Что значит проекция вектора на ось в физике

Что значит проекция вектора на ось в физике

1. Какая величина называется векторной (или просто вектором)?

Физическая величина, которая характеризуется не только числовым значением (модулем), но и направлением, называется векторной величиной (или просто вектором).
Для векторной величины одинаково важны числовое значение (модуль) и направление.

Примеры векторных величин:

— скорость,
— перемещение,
— сила.

2. Какая величина называются скалярной (или просто скаляром)?

Величины, которые не имеют направления и задаются только числом, называются скалярными величинами или скалярами.

Примеры скалярных величин:

3. Как изображают векторную величину?

Что значит проекция вектора на ось в физике

Векторную величину изображают в виде стрелки, которая начинается в некоторой точке и заканчивается острием, указывающим направление..
Такой отрезок-стрелка называется вектором.
Длина стрелки в выбранном масштабе выражает модуль векторной величины.

Векторы обозначают буквами со стрелкой над ними.
Такой же буквой, но без стрелки обозначают модуль вектора.

4. Если два вектора равны друг другу по модулю, но направления векторов различны, то можно ли сказать, что эти векторы равны друг другу?

Нет, нельзя.
Равными считаются векторы, у которых одинаковы и модули, и направления.

5. Чем отличается векториая величина от скалярной?

Проекция вектора на координатную ось

1. Как построить проекцию вектора на координатную ось?

Что значит проекция вектора на ось в физике
Есть вектор а.
Опустим из точки А (начало вектора) и точки В (конец вектора) перпендикуляры на ось ОX.
Получим на оси точки ха и хв — это проекции точек А и В на ось ОX.
Длину отрезка хав между проекциями начала и конца вектора называют проекцией вектора а на ось ОX и обозначают, как ах.
Проекцию вектора на ось обозначают той же буквой, что и вектор, но без стрелки и с индексом оси.
Проекция вектора — величина скалярная.


2. Если вектор перемещения параллелен координатной оси, то чему равен модуль проекции вектора на эту ось?

Если вектор параллелен оси координат, то модуль его проекции ( |ax| ) равен модулю ( a ) самого вектора.

3. Что называют проекцией вектора на координатную ось?

Длину отрезка на координатной оси между проекциями начала и конца вектора, взятую со знаком « + » или « —», называют проекцией вектора а на координатную ось.

Проекция вектора на координатную ось может быть, как положительной, так и отрицательной.

Что значит проекция вектора на ось в физике

Проекция вектора на ось считается положительной, если вектор сонаправлен с этой осью.
Проекция вектора на ось считается отрицательной, если вектор направлен противоположно оси.

Если вектор перпендикулярен координатной оси, то при любом направлении вектора его проекция на ось равна нулю.

Источник

Содержание:

Проекция вектора на ось:

Вы уже знаете, что вектор имеет модуль и направление. При решении задач часто используется понятие проекция вектора на ось. Что такое проекция вектора? Как ее определяют?

Начнем с понятия проекция точки на ось.

Проекция точки — это основание перпендикуляра, опущенного из данной точки на ось.

На рисунке 24 точка Что значит проекция вектора на ось в физике

Что значит проекция вектора на ось в физике

Как определяют проекцию вектора на ось

Проекция вектора на ось — это длина отрезка между проекциями начала и конца вектора, взятая со знаком «+» или «-». Знак «+» берут, если угол между вектором и осью острый, а знак «-» — если угол тупой.

На рисунке 25 проекция вектора Что значит проекция вектора на ось в физикена ось Ох обозначена через Что значит проекция вектора на ось в физикеа проекция вектора Что значит проекция вектора на ось в физике— через Что значит проекция вектора на ось в физике
Что значит проекция вектора на ось в физике
Проекция Что значит проекция вектора на ось в физике— число положительное, т. к. угол Что значит проекция вектора на ось в физикена рисунке 25, а — острый. Проекция Что значит проекция вектора на ось в физике— число отрицательное Что значит проекция вектора на ось в физикет. к. угол Что значит проекция вектора на ось в физикена рисунке 25, б — тупой.

А если вектор перпендикулярен оси? Тогда его проекция на эту ось равна нулю (рис. 26).

Что значит проекция вектора на ось в физике

Проекцию вектора можно выразить через его модуль и угол между вектором и осью.

Рассмотрим треугольник Что значит проекция вектора на ось в физикена рисунке 25, а. Его гипотенуза Что значит проекция вектора на ось в физикекатет Что значит проекция вектора на ось в физикеа угол между ними равен Что значит проекция вектора на ось в физикеСледовательно,

Что значит проекция вектора на ось в физике

Проекция вектора на ось равна модулю вектора, умноженному на косинус угла между вектором и осью.

Это правило справедливо при любых углах между вектором и осью. Подтвердите это с помощью рисунков 25 и 26.

Обратим внимание на еще одно важное свойство проекций: проекция суммы векторов на ось равна сумме их проекций на эту ось.

Что значит проекция вектора на ось в физике

С помощью рисунка 27, а, б убедитесь, что из векторного равенства Что значит проекция вектора на ось в физикеследует равенство для проекций: Что значит проекция вектора на ось в физикеНе забывайте о знаках проекций.

Можно ли найти модуль и направление вектора по его проекциям на координатные оси

Что значит проекция вектора на ось в физике

Рассмотрим вектор Что значит проекция вектора на ось в физикележащий в плоскости Что значит проекция вектора на ось в физике(рис. 28). Его проекции на оси Что значит проекция вектора на ось в физикеопределим из рисунка: Что значит проекция вектора на ось в физике

Модуль вектора Что значит проекция вектора на ось в физикенаходим по теореме Пифагора из треугольника ACD: Что значит проекция вектора на ось в физикеРазделив Что значит проекция вектора на ось в физикена Что значит проекция вектора на ось в физикеполучим: Что значит проекция вектора на ось в физикеПо значению косинуса находим угол Что значит проекция вектора на ось в физике

Таким образом, вектор, лежащий в заданной плоскости, полностью определяется двумя проекциями на оси координат.

Вектор в пространстве определяется тремя проекциями: Что значит проекция вектора на ось в физике(рис. 29).
Что значит проекция вектора на ось в физике

Главные выводы:

Пример №1

Что значит проекция вектора на ось в физике

1. Определите сумму и разность взаимно перпендикулярных векторов Что значит проекция вектора на ось в физике(рис. 30). Найдите модули векторов суммы Что значит проекция вектора на ось в физикеи разности Что значит проекция вектора на ось в физике

Решение

Сумму векторов Что значит проекция вектора на ось в физикенаходим по правилу треугольника (рис. 31, а) или параллелограмма (рис. 31, б). Так как векторы Что значит проекция вектора на ось в физикевзаимно перпендикулярны, модуль вектора Что значит проекция вектора на ось в физикенаходим по теореме Пифагора: Что значит проекция вектора на ось в физикеРазность векторов Что значит проекция вектора на ось в физикеопределим по правилам вычитания векторов (рис. 32, а, б).

Что значит проекция вектора на ось в физике

Модуль вектора Что значит проекция вектора на ось в физикенаходим аналогично:

Что значит проекция вектора на ось в физике

Ответ: Что значит проекция вектора на ось в физике

Пример №2

Выразите вектор Что значит проекция вектора на ось в физикечерез векторы Что значит проекция вектора на ось в физике(рис. 33). Как связаны между собой проекции этих векторов на оси Ох и Оу?

Решение

Что значит проекция вектора на ось в физике

По правилу треугольника находим: Что значит проекция вектора на ось в физикеОтсюда Что значит проекция вектора на ось в физикеОпределив координаты Что значит проекция вектора на ось в физикеначальных и конечных точек векторов Что значит проекция вектора на ось в физикенаходим проекции этих векторов: Что значит проекция вектора на ось в физикеЧто значит проекция вектора на ось в физике

Вычислением убедимся, что проекции векторов связаны теми же равенствами, что и сами векторы: Что значит проекция вектора на ось в физике

Ответ: Что значит проекция вектора на ось в физике

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Что значит проекция вектора на ось в физике

Учебник Физика 7 класс Кривченко И.В., размещённый в этой рубрике, включён в федеральный перечень учебников в соответствии с ФГОС. Учебник в цветном полиграфическом исполнении с твёрдым переплетом объёмом 150 страниц вышел из печати в июле 2015 г. в пятом издании. Учебник физики 7 класса рассчитан на 2 урока в неделю и содержит 6 тем курса физики, которые перечислены ниже.

Что значит проекция вектора на ось в физике Физика 7 класс, тема 01. Физические величины (7+2 ч)
Физика. Физическая величина. Измерение физических величин.
Цена делений шкалы прибора. Погрешность прямых и косвенных измерений.
Формулы и вычисления по ним. Единицы физических величин.
Метод построения графика. Что значит проекция вектора на ось в физике Физика 7 класс, тема 02. Масса и плотность (8+1 ч)
Явление тяготения и масса тела. Свойство инертности и масса тела.
Плотность вещества. Таблицы плотностей некоторых веществ.
Средняя плотность тел и их плавание.
Метод научного познания. Что значит проекция вектора на ось в физике Физика 7 класс, тема 03. Силы вокруг нас (13+2 ч)
Сила и динамометр. Виды сил.
Уравновешенные силы и равнодействующая.
Сила тяжести и вес тела. Сила упругости и сила трения.
Закон Архимеда. Вычисление силы Архимеда.
Простые механизмы. Правило равновесия рычага. Что значит проекция вектора на ось в физике Физика 7 класс, тема 04. Давление тел (10+0 ч)
Определение давления. Давление жидкости. Закон Паскаля. Давление газа.
Атмосферное давление. Барометр Торричелли. Барометр-анероид.
Вакуумметры. Манометры: жидкостные и деформационные.
Пневматические и гидравлические механизмы. Что значит проекция вектора на ось в физике Физика 7 класс, тема 05. Работа и энергия (9+1 ч)
Механическая работа. Коэффициент полезного действия. Мощность.
Энергия. Кинетическая и потенциальная энергия.
Механическая энергия. Внутренняя энергия.
Взаимные превращения энергии. Что значит проекция вектора на ось в физике Физика 7 класс, тема 06. Введение в термодинамику (15+2 ч)
Температура и термометры. Количество теплоты и калориметр.
Теплота плавления/кристаллизации и парообразования/конденсации.
Первый закон термодинамики. Двигатель внутреннего сгорания.
Теплота сгорания топлива и КПД тепловых двигателей.
Теплообмен. Второй закон термодинамики.
Что значит проекция вектора на ось в физике

Учебник Физика 8 класс Кривченко И.В., размещённый в этой рубрике, включён в федеральный перечень учебников в соответствии с ФГОС. Учебник в цветном полиграфическом исполнении с твёрдым переплетом объёмом 150 стр. вышел из печати в июле 2015 г. в четвёртом издании. Учебник физики 8 класса рассчитан на 2 урока в неделю и содержит 5 тем курса физики, которые перечислены ниже.

Что значит проекция вектора на ось в физике Физика 8 класс, тема 07. Молекулярно-кинетическая теория (8+1 ч)
Из истории МКТ. Частицы вещества. Движение частиц вещества.
Взаимодействие частиц вещества. Систематизирующая роль МКТ.
Кристаллические тела. Аморфные тела. Жидкие тела. Газообразные тела.
Агрегатные превращения. Насыщенный пар. Влажность воздуха. Что значит проекция вектора на ось в физике Физика 8 класс, тема 08. Электронно-ионная теория (8+1 ч)
Строение атомов и ионов. Электризация тел и заряд.
Объяснение электризации. Закон сохранения электрического заряда.
Электрическое поле. Электрический конденсатор. Электрический ток.
Электропроводность жидкостей, газов и полупроводников. Что значит проекция вектора на ось в физике Физика 8 класс, тема 09. Постоянный электрический ток (13+2 ч)
Электрическая цепь. Сила тока. Электрическое напряжение. Работа тока.
Закон Ома для участка цепи. Сопротивление соединений проводников.
Закон Джоуля-Ленца. Электронагревательные приборы.
Полупроводниковые приборы. Переменный ток. Что значит проекция вектора на ось в физике Физика 8 класс, тема 10. Электромагнитные явления (8+1 ч)
Магнитное поле. Соленоид и электромагнит. Постоянные магниты.
Действие магнитного поля на ток. Электродвигатель на постоянном токе.
Электромагнитная индукция. Электротрансформатор. Передача электроэнергии.
Электродвигатель на переменном токе. Что значит проекция вектора на ось в физике Физика 8 класс, тема 11. Колебательные и волновые явления (9+2 ч)
Период, частота и амплитуда колебаний. Нитяной и пружинный маятники.
Механические волны. Свойства механических волн. Звук.
Электромагнитные колебания. Излучение и прием электромагнитных волн.
Свойства электромагнитных волн. Принципы радиосвязи и телевидения.
Что значит проекция вектора на ось в физике

Учебник Физика 9 класс Кривченко И.В., размещённый в этой рубрике, включён в федеральный перечень учебников в соответствии с ФГОС. Учебник в цветном полиграфическом исполнении с твёрдым переплетом объёмом 150 стр. вышел из печати в июле 2015 г. в третьем издании. Учебник физики 9 класса рассчитан на 2 урока в неделю и содержит 4 темы курса физики, которые перечислены ниже.

Для перехода к параграфам кликайте нумерацию 01 02 03 04 05 и т.д. вверху страницы. Параграфы каждой темы курса физики снабжены интерактивными вопросами и заданиями.

Физика.ru • Клуб для учителей физики, учащихся 7-9 классов и их родителей

Источник

Векторы в физике

Закрепленный вектор — упорядоченная пара точек (направленный отрезок, имеющий начало и конец).

Длина вектора — расстояние между началом и концом вектора.

Если задана прямоугольная система координат, и координаты начала и конца вектора заданы в ней парами \(A=(x_1,y_1)\) и \(B=(x_2,y_2)\) соответственно, тогда координаты вектора можно задать \[\overrightarrow=\<\,x_2-x_1, y_2-y_1\,\>\]

Что значит проекция вектора на ось в физике

Тогда длина вектора \(\overrightarrow\) задается формулой

Что значит проекция вектора на ось в физике

Рассмотрим ситуацию, когда брусок движется по наклонной плоскости:

Что значит проекция вектора на ось в физике

Исходя из рисунка мы можем записать II закон Ньютона в векторной форме: \[\vec_\text<тр>+m\vec+\vec=m\vec\]

Запишем теперь проекции на оси:

Посмотрим, как получили два вышеприведенных равенства. Направим оси, как на рисунке, тогда по оси \(OY\) ускорение и сила трения на тело не действуют, так как они направлены перпендикулярно этой оси, а проекции сил, перпендикулярных оси, равны нулю.

Сложение векторов можно производить по правилу треугольника или по правилу параллелограмма, рассмотрим на примере.

Что значит проекция вектора на ось в физике

Рассмотрим различные варианты произведения вектора \(\vec\) на какое-то вещественное число \(\lambda\) :

При умножении на нулевое число получается нулевой вектор (вектор нулевой длины);

При умножении на положительное число получается вектор, сонапаравленный исходному вектору (происходит просто “удлинение” или “укорачивание” нашего вектора, направление не меняется);

При умножении на отрицательное число получается вектор, противоположно направленный исходному вектору (происходит “разворот” вектора на 180 градусов и изменение его длины одновременно).

Что значит проекция вектора на ось в физике

Скалярным произведением векторов называют число, равное произведению длин этих векторов на косинус угла между ними.

Физический смысл скалярного произведения

Источник

Большая теория по векторам

И ты наверняка обратил внимание, что некоторые величины имеют только значение (число) – например, путь (\(L\)).

А некоторые имеют и число, и направление — например, перемещение (\(\vec\)).

И сейчас ты узнаешь, почему это настолько важно.

Векторы — коротко о главном

Решать задачи с векторами — легко!

Векторы и… Колумб

В 1492 году Колумб приказал кораблям изменить курс на запад-юго-запад, полагая, что он и его команда уже прошли мимо Японии, не заметив ее островов.

Вскоре его экспедиция наткнулась на множество архипелагов, которые ошибочно принимали за земли Восточной Азии. И теперь, спустя века, американцы в октябре отмечают высадку Колумба в Новом Свете.

Кто знает, как повернулась бы история, если бы его корабли не поменяли свое направление?

О направлении

Направление – одна из важнейших характеристик движения.

Подумай, какие из этих величин являются просто числами, а какие тоже являются числами, но имеют еще и направление.

Наверное, ты без труда заметил, что направление имеют сила, скорость, перемещение, а время, длина, масса и температура – это просто числа.

Так вот, «просто числа» — это скалярные величины (их также называют скалярами).

А «числа с направлением» — это векторные величины (их иногда называют векторы).

В физике существует множество скалярных и векторных величин.

Что такое скалярная величина?

Скалярная величина, в отличие от вектора, не имеет направления и определяется лишь значением (числом)

Это, например, время, длина, масса, температура (продолжи сам!)

Что такое векторная величина?

Векторная величина – это величина, которая определяется и значением, и направлением.

В случае с векторами нам важно, куда мы, например, тянем груз или в какую сторону движемся.

Например, как на этом рисунке изображен вектор силы (нам важно не только с какой силой, но и куда мы тянем груз):

Что значит проекция вектора на ось в физике

Как обозначаются векторы?

Векторы принято обозначать специальным символом – стрелочкой над названием. Вот, например, вектор перемещения: \(\vec\)

Значение вектора – это модуль вектора, то есть его длина.

Обозначить это можно двумя способами: \(\left| <\vec> \right|\) или \(S\)

Операции над векторами

Для решения задач необходимо уметь работать с векторами: складывать, вычитать, умножать их.

Давай научимся это делать. Мы пойдем от простого к сложному, но это вовсе не значит, что будет трудно!

Умножение вектора на число

Если вектор умножить на какое-либо число (скаляр), мы просто «растягиваем» вектор, сохраняя его направление. Получившийся вектор сонаправлен начальному, то есть они имеют одинаковое направление.

(Если направление противоположно, обозначаем так: \(\vec\uparrow \downarrow \vec\))

Рассмотрим на примере, используя клетку для точности построений:

Что значит проекция вектора на ось в физике

Если вектор умножить на ноль, он станет нулевым.

Обязательно нужно ставить значок вектора над нулем! Нельзя говорить, что векторная величина просто равна скалярной:

Рассмотрим некоторые свойства нулевого вектора.

Если он нулевой, то его длина равна нулю! Логично, не правда ли?

А это значит, что его начало совпадает с концом, это просто какая-то точка.

Нулевой вектор – вектор, начало которого совпадает с концом.

Нулевой вектор принято считать сонаправленным любому вектору.

Его мы можем получить не только путем умножения вектора на ноль, но и путем сложения противонаправленных векторов:

А если к любому вектору прибавит нулевой, ничего не изменится:

Если вектор умножают на отрицательное число, он изменит свое направление на противоположное. Такой вектор называется обратным данному.

Что значит проекция вектора на ось в физике

Но такие векторы должны быть коллинеарны. Звучит как скороговорка, но ничего страшного. Главное – понять суть.

Коллинеарные векторы – векторы, лежащие на одной прямой или на параллельных прямых.

Что значит проекция вектора на ось в физике

Две прямые параллельны: \(q\parallel p\)

Векторы лежат на одной прямой: они коллинеарны. По направлению видно, что они противонаправлены, это обозначается так:

Векторы лежат на параллельных прямых, они коллинеарны. При этом они сонаправлены:

Эти двое тоже коллинеарны! Они ведь лежат на параллельных прямых. При этом они противонаправлены:

\(\vec\uparrow \downarrow \vec\)

Коллинеарные векторы, имеющие одинаковую длину и противоположные направления, называются обратными друг другу.

Параллельный перенос векторов

Одно из важных свойств вектора, которое очень часто помогает в операциях над ним, – параллельный перенос.

Если передвинуть вектор, не меняя его направления и длины, он будет идентичен начальному. Это свойство – параллельный перенос.

Что значит проекция вектора на ось в физике

Сложение векторов по правилу треугольника

Сложение векторов – одна из самых легких и приятных вещей. Предположим, у нас есть два вектора:

Что значит проекция вектора на ось в физике

Наша цель – найти такой вектор, который будет являться суммой двух данных:

Для начала нужно сделать так, чтобы конец одного вектора был началом другого. Для этого воспользуемся параллельным переносом:

Что значит проекция вектора на ось в физике

Теперь достроим до треугольника.

Но как узнать направление нужного нам вектора?

Все просто: вектор суммы идет от начала первого слагаемого к концу второго, мы словно «идём» по векторам:

Что значит проекция вектора на ось в физике

Это называется правилом треугольника.

Больше двух слагаемых векторов. Сложение по правилу многоугольника

Но что делать, нам нужно сложить не два, а три, пять векторов или даже больше?

Мы руководствуемся той же логикой: соединяем векторы и «идём» по ним:

Что значит проекция вектора на ось в физике

Это называется правилом многоугольника.

Вычитание векторов через сложение

Вычитание векторов не сложнее. Это даже можно сделать через сумму! Для этого нам понадобится понятие обратного вектора. Запишем разность так:

Тогда нам лишь остается найти сумму с обратным вектором:

Что значит проекция вектора на ось в физике

А сделать это очень легко по правилу треугольника:

Что значит проекция вектора на ось в физике

Всегда помни, что вычитание можно представлять сложением, а деление — умножением на дробь.

Вычитание векторов через треугольник

Вычитать векторы можно через треугольник. Основная задача будет состоять в том, чтобы определить направление вектора разности.

Итак, векторы должны выходить из одной точки. Далее мы достраиваем рисунок до треугольника и определяем положение. Рассмотрим два случая:

Что значит проекция вектора на ось в физике

Что значит проекция вектора на ось в физике

Направление вектора разности зависит от того, из какого вектора мы вычитаем. У них совпадают концы.

Универсальное правило параллелограмма

Есть еще один способ сложения и вычитания векторов.

Способ параллелограмма наиболее востребован в физике и сейчас ты поймешь, почему. Основа в том, чтобы векторы выходили из одной точки, имели одинаковое начало.

Что значит проекция вектора на ось в физике

Ничего не напоминает?

Именно! Когда мы делаем чертеж к задачам по физике, все силы, приложенные к телу, мы рисуем из одной точки.

В чем же заключается правило параллелограмма? С помощью параллельного переноса достроим до параллелограмма:

Что значит проекция вектора на ось в физике

Тогда вектор суммы будет диагональю этой фигуры. Это легко проверяется правилом треугольника. Начало этого вектора совпадает с началом двух слагаемых векторов:

Что значит проекция вектора на ось в физике

Другая диагональ будет являться разностью этих векторов. Направление определяем так же, как делали раньше.

Что значит проекция вектора на ось в физике

Скалярное произведение векторов

Еще одной важной операцией является произведение векторов. Рассмотрим скалярное произведение. Его результатом является скаляр.

Уравнение очень простое: произведение длин этих векторов на косинус угла между ними.

Что значит проекция вектора на ось в физике

Векторное произведение векторов

Векторное произведение векторов пригодится нам в электродинамике.

Его формула лишь немного отличается от предыдущей:

В отличие от скалярного произведения, результатом его является вектор и его даже можно изобразить!

После параллельного переноса векторов и нахождения угла между ними достроим их до параллелограмма и найдем его площадь. Площадь параллелограмма равна длине вектора произведения:

Что значит проекция вектора на ось в физике

Этот вектор одновременно перпендикулярен двум другим. Его направление зависит от условного порядка векторов, который либо определен какими-то фактами (когда мы будем изучать силу Лоренца), либо является свободным.

Что значит проекция вектора на ось в физике

Об этом мы поговорим подробнее, когда будем изучать электродинамику.

Итак, мы разобрали операции с векторами, рассмотрев даже самые сложные из них. Это было не так тяжело, верно? Так происходит не только с векторами, но и со многими другими темами. Идя от легкого к сложному, мы даже не заметили трудностей.

Ведь всегда стоит помнить о том, что даже самое длинное путешествие начинается с первого шага.

Проекции векторов

Что такое проекция вектора и с чем ее едят?

Мы уже выяснили, что над векторами можно проводить множество операций. Здорово, когда можешь начертить векторы, достроить их до треугольника и измерить результат линейкой.

Но зачастую физика не дает нам легких цифр. Наша задача – не отчаиваться и быть умнее, упрощая себе задачи.

