Что значит противоположно направленные векторы

Определение вектора

В статье пойдет речь о том, что такое вектор, что он из себя представляет в геометрическом смысле, введем вытекающие понятия.

Для начала дадим определение:

Вектор – это направленный отрезок прямой.

Исходя из определения, под вектором в геометрии отрезок на плоскости или в пространстве, который имеет направление, и это направление задается началом и концом.

Нулевой вектор

Под нулевым вектором 0 → будем понимать любую точку плоскости или пространства.

Из определения становится очевидным, что нулевой вектор может иметь любое направление на плоскости и в пространстве.

Что значит противоположно направленные векторы

Длина вектора

Под длиной вектора A B → понимается число, большее либо равное 0, и равное длине отрезка АВ.

Понятия модуль вектора и длина вектора равносильны, потому что его обозначение совпадает со знаком модуля. Поэтому длину вектора также называют его модулем. Однако грамотнее использовать термин «длина вектора». Очевидно, что длина нулевого вектора принимает значение ноль.

Коллинеарность векторов

Два вектора лежащие на одной прямой или на параллельных прямых называются коллинеарными.

Два вектора не лежащие на одной прямой или на параллельных прямых называются неколлинеарными.

Следует запомнить, что Нулевой вектор всегда коллинеарен любому другому вектору, так как он может принимать любое направление.

Коллиниарные векторы в свою очередь тоже можно разделить на два класса: сонаправленные и противоположно направленные.

Направление векторов

Считается, что нулевой вектор является сонаправленым к любым другим векторам.

Что значит противоположно направленные векторы

Равные и противоположные векторы

Равными называются сонаправленные вектора, у которых длины равны.

Противопожными называются противоположно направленные вектора, у которых их длины равны.

Что значит противоположно направленные векторы

Введенные выше понятия позволяют нам рассматривать векторы без привязки к конкретным точкам. Иначе говоря, можно заменить вектор равным ему вектором, отложенным от любой точки.

Углы между векторами

Угол φ = ∠ A O B называется углом между векторами a → = O A → и b → = O B → .

Что значит противоположно направленные векторы

Очевидно, что угол между сонаправленными векторами равен нулю градусам (или нулю радиан), так как сонаправленные векторы лежат на одной или на параллельных прямых и имеют одинаковое направление, а угол между противоположно направленными векторами равен 180 градусам (или π радиан), так как противоположно направленные векторы лежат на одной или на параллельных прямых, но имеют противоположные направления.

Перпендикулярными называются два вектора, угол между которыми равен 90 градусам (или π 2 радиан).

Источник

Что значит противоположно направленные векторы

Сформулируем ряд базовых определений.

Три вектора в пространстве называются компланарными, если они лежат в одной плоскости или на параллельных плоскостях. Если среди трех векторов хотя бы один нулевой или два любые коллинеарны, то такие векторы компланарны.

то есть модуль вектора равен корню квадратному из суммы квадратов его координат.

Обозначим углы между вектором и осями координат через α, β, γ соответственно. Косинусы этих углов называются для вектора Что значит противоположно направленные векторы направляющими, и для них выполняется соотношение: Что значит противоположно направленные векторы Верность данного равенства можно показать с помощью свойства проекции вектора на ось, которое будет рассмотрено в нижеследующем пункте 4.

Пусть в трехмерном пространстве заданы векторы Что значит противоположно направленные векторы своими координатами. Имеют место следующие операции над ними: линейные (сложение, вычитание, умножение на число и проектирование вектора на ось или другой вектор); не линейные – различные произведения векторов (скалярное, векторное, смешанное).

1. Сложение двух векторов производится покоординатно, то есть если

Геометрически два вектора складываются по двум правилам:

а) правило треугольника – результирующий вектор суммы двух векторов соединяет начало первого из них с концом второго при условии, что начало второго совпадает с концом первого вектора; для суммы векторов – результирующий вектор суммы соединяет начало первого из них с концом последнего вектора-слагаемого при условии, что начало последующего слагаемого совпадает с концом предыдущего;

б) правило параллелограмма (для двух векторов) – параллелограмм строится на векторах-слагаемых как на сторонах, приведенных к одному началу; диагональ параллелограмма исходящая из их общего начала, является суммой векторов.

