все грани которой – параллелограммы.

Прямоугольный параллелепипед – параллелепипед в основании которого лежит прямоугольник.

Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Математика: алгебра и начала математического анализа,

геометрия. Геометрия. 10–11 классы : учеб. Для общеобразоват. организаций : базовый и углубл. Уровни – М. : Просвещение, 2014. – 255 с.

Открытые электронные ресурсы:

Открытый банк заданий ФИПИ http://ege.fipi.ru/

Теоретический материал для самостоятельного изучения

Определение призмы. Элементы призмы.

Рассмотрим два равных многоугольника А1А2. Аn и В1В2. Вn, расположенных в параллельных плоскостях α и β соответственно так, что отрезки А1В1, А2В2. АnВn, соединяющие соответственные вершины многоугольников, параллельны (рис. 1).

Что значит прямая призма

Дадим определение призмы. Призма – многогранник, составленный из равных многоугольников, расположенных в параллельных плоскостях, и n параллелограммов.

При этом равные многоугольники, расположенные в параллельных плоскостях, называются основаниями призмы, а параллелограммы – боковыми гранями призмы. Общие стороны боковых граней будем называть боковыми ребрами призмы.

Отметим, что все боковые ребра призмы равны и параллельны (как противоположные стороны параллелограммов).

Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется высотой призмы. Обратите внимание, что все высоты призмы равны между собой, так как основания расположены на параллельных плоскостях. Также высота призмы может лежать вне призмы (рис. 2).

Что значит прямая призма

Рисунок 2 – Наклонная призма

Если боковые ребра призмы перпендикулярны основаниям, то призма называется прямой. В противном случае, призма называется наклонной.

Высота прямой призмы равна ее боковому ребру.

На рисунке 3 приведены примеры прямых призм

Что значит прямая призмаЧто значит прямая призмаЧто значит прямая призма

Рисунок 3 – Виды призм.

Прямая призма называется правильной, если ее основание – правильный многоугольник. В правильной призме все боковые грани – равные прямоугольники.

Иногда четырехугольную призму, грани которой параллелограммы называют параллелепипедом. Известный вам правильный параллелепипед – это куб.

Площадь полной поверхности призмы. Площадь боковой поверхности призмы.

Площадью полной поверхности призмы (Sполн) называется сумма площадей всех ее граней, а площадью боковой поверхности (Sбок) призмы – сумма площадей ее боковых граней.

Таким образом, верно следующее равенство: Sполн= Sбок+2Sосн, то есть площадь полной поверхности есть сумма площади боковой поверхности и удвоенной площади основания.

Чему равна площадь боковой поверхности прямой призмы?

Теорема. Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы.

Боковые грани прямой призмы – прямоугольники, основания которых – стороны основания призмы, а высоты равны высоте призмы – h. Площадь боковой поверхности призмы равна сумме площадей боковых граней, то есть прямоугольников. Площадь каждого прямоугольника есть произведение высоты h и стороны основания. Просуммируем эти площади и вынесем множитель h за скобки. В скобках получим сумму всех сторон основания, то есть периметр основания P. Таким образом Sбок=Pоснh.

Пространственная теорема Пифагора

Прямой параллелепипед, основание которого – прямоугольник называется прямоугольным.

Теорема. Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов длин трех его ребер, исходящих из одной вершины.

Что значит прямая призма

Рисунок 4 – Прямоугольный параллелепипед

Рассмотрим прямоугольный параллелепипед ABCDA1B1C1D1 и найдем квадрат длины его диагонали А1С.

Для этого рассмотрим треугольник А1АС:

Ребро АА1 перпендикулярно плоскости основания (ABC) (т.к. параллелепипед прямой), значит АА1 перпендикулярна любой прямой, лежащей в плоскости основания, в том числе АС. Таким образом, ΔА1АС – прямоугольный.

По теореме Пифагора получаем: А1С 2 =АА1 2 +АС 2 (1).

Так как в основании прямоугольник, то ВС=АD.

Что и требовалось доказать

Доказанная теорема является аналогом теоремы Пифагора (для прямоугольного треугольника), поэтому ее иногда называют пространственной теоремой Пифагора.

Примеры и разбор решения заданий тренировочного модуля

Найдите для каждой картинки пару

1)Что значит прямая призма2) Что значит прямая призма3) Что значит прямая призма

4)Что значит прямая призма5) Что значит прямая призма

6) Что значит прямая призма

Все изображения можно разделить на две группы: призмы и многоугольники. Вспомним, что основанием призмы является многоугольник. Теперь необходимо посчитать количество вершин многоугольников в основаниях призм и сопоставить их с нужным изображением. Таким образом, получаем следующий ответ: 1 и 3, 2 и 4, 5 и 6.

Какие из перечисленных объектов могут быть элементами призмы?

1) параллельные плоскости

Вспомним сначала, какие элементы есть у призмы. Это ребра, грани, вершины, основания, высота, диагональ.

Ребра, высота и диагональ призмы представляют собой отрезок. Грани и основания – это многоугольники, то есть части плоскостей. Вершины – точки. Таким образом, подходят варианты 2, 3,4.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *