Что значит продифференцировать функцию
Дифференцирование функции, нахождение производной
Если вам нужно решить задачу, в рамках которой требуется вычислить производную какой-либо функции с одной переменной, советуем внимательно прочесть эту статью. Здесь приводятся общие положения теории дифференцирования, имеющие отношение к вычислению производной. Для этого могут быть использованы разные способы, ведь исходная функция может быть задана явно или неявно, в параметрическом виде, быть элементарной, основной или сложной, значит, в каждой ситуации бывает нужен свой подход.
Таблица дифференцирования функции
Мы собрали всю информацию, которую нужно знать для правильного дифференцирования функции, и представили ее в табличном виде:
Степенная фунция y = x p
y = a x a x ‘ = a x · ln a
В частности, при a = e имеем
log a x ‘ = 1 x · ln a
В частности, при a = e имеем
y = ln x ln x ‘ = 1 x
Производная сложной функции
( f ( g ( x ) ) ) ‘ = f ‘ ( g ( x ) ) · g ‘ ( x )
Производная неявно заданной функции
Производная обратной функции
Обратные тригонометрические функции
Производная параметрически заданной функции
y = f ( x ) y ‘ = y · ( ln ( f ( x ) ) ) ‘
Пояснения таблицы
Содержимое таблицы требует небольших пояснений. Например, в наиболее простом случае для дифференцирования нам пригодится определение производной, т.е. вычисление соответствующего предела. Это действие носит название непосредственного дифференцирования.
Если вам приходится работать с основной элементарной функцией, то следует использовать таблицу основных производных. В ней приводятся все готовые значения, доказанные на основании определения. Это очень удобно, и мы советуем вам держать такую таблицу под рукой.
Что значит продифференцировать функцию
При дифференцировании различают функции по способу их задания: явные, неявные и параметрические.
Производной функции y = f ( x ) по переменной x в некоторой точке называется предел отношения приращения функции к приращению аргумента, когда последнее стремится к нулю, то есть
Производная характеризует скорость изменения функции в достаточно малой окрестности заданной точки.
Приведем таблицу производных основных элементарных функций (без доказательства), которые рассматриваются нами как функции простые и явно заданные.
Следствие. В точках разрыва функция производной не имеет
Существуют такие точки, в которых функция непрерывна, но не дифференцируема. Так, функция y =| x | в точке x =0 непрерывна, но производной не имеет, так как в этой точке к графику функции можно провести бесконечное множество касательных (рис. 3.6). Такие точки называются угловыми или точками излома функции. Данный случай показывает, что обратное утверждение к теореме 3.9 неверно.
Среди явных функций особое место занимают обратные функции, производная которых находится с помощью следующей теоремы.
Теорема 3.10. Если строго монотонная функция y = f ( x ) дифференцируема на некотором интервале Х, причем ее производная не обращается в нуль на Х, то обратная к ней функция x = φ ( y ) также дифференцируема на этом интервале, при этом:
По определению производной можно записать:
Среди явных функций выделяют класс сложных функций.
Теорема 3.11. Чтобы продифференцировать сложную функцию необходимо сначала продифференцировать внешнюю функцию по внутренней, считая внутреннюю функцию независимой переменной, затем продифференцировать внутреннюю функцию по независимому переменному и результаты дифференцирования перемножить, то есть
Решение. Согласно формуле (3.31) и с учетом табли чных формул (3.17), (3.19), (3.29) имеем:
где t – параметр. Производную такой функции несложно получить:
Пример 3.9. Найти производную функции .
Решение. Согласно формуле (3.32) и с учетом табличных формул (3.18), (3.19) имеем:
Помимо таблицы производных имеют место правила дифференцирования.
Теорема 3.12. Производная суммы двух дифференцируемых функций равна сумме производных этих функций:
Данная теорема может быть обобщена для произвольного конечного числа функций-слагаемых.
Решение. Согласно формулам (3.33) и (3.31) и с учетом табличных формул (3.17), (3.20), (3.23) имеем:
Теорема 3.13. Производная произведения двух дифференцируемых функций равна произведению производной первой функции-сомножителя на вторую функцию плюс произведение первой функции на производную второй функции–сомножителя, то есть
Решение. Согласно формуле (3.34) и с учетом табличных формул (3.22), (3.24) имеем:
Теорема 3.14. Производная частного двух функций равна дроби, у которой знаменатель есть квадрат знаменателя данной дроби, а числитель есть разность между произведением знаменателя на производную числителя и произведением числителя на производную знаменателя, то есть
Решение. Согласно формуле (3.35) и с учетом табличных формул (3.17), (3.29) имеем:
Решение. Согласно формуле (3.31) дифференцирования сложной функции и (3.34) производной произведения, с учетом табличных формул (3.17) и (3.18) имеем:
Дифференциалом функции y = f ( x ) в точке x называется главная часть приращения этой функции, равная произведению производной функции на приращение аргумента:
Формула (3.39) применяется для вычисления приближенных значений функций.
Правила дифференцирования: доказательство и примеры
Чтобы успешно решать задачи на дифференцирование, нужно уметь находить разные виды производных. Данная статья посвящена основным правилам дифференцирования, которые постоянно используются на практике. С помощью самого определения производной функции мы сформулируем доказательства всех этих правил и подробно рассмотрим несколько примеров, чтобы понять, как они применяются при решении задач.
Сформулируем основные проблемы дифференцирования:
Разберем все эти случаи по порядку.
Как вынести постоянный множитель за знак производной
Для начала нам нужно доказать следующую формулу:
Используя определение производной, запишем следующее:
Этим мы доказали первое правило дифференцирования. Разберем задачу на его применение.
Решение
Вынесем множитель за знак производной и получим:
Это самый простой пример. На практике чаще всего приходится предварительно преобразовывать дифференцируемую функцию, чтобы увидеть нужное значение в таблице производных и применить соответствующее правило.
Решение
Решение
Сначала нам нужно выполнить преобразование исходной функции.
Далее применяем изученное выше правило и берем из таблицы производных соответствующее значение:
Как вычислить производную суммы и производную разности
Так мы можем доказать равенство производной суммы или разности n-ного количества функций сумме или разности их производных:
Решение
Первым делом упрощаем данную функцию.
После этого применяем второе правило – производной суммы/разности:
Первое правило говорит нам о том, что можно вынести постоянный множитель за знак производной, значит:
Нам остается только заглянуть в таблицу производных и взять оттуда соответствующее значение:
Как вычислить производную произведения функций
Правило дифференцирования произведения двух функций выглядит следующим образом: f x · g ( x ) ‘ = f ‘ ( x ) · g ( x ) ‘ + f ( x ) · g ‘ ( x )
Попробуем доказать его.
Это и есть результат, который нам нужно было доказать.
Решение
y ‘ = ( t g x · a r c sin x ) ‘ = ( t g x ) ‘ · a r c sin x + t g x · ( a r c sin x ) ‘
Берем нужное значение из таблицы производных основных элементарных функций и записываем ответ:
Решение
Теперь разберем, что нужно делать в случае, когда производную нужно найти для произведения трех функций. По той же схеме решаются задачи с произведениями четырех, пяти и большего количества функций.
Решение
У нас получится следующее:
y ‘ = ( ( 1 + x ) · sin x · ln x ) ‘ = 1 + x · sin x ‘ · ln x + 1 + x · sin x · ln x ‘
1 + x · sin x ‘ = ( 1 + x ) ‘ · sin x + 1 + x · ( sin x ) ‘
С помощью этого правила и таблицы производных получим:
Теперь подставим в формулу то, что у нас получилось:
y ‘ = 1 + x · sin x · ln x ‘ = 1 + x · sin x ‘ · ln x + ( 1 + x ) · sin x · ( ln x ) ‘ = = sin x + cos x + x · cos x · ln x + ( 1 + x ) · sin x x
Ответ: y ‘ = sin x + cos x + x · cos x · ln x + ( 1 + x ) · sin x x
Из этого примера видно, что иногда приходится применять несколько правил дифференцирования подряд для вычисления нужного результата. Это не так сложно, как кажется, главное – соблюдать нужную последовательность действий.
Решение
Как вычислить производную частного двух функций (дробного выражения с функциями)
Сразу отметим, что g ( x ) не будет обращаться в 0 ни при каких значениях x из указанного промежутка. Согласно определению производной, получим:
Решение
После этого нам потребуется правило для суммы, а также правило вынесения постоянного множителя за знак производной:
Возьмем задачу на применение всех изученных правил.
Решение
Поясним, как это получилось.
Вычисляем третье слагаемое:
Теперь собираем все, что у нас получилось:
В задачах, которые мы разобрали в этой статье, использовались только основные элементарные функции, которые были связаны между собой знаками простых арифметических действий. Они нагляднее всего иллюстрируют правила дифференцирования. Однако возможно их применение и к более сложным функциям.
После того, как мы разберем, что такое производная сложной функции, мы сможете проводить дифференцирование выражений любой сложности.
Дифференцирование функции
Смотреть что такое «Дифференцирование функции» в других словарях:
дифференцирование функции — Операция определения производной рассматриваемой функции. Например, производная линейной функции (bx+a)?=b, то есть является константой; производная степенной функции (xn)?=axn 1 (х>0), то есть дифференцирование степенной функции уменьшает ее… … Справочник технического переводчика
ДИФФЕРЕНЦИРОВАНИЕ — 1) в высшей математ. производство математического анализа посредством дифференциального исчисления; 2) д. или дифференциация разделение одного сложного целого на части, характеризующиеся разными признаками; выделение самостоятельных частей.… … Словарь иностранных слов русского языка
ДИФФЕРЕНЦИРОВАНИЕ — ДИФФЕРЕНЦИРОВАНИЕ, в математике метод оценки производной некоторой данной функции. Методики ИНТЕГРИРОВАНИЯ и дифференцирования вместе составляют предмет ИСЧИСЛЕНИЙ и находят широкое применение почти во всех областях ПРИКЛАДНОЙ МАТЕМАТИКИ. см.… … Научно-технический энциклопедический словарь
Функции элементарные — Элементарные функции функции, которые можно получить из основных элементарных функций: многочлен, рациональная, степенная, показательная и логарифмическая, тригонометрические и обратные тригонометрические Гиперболические функции с помощью… … Википедия
ДИФФЕРЕНЦИРОВАНИЕ ПО СЕТИ — специальное понятие дифференцирования функций множеств y(E). Сеть N совокупность разбиений основного пространства Xс мерой m, при этом и для каждого найдется содержащее его множество Всеизмеримы и их совокупность в определенном смысле (см. [1])… … Математическая энциклопедия
Дифференцирование — Под термином дифференцирование могут подразумевать различные родственные понятия. Дифференцирование операция взятия полной или частной производной функции. Дифференцирование линейное отображение, удовлетворяющее тождеству Лейбница.… … Википедия
ДИФФЕРЕНЦИРОВАНИЕ ЧИСЛЕННОЕ — нахождение производной функции численными методами. Д. ч. используется в случаях, когда методы дифференциального исчисления неприменимы (функция задана таблично), или их применение вызывает значительные трудности (функция имеет сложное… … Математическая энциклопедия
ДИФФЕРЕНЦИРОВАНИЕ — операция, края относит функции ее производную или дифференциал. При этом речь может идти о производной или дифференциале в точке или на нек ром множестве, о частных производных, о производной по направлению, о частных и полных дифференциалах, а… … Математическая энциклопедия
ДИФФЕРЕНЦИРОВАНИЕ ОТОБРАЖЕНИЯ — нахождение дифференциала или, иначе, главной линейной части отображения. Нахождение дифференциала, т. е. аппроксимация отображения в окрестности нек рой точки линейными отображениями, является важнейшей операцией дифференциального исчисления.… … Математическая энциклопедия
Таблица производных функций
10 класс, 11 класс, ЕГЭ/ОГЭ
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Что такое производная и зачем она нужна
Прежде чем переходить к таблице для вычисления производных, дадим определение производной. В учебнике оно звучит так:
Производная функции — это предел отношения приращения функции к приращению ее аргумента, при условии, что приращение аргумента стремится к нулю.
Если же говорить простыми словами, то производная функции описывает, как и с какой скоростью эта функция меняется в данной конкретной точке. Процесс нахождения производной называется дифференцированием.
Объясним на примере: допустим, Маша решила по утрам делать зарядку и стоять в планке. В первую неделю она держалась каждый день по 10 секунд, но начиная со второй недели смогла стоять в планке с каждым днем на 3 секунды дольше. Успехи Маши можно описать следующими графиками:
Очевидно, что в первую неделю результаты Маши не менялись (т. е. были константой), скорость прироста оставалась нулевой. Если мы заглянем в таблицу производных простых функций, то увидим, что производная константы равна нулю.
Во вторую неделю время выполнения планки с 10 сек начало увеличиваться на 3 сек ежедневно.
Снова смотрим в таблицу дифференцирования производных, где указано, что производная от х равна 1.
Вот так с помощью таблицы производных и элементарной математики мы докажем, что успехи Маши росли со скоростью 3 сек в день.
Это был очень простой пример, который в общих чертах объясняет азы дифференциального исчисления и помогает понять, для чего нужны формулы из таблицы производных функций. Но разобраться в решении задач, где скорость меняется нелинейно, конечно, не так просто.
Быстрее освоить производные поможет обучение на курсах по математике в онлайн-школе Skysmart.
Производные основных элементарных функций
Таблица производных для 10 и 11 класса может включать только элементарные часто встречающиеся функции. Приведем несколько формул, которых достаточно для решения большинства задач.