Геометрически два вектора складываются по уже упомянутому правилу параллелограмма с учетом того, что разностью векторов является диагональ, соединяющая концы векторов, причем результирующий вектор направлен из конца вычитаемого в конец уменьшаемого вектора.

При λ>0 – вектор Что значит противоположно направленные векторы сонаправлен Что значит противоположно направленные векторы ; λ Что значит противоположно направленные векторы противоположно направлен Что значит противоположно направленные векторы ; | λ|> 1 – длина вектора Что значит противоположно направленные векторы увеличивается в λ раз; | λ| 1 – длина вектора Что значит противоположно направленные векторы уменьшается в λ раз.

4. Пусть в пространстве задана направленная прямая (ось l ), вектор Что значит противоположно направленные векторы задан координатами конца и начала. Обозначим проекции точек A и B на ось l соответственно через A и B .

Рассмотрим некоторые основные свойства проекций:

1) проекция вектора Что значит противоположно направленные векторы на ось l равна произведению модуля вектора Что значит противоположно направленные векторы на косинус угла между вектором и осью, то есть Что значит противоположно направленные векторы ;

2.) проекция вектора на ось положительна (отрицательна), если вектор образует с осью острый (тупой) угол, и равна нулю, если этот угол – прямой;

3) проекция суммы нескольких векторов на одну и ту же ось равна сумме проекций на эту ось.

Сформулируем определения и теоремы о произведениях векторов, представляющих нелинейные операции над векторами.

5. Скалярным произведением Что значит противоположно направленные векторы векторов Что значит противоположно направленные векторы и Что значит противоположно направленные векторы называется число (скаляр), равное произведению длин этих векторов на косинус угла φ между ними, то есть

Теорема 2.2. Необходимым и достаточным условием перпендикулярности двух векторов является равенство нулю их скалярного произведения Что значит противоположно направленные векторы

Следствие. Попарные скалярные произведения единичных орт равны нулю, то есть Что значит противоположно направленные векторы

Отсюда следует условие перпендикулярности ненулевых векторов Что значит противоположно направленные векторы и Что значит противоположно направленные векторы :

С помощью скалярного произведения векторов находят работу постоянной силы Что значит противоположно направленные векторы на прямолинейном участке пути.

Что значит противоположно направленные векторы

Решение. Вычислим модули векторов и их скалярное произведение по теореме (2.3):

Что значит противоположно направленные векторы

Что значит противоположно направленные векторы

Пример 2.10. Затраты сырьевых и материальных ресурсов, используемых на производство одной тонны творога, заданы в таблице 2.2 (руб.).

Какова общая цена этих ресурсов, затрачиваемых на изготовление одной тонны творога?

Что значит противоположно направленные векторы

Что значит противоположно направленные векторы

Примечание. Действия с векторами, осуществленные в примере 2.10, можно выполнить на персональном компьютере. Для нахождения скалярного произведения векторов в MS Excel используют функцию СУММПРОИЗВ( ), где в качестве аргументов указываются адреса диапазонов элементов матриц, сумму произведений которых необходимо найти. В MathCAD скалярное произведение двух векторов выполняется при помощи соответствующего оператора панели инструментов Matrix Что значит противоположно направленные векторы

Решение. Находим вектор перемещения, вычитая из координат его конца координаты начала

Угол φ между Что значит противоположно направленные векторы и Что значит противоположно направленные векторы находим по формуле (2.29), то есть

Что значит противоположно направленные векторы

Что значит противоположно направленные векторы перпендикулярен векторам Что значит противоположно направленные векторы и Что значит противоположно направленные векторы ;

– векторы Что значит противоположно направленные векторы образуют правую тройку (рис. 2.15).

Примечание. Определитель (2.25) раскладывается по свойству 7 определителей Что значит противоположно направленные векторы

Следствие 1. Необходимым и достаточным условием коллинеарности двух векторов является пропорциональность их соответствующих координат Что значит противоположно направленные векторы

Следствие 2. Векторные произведения единичных орт равны Что значит противоположно направленные векторы

Следствие 3. Векторный квадрат любого вектора равен нулю Что значит противоположно направленные векторы

Что значит противоположно направленные векторы

Также с помощью векторного произведения можно определить момент силы относительно точки и линейную скорость вращения.

— перпендикулярен плоскости, проходящей через точки O , A , B ;

Следовательно, момент силы Что значит противоположно направленные векторы относительно точки O представляет собой векторное произведение

Что значит противоположно направленные векторы

Решение. Найдем векторное произведение заданных векторов по формуле (2.32).

Что значит противоположно направленные векторы

Теорема 2.6. Необходимым и достаточным условием компланарности трех векторов является равенство нулю их смешанного произведения Что значит противоположно направленные векторы

Теорема 2.7. Если три вектора Что значит противоположно направленные векторы заданы своими координатами, то их смешанное произведение представляет собой определитель третьего порядка, составленный из координат векторов- сомножителей соответственно, то есть

Объем треугольной пирамиды, построенной на этих же векторах, равен

Решение. Найдем координаты векторов

По формуле (2.36) объем пирамиды, построенной на векторах Что значит противоположно направленные векторы равен Что значит противоположно направленные векторы (единиц объема) Что значит противоположно направленные векторы

Рассмотрим очень важный вопрос о разложении вектора по базису. Приведем следующие определения.

Что значит противоположно направленные векторы

получим выражение вектора Что значит противоположно направленные векторы через остальные векторы Что значит противоположно направленные векторы

Линейно независимыми называют векторы, если равенство (2.37) выполняется только тогда, когда все

Базисом n – мерного пространства En называют любую совокупность линейно независимых векторов n – мерного пространства.

Произвольный вектор Что значит противоположно направленные векторы n – мерного пространства можно представить в виде линейной комбинации векторов базиса таким образом:

Что значит противоположно направленные векторы

Линейное пространство называется конечномерным и имеет размерность n , если в этом пространстве существует система из n линейно независимых векторов (базис) такая, что каждое ее расширение приводит к линейной зависимости системы.

Источник

Векторы. Виды векторов

Вектором называется направленный отрезок прямой евклидова пространства, у которого один конец (точка A) называется началом вектора, а другой конец (точка B) концом вектора (Рис. 1). Векторы обозначаются: Что значит противоположно направленные векторы

Что значит противоположно направленные векторы

Если начало и конец вектора совпадают, то вектор называется нулевым вектором и обозначается 0.

Длина отрезка AB называется модулем ( длиной, нормой) вектора и обозначается | a|. Вектор длины, равной единице, называется единичным вектором. Кроме модуля вектор характеризуется направлением: вектор Что значит противоположно направленные векторыимеет направление от A к B. Вектор Что значит противоположно направленные векторыназывается вектором, противоположным вектору Что значит противоположно направленные векторы.

Что значит противоположно направленные векторы

Два вектора называются коллинеарными, если они лежат на одной прямой или на параллельных прямых. На рисунке Рис. 3 красные векторы коллинеарны, т.к. они лажат на одной прямой, а синие векторы коллинеарны, т.к. они лежат на параллельных прямых. Два коллинеарных вектора называются одинаково направленными, если их концы лежат по одну сторону от прямой, соединяющей их начала. Два коллинеарных вектора называются противоположно направленными, если их концы лежат по разные стороны от прямой, соединяющей их начала. Если два коллинеарных вектора лежат на одной прямой, то они называются одинаково направленными, если один из лучей, образованным одним вектором полностью содержит луч, образованным другим вектором. В противном случае векторы называются противоположно направленными. На рисунке Рис.3 синие векторы одинаково направлены, а красные векторы противоположно направлены.

Что значит противоположно направленные векторы

Векторы называются компланарными, если они лежат на одной плоскости или в параллельных плоскостях.

В n мерном векторном пространстве рассмотрим множество всех векторов, начальная точка которых совпадает с началом координат. Тогда вектор можно записать в следующем виде:

Что значит противоположно направленные векторы

Вектор, записанный в виде (1) называется вектор-строкой, а вектор, записанный в виде

Что значит противоположно направленные векторы

Число n называется размерностью ( порядком) вектора. Если Что значит противоположно направленные векторыто вектор называется нулевым вектором (т.к. начальная точка вектора Что значит противоположно направленные векторы). Два вектора x и y равны тогда и только тогда, когда равны их соответствующие элементы:

Что значит противоположно направленные векторы

Сложение векторов

Суммой x+ y векторов x и y называется вектор, проведенный из начала x к концу у, если вектор у параллельно перемещен так, что конец x и начало y совмещены.

Умножение вектора на число

Произведением вектора x на число β ( x≠0, β≠0) называется вектор, модуль которого равен | x|| β| и который направлен в ту же сторону, что и вектор x, если β>0, и в противоположную, если β x=0 и (или) β=0, то βx=0.