Для того, чтобы работать с векторами как с числами и не переживать об их положении и о точности рисунков, были придуманы проекции.

Проекция вектора – словно тень, которую он отбрасывает на ось координат. И эта тень может о многом рассказать.

Ось координат — прямая с указанными на ней направлением, началом отсчёта и выбранной единицей масштаба.

Ось можно выбрать произвольно. В зависимости от ее выбора можно либо значительно упростить решение задачи, либо сделать его очень сложным.

Именно поэтому необходимо научиться работать с проекциями и осями.

Построение проекции. Определение знака

Возьмем вектор и начертим рядом с ним произвольную ось. Назвать ее тоже можно как угодно, но мы назовем ее осью Х.

Что значит проекция вектора на ось в физике

Теперь опустим из начала и конца вектора перпендикуляры на эту ось. Отметим координаты начала (Х0) и конца (Х). Рассмотрим отрезок, заключенный между этими точками.

Казалось бы, мы нашли проекцию. Однако думать, что проекция является простым отрезком, – большое заблуждение.

Не все так просто: проекция может быть не только положительной. Чтобы найти проекцию, нужно из координаты конца вычесть координату начала:

Что значит проекция вектора на ось в физике

Проекция вектора на ось — разность между координатами проекций точек конца и начала вектора на ось.

В случае выше определить знак довольно легко. Сразу видим, что координата конца численно больше координаты начала и делаем вывод о том, что проекция положительна:

Порой работать с буквами трудно. Поэтому предлагаю взять конкретный пример:

Что значит проекция вектора на ось в физике

Рассмотрим другой случай. В этот раз координата начала больше координаты конца, следовательно, проекция отрицательна:

Что значит проекция вектора на ось в физике

Рассмотрим еще один интересный случай.

Давай разместим ось так, чтобы вектор был ей перпендикулярен. Проекции точек начала и конца совпадут и проекция вектора будет равна нулю!

Что значит проекция вектора на ось в физике

Анализ углов

Рассматривая эти ситуации, можно заметить, что знак, который принимает проекция вектора напрямую зависит от угла между вектором и осью, то есть от его направления!

Из начала вектора проведем луч, параллельный оси и направленный в ту же сторону, что и ось. Получим угол между вектором и осью.

Если угол острый, проекция положительна:

Что значит проекция вектора на ось в физике

Если угол тупой, проекция отрицательна:

Что значит проекция вектора на ось в физике

Обрати особое внимание на то, какой именно угол является углом между вектором и осью!

Частные случаи проекции

Настоящий подарок судьбы – тот момент, когда вектор параллелен оси. Это сохраняет драгоценное время при решении множества задач. Рассмотрим эти случаи.

Если вектор параллелен оси, угол между ними либо равен нулю, либо является развернутым (180 О ). Это зависит от направления.

При этом длина проекции совпадает с длиной вектора! Смотри!

Как и прежде, если вектор направлен туда же, куда и ось, проекция положительна:

Что значит проекция вектора на ось в физике

Если вектор направлен в другую сторону, проекция отрицательна:

Что значит проекция вектора на ось в физике

Если вектор направлен туда же, куда и ось, его проекция положительна. Если вектор направлен в другую сторону, его проекция отрицательна.

Эти утверждения применимы не только к векторам, которые параллельны оси. Это особенно удобно использовать в тех случаях, когда ось направлена под углом.

Что? Почему раньше не сказал? А… Ну…

Хватит вопросов! Вот тебе пример:

Что значит проекция вектора на ось в физике

\(\vec\) направлен противоположно оси. Его проекция отрицательна.

Еще один частный случай – работа с обратными векторами.

Давай выясним, как связаны проекции данного вектора и вектора, который является ему обратным. Начертим их и обозначим координаты начал и концов:

Что значит проекция вектора на ось в физике

Проведем дополнительные линии и рассмотрим два получившихся треугольника. Они прямоугольны, так как проекция строится с помощью перпендикуляра к оси.

Наши векторы отличаются лишь направлением. При этом, если мы просто посмотрим на них как на прямые, мы можем сказать, что они параллельны. Их длины тоже одинаковы.

Прямоугольные треугольники равны по углу и гипотенузе. Это значит, что численно равны и их катеты, в том числе те, которые равны проекциям:

Что значит проекция вектора на ось в физике

Мы помним, что обратные векторы всегда коллинеарны. Это значит, что прямые, на которых они расположены, находятся под одним углом к оси:

Остается лишь определиться со знаками. Данный вектор направлен по оси Х, а обратный ему – против. Значит, первый положителен, а второй отрицателен. Но модули их равны, так как равны их длины.

Проекции обратных векторов равны по модулю и противоположны по знаку.

Давайте еще раз уточним.

Вектор сам по себе не может быть отрицательным (обратный вектор есть вектор, умноженный на минус единицу).

Длина вектора так же не может быть отрицательной. Длина есть модуль вектора, а модуль всегда положителен.

Проекция вектора бывает отрицательной. Это зависит от направления вектора.

Способы нахождения проекций и векторов с помощью тригонометрии

Зная угол между вектором и осью, можно не прибегать к координатам. Углы, прямоугольные треугольники… Всегда стоит помнить, что, если ты видишь прямоугольный трегольник, тригонометрия протянет тебе руку помощи.

Именно тригонометрия чаще всего применяется в задачах, где требуется работать с проекциями. Особенно она помогает в задачах на второй закон Ньютона.

Рассмотрим вектор и его проекции на оси:

Что значит проекция вектора на ось в физике

Можем заметить, что проекции вектора соответствуют катетам прямоугольного треугольника, который легко можно достроить:

Что значит проекция вектора на ось в физике

Тогда обозначим прямой угол и угол между вектором и осью:

Что значит проекция вектора на ось в физике

Зная, что проекции соответствуют катетам, мы можем записать, чему равны синус и косинус угла. Они равны отношению проекций к гипотенузе. За гипотенузу считаем длину данного вектора.

Из этих уравнений легко выражаются проекции.

А еще следует помнить, что из проекций мы можем найти длину данного вектора с помощью теоремы Пифагора:

Зная, как работать с проекциями векторов и часто практикуясь, можно довести свои навыки решения большинства задач механики до совершенства.

Действия над проекциями векторов. Решение задач

Умение применять свои знания на практике невероятно важны. Это касается не только физики.

Мы знаем, что проекции были придуманы для того, чтобы работать не с векторами, а с числами.

Сложение проекций. Доказательство главного свойства

Предположим, у нас есть два вектора и нам нужно найти их сумму. Посчитать по клеткам нам вряд ли удастся:

Что значит проекция вектора на ось в физике

Спроецируем оба вектора на ось Х. Заметим, что конец одного вектора есть начало второго, то есть их координаты совпадают:

Что значит проекция вектора на ось в физике

Давай посчитаем проекции векторов и проекцию вектора их суммы:

Что значит проекция вектора на ось в физике

Мы можем заметить, что сумма проекций двух данных векторов оказалась равна проекции вектора их суммы!

Намного важнее уметь доказывать гипотезы в общем виде.

Тогда никто не сможет упрекнуть тебя в том, что твои утверждения – просто результат совпадения!

Согласно определению проекции, запишем уравнения проекций для двух данных векторов и вектора их суммы:

Что значит проекция вектора на ось в физике

Затем запишем, чему равна сумма этих векторов.

Что значит проекция вектора на ось в физике

Что значит проекция вектора на ось в физике

Что значит проекция вектора на ось в физике

Мы доказали нашу гипотезу.

Но что насчет разности?

Все очень просто! Помнишь, как мы считали разность через сумму? Здесь это делается аналогично!

Проекция суммы векторов равна сумме проекций векторов.

Проекция разности векторов равна разности проекций векторов.

Или можно записать так:

Простейшие задачи на нахождение проекций

Простейшие задачи на нахождение проекций чаще представлены в виде различных графиков или рисунков.

Давай научимся с ними работать.

Нам даны оси и векторы. Задача: найти проекции каждого из них на обе оси.

Что значит проекция вектора на ось в физике

Будем делать все по порядку. Для каждого вектора предлагаю сначала определить знак проекций, а затем посчитать их.

В первом случае вектор направлен против оси Х.

Значит, его проекция на эту ось будет отрицательна. Мы убедимся в этом с помощью вычислений.

Сразу бросается в глаза то, что вектор расположен перпендикулярно оси Y. Его проекция на эту ось будет равна нулю, ведь расстояние между проекциями точек начала и конца равно нулю!

Что значит проекция вектора на ось в физике

Рассмотрим второй вектор.

Он «сонаправлен» оси Y и «противонаправлен» оси Х. Значит, проекция на ось будет положительна, а на ось Х – отрицательна.

На осях для удобства отметим проекции точек начала и конца вектора, проведя перпендикуляры. Затем проведем вычисления:

Что значит проекция вектора на ось в физике

Рассмотрим \(\vec\). Заметим, что он является обратным для \(\vec\): их длины равны, а направления противоположны.

Мы помним, что в таком случае их проекции отличаются лишь знаками. И это действительно так:

Что значит проекция вектора на ось в физике

Поступаем с \(\vec\) так же, как поступали с первым вектором.

Он перпендикулярен оси Х, а значит его проекция (что есть разность между проекциями точки конца и начала!) на эту ось равна нулю.

Проведя перпендикуляры, считаем проекцию на ось Y:

Что значит проекция вектора на ось в физике

С \(\vec\) работать приятно: он расположен по направлению обеих осей. Обе его проекции будут положительны, остается лишь посчитать их:

Что значит проекция вектора на ось в физике

Задачи на нахождение вектора и его угла с осью

С помощью проекций можно найти длину вектора и его направление, а также угол, под которым он находится относительно оси.

Давай попробуем это сделать.

Даны проекции вектора на две оси. Для начала нарисуем оси:

Что значит проекция вектора на ось в физике

Расположить вектор можно как угодно, поэтому произвольно отметим на осях его проекции. Мы помним, что проекции и вектор образуют прямоугольный треугольник. Давай попробуем его составить.

С проекцией на ось Х все понятно, просто поднимаем ее. Но куда поставить проекцию оси Y?

Что значит проекция вектора на ось в физике

Для этого нам нужно определить направление вектора. Проекция на ось Х отрицательна, значит вектор направлен в другую сторону от оси.

Проекция на ось Y положительна. Вектор смотрит в ту же сторону, что и ось.

Исходя из этого, мы можем нарисовать вектор и получить прямоугольный треугольник:

Что значит проекция вектора на ось в физике

Теперь нужно найти длину этого вектора. Используем старую добрую теорему Пифагора:

Что значит проекция вектора на ось в физике

Обозначим угол \(\alpha \), который необходимо найти, мы учились это делать в начале изучения проекций. Он расположен вне треугольника. Мы ведь не ищем легких путей, верно?

Рассмотрим смежный ему угол \(\beta \). Его найти гораздо проще, а в сумме они дадут 180 градусов.

Чтобы сделать это, абстрагируемся от векторов, проекций и просто поработаем с треугольником, стороны которого равны 3, 4 и 5. Найдем синус угла \(\beta \) и по таблице Брадиса (либо с помощью инженерного калькулятора) определим его значение.

Вычитанием угла \(\beta \) из 180 градусов найдем угол \(\alpha \):

Что значит проекция вектора на ось в физике

Что значит проекция вектора на ось в физике

Главный метод работы с осями и проекциями в решении физических задач

В большинстве задач по физике, когда в условиях нам дают значения векторных величин, например, скорости, нам дают длину вектора.

Поэтому важно научиться искать проекции вектора и связывать их с ней.

Рассмотрим следующий рисунок (вектор F2 перпендикулярен вектору F3):

Что значит проекция вектора на ось в физике

Чаще всего с подобным расположением векторов мы встречаемся в задачах, где необходимо обозначить все силы, действующие на тело.

Одним из важных этапов решение «векторной части» этих задач является правильный выбор расположения осей. Он заключается в том, чтобы расположить оси так, чтобы как можно большее число векторов оказались им параллельны.

Как правило, оси располагаются под прямым углом друг к другу, чтобы не получить лишней работы с углами.

Сделаем это для данного рисунка:

Что значит проекция вектора на ось в физике

Мы видим, что остальные векторы расположены к осям под каким-то углом.

Пунктиром проведем горизонтальную линию и отметим этот угол, а затем отметим другие равные ему углы:

Что значит проекция вектора на ось в физике

Пришло время искать проекции. У нас две оси, поэтому сделаем для удобства табличку:

Что значит проекция вектора на ось в физике

Мы располагали оси так, чтобы некоторые векторы были расположены параллельно осям, значит их проекции будут равняться их длинам.

Оси перпендикулярны друг другу, поэтому некоторые проекции будут равняться нулю. Запишем это:

Что значит проекция вектора на ось в физике

Переходим к векторам, которые расположены под углом.

Выглядит страшно, но это не так!

Дальше идет чистая геометрия. Чтобы не запутаться, рассмотрим лишь часть рисунка. А лучше и вовсе перерисовать его часть, могут открыться много новых вещей.

Что значит проекция вектора на ось в физике

Из конца вектора F1 проведем перпендикуляр к оси Y. Мы получим прямоугольный треугольник, где нам известен угол (альфа) и гипотенуза (вектор).

Обозначим, что является проекцией. Это катет:

Что значит проекция вектора на ось в физике

Здесь на помощь придет тригонометрия. Этот катет прилежащий к известному углу. Синус угла есть проекция катета, деленная на гипотенузу. Отсюда можно выразить катет (проекцию) и записать ее в таблицу.

Вспомни, когда мы первый раз встретились с тригонометрией, изучая векторы. Мы тоже рассматривали прямоугольный треугольник.

Найдем проекцию на ось Х. Это, кажется, сложнее, ведь мы не знаем угол…

Знаем! Ведь проекция вектора на ось Х – то же самое, что противолежащий катет уже рассмотренного треугольника, смотри:

Что значит проекция вектора на ось в физике

Значит, проекцию на ось Х можно найти через косинус.

Не забываем смотреть на направления векторов!

Попробуй найти проекции четвертого вектора самостоятельно и сверься с таблицей.

Что значит проекция вектора на ось в физике

Значит, проекцию на ось Х можно найти через косинус.

Не забываем смотреть на направления векторов!

Попробуй найти проекции четвертого вектора самостоятельно и сверься с таблицей.

Заключение

Итак, теперь мы знаем о векторах очень много! Мы выяснили, зачем они нужны и как с ними работать, а еще разобрали их роль в решении различных задач. Теперь векторы — наша прочная опора.

Именно из таких знаний складывается порой нечто более сложное и комплексное, что-то, что безусловно нам однажды поможет.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *