Что значит приведите подобные
Подобные слагаемые. Приведение подобных слагаемых
Подобные слагаемые – это одночлены, у которых одинаковы буквенные множители.
одночлены \(2\)\(x\) и \(5\)\(x\) – подобны, так как и там, и там буквы одинаковы: икс;
одночлены \(x^2y\) и \(-2x^2y\) – подобны, так как и там, и там буквы одинаковы: икс в квадрате, умноженный на игрек. То, что перед вторым одночленом стоит знак минус не играет роли, просто у него отрицателен числовой множитель ( коэффициент );
одночлены \(3xy\) и \(5x\)– не подобны, так как в первом одночлене буквенные множители икс и игрек, а во втором – только икс;
Приведение подобных слагаемых
Подобные слагаемые можно складывать и вычитать, заменяя сложные выражения на более простые. Например, выражение \(2x+5x\) без проблем можно заменить на \(7x\). Логика такой замены понятна из пояснения выше:
Процесс замены суммы или разности подобных слагаемых одним одночленом называется «приведение подобных слагаемых».
Отметим при этом, что если слагаемые не подобны, то привести их не получится. Например, в сложить \(2x^2\) и \(3x\) – нельзя, они же разные!
Пример. Решить уравнение \(7x^2+3x-7x^2-x=6\)
В левой части уравнения есть подобные слагаемые: \(7x^2\) и \((-7x^2)\), а также \(3x\) и \((-x)\). Перепишем уравнение так, чтоб они стояли рядом. Для этого меняем местами слагаемые одночлены, не забывая сохранять знаки.
Каждый раз переписывать уравнение так, чтоб подобные стояли рядом совсем необязательно, можно приводить их сразу. Здесь это было сделано для наглядности дальнейших преобразований.
Хочу задать вопрос
Присоединяйтесь к нашей группе ВКонтакте
Смотрите нас в YouTube
Многочлен стандартного вида
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Определение многочлена
Многочлен — это сумма одночленов. Получается, что многочлен — не что иное, как несколько одночленов, собранных «под одной крышей».
Одночлен — это частный случай многочлена.
Рассмотрим примеры многочленов:
Если многочлен состоит из двух одночленов, его называют двучленом:
Многочлен — это сумма одночленов, поэтому знак «минус» относится к числовому коэффициенту одночлена. Именно поэтому мы записываем – 3×2, а не просто 3×2.
Этот же многочлен можно записать вот так:
Это значит, что каждый одночлен важно рассматривать вместе со знаком, который перед ним стоит.
Многочлен вида 10x – 3×2 + 7 называется трехчленом.
Линейный двучлен — это многочлен первой степени: ax + b. a и b здесь — некоторые числа, x — переменная.
Если разделить многочлен с переменной x на линейный двучлен x – b (где b — некоторое положительное или отрицательное число) — остаток будет только многочленом нулевой степени. То есть некоторым числом N, которое можно определить без поиска частного.
Если многочлен содержит обычное число — это число является свободным членом многочлена.
Свободный член многочлена не имеет буквенной части. Кроме того, любое числовое выражение — это многочлен. Например, вот такие числовые выражения — тоже многочлены:
Такие выражения состоят из свободных членов.
Многочлен стандартного вида
Недостаточно просто знать, что такое многочлен и что такое одночлен. Это целая алгебраическая экосистема, где у всего есть названия, определения и особенности.
Давайте разберемся, что такое многочлен стандартного вида. Многочленом стандартного вида называют многочлен, каждый член которого имеет одночлен стандартного вида и не содержит подобных членов.
Получается, что всякий многочлен можно привести к стандартному виду. Таким образом можно получить многочлен, работать с которым гораздо проще и приятнее.
К стандартному виду многочлен приводится очень просто. Нужно лишь привести в нем подобные слагаемые.
Подобные слагаемые — это подобные члены многочлена. Приведение подобных слагаемых в многочлене — приведение его подобных членов. Тут же возникает резонный вопрос: Что такое подобные члены многочлена? Это члены с одинаковой буквенной частью.
Давайте разберем на примере, как «нестандартный» многочлен приводится к стандартному виду.
Дан красавец многочлен: 3x + 5xy2 + x – xy2
Приведем подобные слагаемые. Для этого найдем все члены с одинаковыми буквенными составляющими:
Как видите, в получившемся многочлене нет подобных членов. Такой многочлен — это многочлен стандартного вида.
Онлайн-подготовка к ОГЭ по математике — отличный способ снять стресс и закрепить знания перед экзаменом.
Степень многочлена
Многочлен может иметь степень — имеет на это полное право.
Степень многочлена стандартного вида — это наибольшая из степеней, входящих в него одночленов.
Из определения можно сделать вывод, что степень многочлена возможно определить только после приведения его к стандартному виду.
Рассмотрим на примере:
Дан многочлен 6x + 4xy2 + x + xy2
Сначала приводим многочлен к стандартному виду — для этого приводим подобные слагаемые:
Получаем многочлен стандартного вида 6x + 4xy2 + x + xy2 = 7x + 5xy2.
Отсюда делаем вывод, что многочлен 7x + 5xy2 — многочлен второй степени.
Кроме того, можно сделать вывод, что и исходный многочлен 6x + 4xy2 + x + xy2 — многочлен второй степени, поскольку оба многочлена равны друг другу.
В некоторых случаях необходимо сначала привести к стандартному виду одночлены многочлена, а затем уже и сам многочлен.
Пример:
Получившийся многочлен без труда приводим к стандартному виду. Приводим подобные слагаемые:
Коэффициенты многочлена
Коэффициенты членов многочлена — это числа, которые указаны перед переменными множителями. Если перед переменной нет числа, то коэффициент этого члена = 1.
Иными словами — коэффициенты членов многочлена — это члены многочлена, представленные в виде стандартных одночленов.
Например:
Все одночлены имеют стандартный вид. 2, 5 и 18 — коэффициенты членов данного многочлена.
Кажется, со стандартным видом многочлена все понятно. Чтобы без труда приводить любой многочлен к стандартному виду, нужно потренироваться, ведь в 7 классе только и разговоров, что о многочленах. Давайте разберем несколько примеров. Попробуйте решить их самостоятельно, сверяясь с ответами.
Задание раз. Приведите многочлен к стандартному виду и определите его степень: 4x + 6xy2 + x – xy2.
Как решаем: приведем подобные слагаемые. Для этого найдем все члены с одинаковыми буквенными составляющими:
Получаем многочлен стандартного вида: 4x + 6xy2 + x – xy2 = 5x + 5xy2.
Ответ: стандартный вид многочлена 5x + 5xy2. Данный многочлен — многочлен второй степени.
Многочлен приведен к стандартному виду.
Как решаем: приведем подобные слагаемые. Для этого найдем все члены с одинаковыми буквенными составляющими:
Разобраться в многочленах не так-то просто. В этой теме немало нюансов и подводных камней. Чтобы не запутаться в множестве похожих одно на другое определений, побольше практикуйтесь. Чтобы перейти на следующую ступень и начать выполнение арифметических действий с многочленами, важно научиться приводить многочлен к стандартному виду.
Приведение подобных слагаемых: объяснение и примеры
Что такое приведение подобных слагаемых
Если в алгебраическом выражении приведены подобные слагаемые, то такое выражение называется многочленом стандартного вида.
Решаем примеры вместе
Пример 1. Привести подобные слагаемые в многочлене
.
.
Находим значение многочлена при a = −3 :
Пример 2. Привести подобные слагаемые в многочлене
Решение. Группируем слагаемые по степеням a :
.
.
Находим значение многочлена при a = −3 :
Пример 3. Привести подобные слагаемые в многочлене
.
Приводим подобные слагаемые и получаем:
.
Находим значение многочлена при a = −3 и x = −1 :
Пример 4. Привести подобные слагаемые в многочлене
Решение. Задача аналогична предыдущей. Группируем слагаемые по степеням a и x:
.
Приводим подобные слагаемые и получаем:
.
Находим значение многочлена при a = −3 и x = 1 :
Пример 5. Привести подобные слагаемые в многочлене
.
Решение. Группируем слагаемые по степеням a и b:
.
Приводим подобные слагаемые и получаем:
.
Решить примеры самостоятельно, а затем посмотреть решения
Пример 6. Привести подобные слагаемые в многочлене
Пример 7. Привести подобные слагаемые в многочлене
Пример 8. Привести подобные слагаемые в многочлене
Пример 9. Привести подобные слагаемые в многочлене
Упрощения алгебраических выражений
Что значит упростить алгебраическое выражение
Алгебраическое выражение — одна или несколько алгебраических величин (чисел и переменных), которые объединены с помощью знаков арифметических действий в виде сложения, вычитания, умножения, деления, извлечения корня, возведения в степень (при целых значениях показателей корня и степени), знаков последовательности, определяющих порядок применения данных операций (скобки разного вида).
Обязательным условием для алгебраического выражения является конечное число величин, которые его составляют. Данный принцип пригодиться математикам для решения задач в средних классах школы.
Упростить выражение — это значит уменьшить число арифметических действий, необходимых для вычисления значения данного выражения с учетом определенных значений переменных.
Правила упрощения алгебраических выражений
Существуют основные методы в алгебре для того, чтобы упростить алгебраическое выражение:
В процессе приведения выражения в более простую форму следует использовать полезные советы:
Приведение подобных
Приведение подобных слагаемых в теории заключается в сложении их коэффициентов и приписывании буквенной части.
Подобными являются слагаемые (одночлены), которые обладают буквенной частью.
В выражении 2ab+3ab+b одночлены 2ab и 3ab являются подобными слагаемыми.
Привести подобные — значит, выполнить сложение нескольких подобных слагаемых для получения в результате одного слагаемого.
К примеру, приведем слагаемые:
Заметим, что числа в таких слагаемых умножают на буквы. Данные числа носят названия коэффициентов.
Рассмотрим выражение с квадратной степенью:
Здесь число 3 является коэффициентом.
Разложение на множители
Разложить выражение на множители можно, если вынести общий множитель за скобки, применить формулы сокращенного умножения и другие.
a b 2 + a 2 c = a b 2 + a c
В распространенных случаях разложение на множители следует за приведением подобных при упрощении выражений. В итоге получаются произведения. Чтобы это понять, отдельно нужно упомянуть правила действия с дробями, а именно, при сокращении дроби числитель и знаменатель требуется записать, как произведения.
Сокращение дроби
В процессе сокращения дроби допустимо выполнять умножение или деление числителя и знаменателя дроби на одинаковое число, отличное от нуля, в результате чего величина дроби остается прежней.
Объяснение алгоритм действий при сокращении дробей:
a a + b a 2 = a a + b a · a = a + b a
Важно заметить, что сокращению подлежат исключительно множители.
Озвученное правило является следствием ключевого свойства дроби. Оно состоит в допустимости умножения или деления числителя и знаменателя дроби на одно и то же число, которое не равно нулю. В результате значение дроби останется без изменений.
Существует простой способ, руководствуясь которым можно определить, разложено ли выражение на множители. Арифметическое действие, выполняемое в последнюю очередь при вычислении значения выражения, считается «главным».
Данное правило состоит в том, что, когда при подстановке каких-либо чисел на замену буквам и вычислении значения выражения последнее действие представляет собой умножение, можно заключить, что перед нами произведение, то есть выражение разложено на множители. В том случае, когда на последнем шаге в процессе расчетов выполняется сложение или вычитание, разложение выражения на множители не выполнено, то есть сокращение не допускается.
Сложение и вычитание дробей
При сложении и вычитании обыкновенных дробей требуется найти общий знаменатель, умножить каждую из дробей на недостающий множитель и сложить или вычесть числители:
a b + c d = a · d + c · b b · d ;
Разберем правило на конкретных примерах. Вычислим:
Заметим, что знаменатели являются взаимно простыми, то есть не имеют общих множителей. Таким образом, наименьший общий множитель данных чисел соответствует их произведению. В результате:
В данном случае общим множителем является число 24. Выполним преобразования и упростим выражение:
В данном примере следует смешанные дроби записать в виде неправильных. Далее можно упростить выражение по стандартному алгоритму:
Разберем самостоятельный случай, когда знаменатели не содержат буквы. При этом алгоритм действий такой же, как и при действиях с обыкновенными дробями:
Здесь общий множитель равен 12. Тогда:
a 2 b · 3 4 + a · 2 6 = 3 a 2 b + 2 a 12
Далее можно привести подобные в числители, и разложить на множители при их наличии:
a 2 b 4 + a 6 = 3 a 2 b + 2 a 12 = a 3 a b + 2 12
Когда знаменатели содержат буквы, схема действий существенно не меняется:
Рассмотрим пример, когда требуется упростить выражение:
Разложим знаменатели на множители:
a b 2 = a · b · b a 2 b = a · a · b
Вычислим единые множители:
a b 2 = a ¯ · b ¯ ¯ · b a 2 b = a ¯ · a · b ¯ ¯
Затем можно записать общие множители и выполнить умножение:
a ¯ · b ¯ ¯ · a · b = a 2 b 2
1 a b 2 · a + 1 a 2 b · b = a + b a 2 b 2
Умножение и деление дробей
Умножение и деление дробей выполняют таким образом:
a b · c d = a · c b · d ;
a b : c d = a · d b · c
Арифметические действия выполняют в следующем порядке:
Важно заметить, что при наличии скобок, операции, которые в них заключены, необходимо выполнить в первую очередь. Далее можно приступать к раскрытию скобок. Когда имеется несколько скобок с арифметическими действиями, которые нужно умножить или разделить, в начале проводят вычисления в каждой из скобок, а затем умножение или деление полученных результатов. При наличии внутренних скобок, заключенных в скобки, действия в них выполняют в первую очередь.
Используя правило умножения и деления дробей, получим:
Во многих примерах имеются не только цифры, но и буквы. В этом случае выполняются алгебраические действия, в том числе, приведение подобных, сложение, сокращение дробей и другие операции. Отличия можно заметить при разложении многочленов на множители. Для этого следует пользоваться формулами сокращенного умножения или вынесением единого множителя за скобки.
Ключевой задачей при работе с такими выражениями является запись выражений в виде произведения или частного.
Попробуем упростить выражение:
Так как имеются скобки, следует начать преобразования именно с них. Упростим разность дробей, которая в них записана, чтобы получить вместо нее произведение или частное. Приведем дроби к единому знаменателю и определим сумму:
Заметим, что дальнейшие преобразования не приведут к упрощению данного выражения. Причина этого заключается в том, что каждый из множителей является элементарным. В результате:
Пояснения на примерах
Требуется упростить выражения:
Приведем подобные и упростим выражения:
Заметим, что ab и 2ba являются подобными по той причине, что:
В результате можно сделать вывод, что данные слагаемые обладают одинаковой буквенной частью.
Требуется упростить выражения:
Путем разложения на множители упростим данные выражения:
a b 2 + a 2 c = a b 2 + a c
72 30 = 2 · 2 · 2 · 3 · 3 2 · 3 · 5 = 2 · 2 · 2 · 3 · 3 2 · 3 · 5 = 2 · 2 · 3 5 = 12 5
a a + b a 2 = a a + b a · a = a + b a
В первую очередь выполним разложение на множители:
Дано выражение, которое требуется упростить:
В данном случае требуется разложить знаменатели на множители. Первый знаменатель записан так, что можно вынести за скобки х. Второй знаменатель содержит разность квадратов. Выполним преобразования:
Рассмотрим выражение на наличие общих множителей:
Заметим, что при переносе слагаемых, заключенных в скобках, изменился знак перед дробью. Приведем выражения к единому знаменателю:
Воспользуемся формулой сокращенного умножения, а именно, разностью кубов:
Заметим, что в знаменателе дроби расположено выражение, которое называют неполным квадратом суммы:
x 2 + 2 x + 4 = x 2 + 2 · x + 2 2
Второе по счету слагаемое в неполном квадрате суммы является произведением первого и последнего. Неполный квадрат суммы представляет собой множитель, который входит в состав разложения разности кубов:
Требуется упростить выражения:
Дано выражение, которое требуется упростить:
При наличии в знаменателях одного и того же множителя, возведенного в разные степени, то в общем знаменателе данный множитель будет обладать самой большой из имеющихся степеней. Применительно к этой задаче, общий знаменатель будет состоять из следующих выражений:
a во второй степени;
x в третьей степени;
b в третьей степени;
y в четвертой степени.
В результате получим:
Нужно упростить выражение:
Исключить ошибки можно, если расписать заранее порядок операций. В первую очередь целесообразно суммировать дроби, расположенные в скобках. В результате будет получена только одна дробь. Далее можно приступить к делению дробей. Полученный итог следует прибавить к последней дроби.
Выглядит этот алгоритм таким образом:
Урок 1. Подобные слагаемые
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
Описание презентации по отдельным слайдам:
Математика. 6-й класс Подобные слагаемые
Изучение нового материала Вспомните распределительное свойство умножения относительно сложения и вычитания. Запишите его в буквенном виде. (а + b) · с = ас +bс; (а — b) · с = ас — bс. Замену выражений (а + b) · с и (а — b) · с выражениями ас + bс и ас — bс или выражений с · (а + b) и с · (а — b) выражениями са + са и са — cb также называют раскрытием скобок.
Изучение нового материала Раскройте скобки в выражении: а) —2 · (а + b — с); б) 6 · (—а — b + d); в) (—а —b —с) · (—4); г) (2а + 3b — 4с) · 5. На основании какого свойства умножения мы можем выполнить данное преобразование?
Изучение нового материала Упростите выражение 5а + 2а — 12а. Посмотрите на слагаемые. Что у них общего? (Одинаковые буквенные множители.) Чем отличаются? (Коэффициентами.) Упростим 5а + 2а — 12а = = а · (5 + 2 — 12) = —5а. Чем мы воспользовались при упрощении выражения? (Распределительным свойством умножения.) Что записали в скобках? (Сумму коэффициентов всех слагаемых.) В выражении 5а + 2а —12 а все слагаемые имеют одинаковую буквенную часть и отличаются друг от друга только коэффициентами. Такие слагаемые называются подобными.
Изучение нового материала Подобный — похожий на что, схожий с чем, близкий, подходящий, одного вида, образа, свойств или качеств (из толкового словаря В. И. Даля). Дайте определение подобных слагаемых. Определение. Слагаемые, имеющие одинаковую буквенную часть, называются подобными слагаемыми. Чем могут отличаться подобные слагаемые? (Только коэффициентами.) Приведите примеры подобных слагаемых. Как вы думаете, что значит привести подобные слагаемые? Чтобы сложить (или привести) подобные слагаемые, надо сложить их коэффициенты и результат умножить на общую буквенную часть.
Изучение нового материала Учебник, стр. 225, прочитай текст под рубрикой «Говори правильно». Выполните приведение подобных слагаемых: а) —3а + 6а — 9а; б) 7ab — 3ab + 2аb; в) —8с + 3с + 8с; г) —k + 4k — 7k. Прочитайте разными способами выражения. Решение: а) В данной сумме все слагаемые подобны, так как у них одинаковая буквенная часть а. Коэффициенты равны: —3, 6 и —9. Сложим коэффициенты: —3 + 6 — 9 = —6. Получаем: —3а + 6а — 9а = —6a.
Закрепление пройденного материала 1. № 1281 (а—г) стр. 225 — Являются ли данные слагаемые подобными? Почему? Ответ: а) 8а — 8b + 8с; б) —5m + 5n + 5k; в) ab — am + аn; г) —6аb + 3ас — 4а.) 2. № 1282 стр. 225 — Назовите общие слагаемые. — Подчеркните их. — Вынесите за скобки. — Найдите значение выражения. Решение:
Закрепление пройденного материала 3. № 1283 (а—д) стр. 225. — Для г): что интересного заметили? (Здесь две пары слагаемых, у которых коэффициенты отличаются только знаками.) — На основании какого свойства сложения можно упростить данное выражение? (Сумма противоположных чисел равна нулю.) — Еще говорят, что данные подобные слагаемые взаимно уничтожаются. Поэтому их можно зачеркнуть. (Ответ: а) —5х; б) —9а; в) 26р; г) 0; д) —0,3а.)
Работа над задачей № 1296 стр. 227. — Что такое масштаб? — Прочитайте задачу. — Составьте краткую запись. — Решите самостоятельно. Пусть х — во сколько раз уменьшили расстояние на местности, чтобы его изобразить на карте. 8,8 : 44 000 000 = 1 : х х = 1 · 44 000 000 : 8,8 х = 50 000 000; 50 000 000 — длина отрезка на карте. (Ответ: масштаб 1 : 50 000 000.) расстояние масштаб На карте 8,8 см 1 На местности 440км = 44000000 см Х
Самостоятельная работа Выполните работу по ссылке https://docs.google.com/forms/d/e/1FAIpQLScXQAA8hHrq1k5Yf4ipDVHPswBC2vXtdcXatpayPPqm6qfw4g/viewform?usp=sf_link
Домашнее задание № 1304 (а, б), 1305 (а, б), 1306 (а-г), 1307 (a-в) стр. 228, № 1311 стр. 229.
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
Ищем педагогов в команду «Инфоурок»
Номер материала: ДБ-1135762
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Учителям предлагают 1,5 миллиона рублей за переезд в Златоуст
Время чтения: 1 минута
В МГПУ сформулировали новые принципы повышения квалификации
Время чтения: 4 минуты
Утверждено стратегическое направление цифровой трансформации образования
Время чтения: 2 минуты
Путин поручил не считать выплаты за классное руководство в средней зарплате
Время чтения: 1 минута
В России утвердили новый порядок формирования федерального перечня учебников
Время чтения: 1 минута
В Оренбурге школьников переведут на дистанционное обучение с 9 декабря
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.