Ортогональность векторов

Два вещественных вектора называются ортогональными, если они удовлетворяют соотношению

Источник

Вектор. Виды векторов.

Вектор — в самом элементарном случае это математический объект, который характеризуется

величиной и направлением.

В геометрии вектор — направленный отрезок прямой, то есть отрезок, для которого указано, какая

из его граничных точек является началом, а какая — концом.

У вектора есть длина и определенное направление. Графически вектора изображаются как

направленные отрезки прямой конкретной длины. Длина вектора – это и есть длина этого отрезка.

Для обозначения длины вектора используются две вертикальные линии по обоим сторонам: |AB|.

Как видно на рисунке, начало отрезка – это точка А, концом отрезка является

точка В, а непосредственно вектор обозначен через Что значит противоположно направленные векторы. У направления

вектора существенное значение, если переместить стрелку на другую

сторону отрезка, то получим вектор, но абсолютно другой. Понятие вектора

удобно сравнивать с движением физического тела: подумайте, ехать на

рыбалку и с рыбалки – разница огромная.

Что значит противоположно направленные векторы

Понятия «больше» и «меньше» для векторов не имеет значения — так как направления их могут быть

разными. Сравнивают лишь длины векторов. Зато есть понятие равенства для векторов.

Виды векторов.

Единичным называется вектор, длина которого равна 1.

Отдельные точки плоскости, пространства удобно считать так называемым нулевым вектором.

У такого вектора конец и начало совпадают.

Нулевой вектор обычно обозначается как Что значит противоположно направленные векторы. Длина нулевого вектора, или его модуль равен нулю.

Коллинеарные вектора – вектора, которые параллельны одной прямой

или которые лежат на одной прямой.

Что значит противоположно направленные векторы

Сонаправленные вектора. Два коллинеарных вектора a и b называются

сонаправленными векторами только тогда, когда их направления

соответствуют друг другу: a↑↑b

Что значит противоположно направленные векторы

Противоположно направленные вектора – два коллинеарных вектора

a и b называются противоположно направленными векторами, только

когда они направлены в разные стороны: a↑↓b.

Что значит противоположно направленные векторы

Компланарные вектора – это те вектора, которые параллельны одной

плоскости или те, которые лежат на общей плоскости.

В любое мгновение существует плоскость одновременно параллельную

двум любым векторам, поэтому два произвольных вектора являются

Что значит противоположно направленные векторы

Равные вектора. Вектора a и b будут равными, если они будут лежать на

одной либо параллельных прямых и их направления и длины одинаковые.

То есть, такой вектор можно перенести параллельно ему в каждое место

Таким образом, два вектора равны, если они коллинеарные, сонаправленые

и имеют одинаковые длины:

Что значит противоположно направленные векторы

Что значит противоположно направленные векторы

Для координатного представления векторов огромное значение

оказывает понятие проекции вектора на ось (направленную

прямую).

проекциями точек начала и конца вектора на заданную прямую,

при этом проекции добавляется знак “+”, но когда направление

проекции соответственно направлению оси, иначе — знак “–”.

Что значит противоположно направленные векторы

Проекция – это длина заданного вектора, умноженная на cos угла исходного вектора и оси; проекция

вектора на ось, которая перпендикулярна ему = 0.

Когда работают с векторами, зачастую вводят так называемую

декартову систему координат и уже в этой системе находят

координаты вектора по базисным векторам.

Разложение по базису геометрически можно показать проекцией

вектора на координатные оси. Когда известны координаты начала и

конца вектора, то координаты данного вектора получают вычитая

из координат конца вектора координат начала вектора.

Что значит противоположно направленные векторы

Что значит противоположно направленные векторы

За базис зачастую выбираются координатные орты, которые обозначаются как Что значит противоположно направленные векторы, соответственно

осям x, y, z. Исходя из этого, вектор Что значит противоположно направленные векторыможно записать в таком виде:

Что значит противоположно направленные векторы

Каждое геометрическое свойство есть возможность записать в координатах, и далее исследование

из геометрического переходит в алгебраическое и на этом этапе в основном упрощается. Обратное,

кстати, неверно: не у любого соотношения в координатах есть геометрическое толкование, но только

те соотношения, которые выполняются в любой декартовой системе координат (инвариантные).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *