Что значит приведенный квадратный трехчлен
Квадратный трехчлен. Разложение квадратного трехчлена на множители
Квадратный трехчлен – это многочлен вида \(ax^2+bx+c\) (\(a≠0\)).
Примеры не квадратных трехчленов:
Корень квадратного трехчлена:
Значение переменной \(x\), при котором квадратный трехчлен обращается в ноль, называют его корнем.
Пример:
У трехчлена \(x^2-2x+1\) корень \(1\), потому что \(1^2-2·1+1=0\)
У трехчлена \(x^2+2x-3\) корни \(1\) и \(-3\), потому что \(1^2+2-3=0\) и \((-3)^2-6-3=9-9=0\)
Чтобы найти корни квадратного трехчлена нужно решить соответствующее квадратное уравнение.
Например: если нужно найти корни для квадратного трехчлена \(x^2-2x+1\), приравняем его к нулю и решим уравнение \(x^2-2x+1=0\).
Готово. Корень равен \(1\).
Разложение квадратного трёхчлена на множители:
Квадратный трехчлен \(ax^2+bx+c\) можно представить как \(a(x-x_1)^2\), если дискриминант уравнения \(ax^2+bx+c=0\) равен нулю.
Квадратный трехчлен \(ax^2+bx+c\) не раскладывается на множители, если дискриминант уравнения \(ax^2+bx+c=0\) меньше нуля.
Например, у трехчленов \(x^2+x+4\) и \(-5x^2+2x-1\) – дискриминант меньше нуля. Поэтому разложить их на множители невозможно.
Пример. Разложите на множители \(2x^2-11x+12\).
Решение:
Найдем корни квадратного уравнения \(2x^2-11x+12=0\)
Полученный ответ, может быть, записать по-другому: \((2x-3)(x-4)\).
Пример. (Задание из ОГЭ) Квадратный трехчлен разложен на множители \(5x^2+33x+40=5(x++ 5)(x-a)\). Найдите \(a\).
Решение:
\(5x^2+33x+40=0\)
\(D=33^2-4 \cdot 5 \cdot 40=1089-800=289=17^2\)
\(x_1=\frac<-33-17><10>=-5\)
\(x_2=\frac<-33+17><10>=-1,6\)
\(5x^2+33x+40=5(x+5)(x+1,6)\)
Ответ: \(-1,6\)
Квадратный трёхчлен и его применение к решению задач с параметрами
Разделы: Математика
Квадратный трехчлен и применение его к решению задач с параметром.
Квадратный трехчлен с полным правом можно назвать основной из функций, изучаемых в школьном курсе математики. Поэтому знание свойств квадратного трехчлена и умение применять их являются необходимыми условиями успешного выполнения ЕГЭ и вступительной экзаменационной работы.
Многочисленные задачи из совсем иных, на первый взгляд, областей математики (исследование экстремальных свойств функций, тригонометрические, логарифмические и показательные уравнения, системы уравнений и неравенств) зачастую сводятся к решению квадратных уравнений или исследованию квадратного трехчлена.
В данной работе рассмотрены теоремы о расположении корней квадратного трехчлена и показаны приемы решения задач на основе свойств квадратного трехчлена и графических изображений.
Понятие квадратного трехчлена и его свойства.
Квадратным трехчленом называется выражение вида ax 2 +bx+c, где a0. Графиком соответствующей квадратичной функции является парабола. При a 0 ветви направлены вверх.
Выражение x 2 +px+q называется приведенным квадратным трехчленом.
при D>0 существуют две различные точки пересечения параболы с осью Ох (два различных корня трехчлена);
при D=0 эти две точки сливаются в одну, то есть парабола касается оси Ох (один корень трехчлена);
при D 0 парабола лежит целиком выше оси Ох, при а 2 +bx+c и коэффициентами этого
Теорема, обратная теореме Виета, применяется лишь для приведенного квадратного трехчлена.
Теорема Виета успешно применяется при решении различных задач, в частности, задач на исследование знаков корней квадратного трехчлена. Это мощный инструмент решения многих задач с параметрами для квадратичной функции.
Теоремы о знаках корней квадратного трехчлена.
Теорема 1. Для того, чтобы корни квадратного трехчлена имели одинаковые знаки, необходимо и
При этом оба корня будут положительны, если дополнительно выполняется условие :
Расположение корней квадратного трехчлена (см. приложение).
Дидактический материал для учащихся.
6. При каких значениях параметра а уравнение 2х 2 +(3а+1)х+а 2 +а=2=0 имеет хотя бы один корень?
7. При каких значениях параметра а уравнение (а 2 +а+1)х 2 + (2а-3)х+а-5=0 имеет два корня, один из которых больше 1, а другой меньше 1?
13. При каких значениях параметра а уравнение х 2 +2(а+1)х+9=0 имеет два различных положительных корня?
Разложение квадратного трёхчлена на множители
Как разложить на множители квадратный трёхчлен
В прошлых уроках мы решали квадратные уравнения. Общий вид таких уравнений выглядел так:
Левая часть этого уравнения является квадратным трёхчленом.
Одним из полезных преобразований при решении задач является разложение квадратного трёхчлена на множители. Для этого исходный квадратный трёхчлен приравнивают к нулю и решают квадратное уравнение. В этом случае говорят, что выполняется поиск корней квадратного трёхчлена.
Полученные корни x1 и x2 следует подстáвить в следующее выражение, которое и станет разложением:
Таким образом, чтобы разложить квадратный трёхчлен на множители при помощи решения квадратного уравнения, нужно воспользоваться следующей готовой формулой:
Где левая часть — исходный квадратный трёхчлен.
Пример 1. Разложить на множители следующий квадратный трёхчлен:
Найдём корни квадратного трёхчлена. Для этого приравняем данный квадратный трёхчлен к нулю и решим квадратное уравнение:
В данном случае коэффициент b является чётным. Поэтому можно воспользоваться формулами для чётного второго коэффициента. Чтобы сэкономить время, некоторые подробные вычисления можно пропустить:
Если a равно единице (как в данном примере), то решение можно записать покороче:
Чтобы проверить правильно ли разложен квадратный трёхчлен на множители, нужно раскрыть скобки у правой части получившегося равенства.
Пример 2. Разложить на множители следующий квадратный трёхчлен:
Приравняем данный квадратный трёхчлен к нулю и решим уравнение:
Как и в прошлом примере коэффициент b является чётным. Поэтому можно воспользоваться формулами для чётного второго коэффициента:
Выполним проверку. Для этого раскроем скобки у правой части получившегося равенства. Если мы всё сделали правильно, то должен получиться квадратный трёхчлен 2x 2 − 14x + 24
Как это работает
Разложение квадратного трёхчлена на множители происходит, если вместо коэффициентов квадратного трёхчлена подстáвить теорему Виета и выполнить тождественные преобразования.
Для начала рассмотрим случай, когда коэффициент a квадратного трёхчлена равен единице:
Вспоминаем, что если квадратное уравнение является приведённым, то теорема Виета имеет вид:
Переменную c из теоремы Виета выражать не нужно — она уже выражена. Достаточно поменять местами левую и правую часть:
Теперь подставим выраженные переменные b и c в квадратный трёхчлен x 2 + bx + c
Раскроем скобки там где это можно:
В получившемся выражении выполним разложение многочлена на множители способом группировки. В данном случае удобно сгруппировать первый член со вторым, а третий с четвёртым:
Далее замечаем, что выражение ( x − x1 ) является общим множителем. Вынесем его за скобки:
Но это был случай, когда исходный квадратный трёхчлен является приведённым. В нём коэффициент a равен единице. И соответственно, в формуле разложения такого квадратного трехчлена коэффициент a можно опустить.
Теперь рассмотрим случай, когда коэффициент a квадратного трёхчлена не равен единице. Это как раз тот случай, когда в формуле разложения присутствует перед скобками коэффициент a
Это потому что теорема Виета работает только для приведённых квадратных уравнений. А чтобы уравнение ax 2 + bx + c = 0 стало приведённым, нужно разделить обе его части на a
Далее чтобы квадратный трёхчлен вида ax 2 + bx + c разложить на множители, нужно вместо b и c подставить соответствующие выражения из теоремы Виета. Но в этот раз нам следует использовать равенства и
В получившемся выражении выполним разложение многочлена на множители способом группировки. В данном случае удобно сгруппировать первый член со вторым, а третий с четвёртым:
Далее замечаем, что выражение x − x1 тоже является общим множителем. Вынесем его за скобки:
Скобки внутри скобок можно раскрыть. Тогда получим следующее:
При этом если нужно получить короткий ответ, последнее выражение можно записать в виде (x + 2) 2 поскольку выражение (x + 2)(x + 2) это перемножение двух сомножителей, каждый из которых равен (x + 2)
Примеры разложений
Пример 1. Разложить на множители следующий квадратный трёхчлен:
Найдём корни квадратного трёхчлена:
Во вторых скобках можно заменить вычитание сложением:
Пример 2. Разложить на множители следующий квадратный трёхчлен:
Упорядочим члены так, чтобы старший коэффициент располагался первым, средний — вторым, свободный член — третьим:
Найдём корни квадратного трёхчлена:
Воспользуемся формулой разложения:
Упростим получившееся разложение. Вынесем за первые скобки общий множитель 3
Теперь воспользуемся сочетательным законом умножения. Напомним, что он позволяет перемножать сомножители в любом порядке. Умножим 3 на вторые скобки. Это позвóлит избавиться от дроби в этих скобках:
Пример 3. Разложить на множители следующий квадратный трёхчлен:
Найдём корни квадратного трёхчлена:
Воспользуемся формулой разложения:
В данном случае квадратный трёхчлен не является приведённым, поэтому сумма его корней будет равна дроби , а произведение корней — дроби
Выразим из первого равенства переменную x2 и сразу подстáвим найденное значение во второе равенство вместо x2
Пример 5. Разложить на множители следующий квадратный трёхчлен:
Перепишем данный трёхчлен в удобный для нас вид. Если в первом члене заменить деление умножением, то получим . Если поменять местами сомножители, то получится . То есть коэффициент a станет равным
Коэффициент b можно перевести в обыкновенную дробь. Так проще будет искать дискриминант:
Найдём корни квадратного трёхчлена:
Воспользуемся формулой разложения:
Задания для самостоятельного решения
Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Возникло желание поддержать проект?
Используй кнопку ниже
Что такое квадратный трехчлен: определение, формула, график, примеры
В данной публикации мы рассмотрим, что такое квадратный трехчлен, а также приведем его формулу и разберем алгоритм построения графика (параболы). Представленная информация сопровождается практическими примерами для лучшего восприятия.
Определение и формула квадратного трехчлена
Примеры:
График квадратного трехчлена
График имеет вершину:
Чтобы было понятнее, разберем алгоритм построения параболы на практических примерах.
Пример 1
Построим график квадратного трехчлена
Решение
Остается только найти, в какой точке график пересекает ось ординат (0y). Для этого в формулу трехчлена вместо x подставляем число 0:
y = (-0) 2 – 4 ⋅ 0 + 3 = 3
Теперь у нас есть все необходимые данные, чтобы построить график.
Примечание: Обратите внимание, что парабола – это симметричный график, т.е. если провести вертикальную линию через ее вершину, то правая часть будет зеркальным отражением левой (и наоборот).
Пример 2
Построим параболу трехчлена
Решение
Теперь находим, в какой точке график пересекает ось Oy, подставив в формулу вместо x число 0:
y = 3 ⋅ (0) 2 – 6 ⋅ 0 + 3 = 3
Значит, точка пересечения с осью ординат –
Строим параболу с учетом найденных точек:
Пример 3
А так выглядит график квадратичной функции
Квадратный трехчлен в математике с примерами решения, разложения и образцами выполнения
Квадратный трехчлен – это многочлен вида a x 2 + b x + c ( a ≠ 0 ).
Исследование квадратного трёхчлена
Задача:
C аэростата, находящегося на высоте 1000 м, сбросили груз со скоростью 20 м в секунду. На каком расстоянии от земли этот груз будет через 15 сек.? (Сопротивление воздуха в расчёт не принимается.)
Путь, проходимый падающим телом, вычисляется по формуле: (1)
где — начальная скорость, a g=9,8 м/сек²—ускорение силы тяжести.
Такой путь пройдёт падающий груз за t секунд. Значит, через t секунд он будет находиться на высоте
x=1000-20t— 4,9t² (3)
метров от земли. Чтобы определить х — высоту груза над землёй через 15 сек., очевидно, достаточно в (3) подставить t = 15 и произвести вычисления. Получим:
x = 1000-20∙15-4,9∙15²= —402,5.
Отрицательное значение х здесь не имеет смысла, и, следовательно, наша задача не имеет решения. Почему так получилось? Чтобы ответить на этот вопрос, определим сначала, через сколько секунд сброшенный груз упадёт на землю? Очевидно, это произойдёт в тот момент, когда груз пройдёт путь, равный высоте, с которой он был сброшен, т. е. 1000 м. Значит, мы должны иметь:
20t- 4,9t² =1000,
или
4,9t² +20t-1000= 0. (4)
Решив это уравнение, найдём t =12,4 сек. (с точностью до). Берём только положительный корень. Значит, через 12,4 сек. груз уже упал на землю, а потому вопрос задачи не имеет смысла.
При каких же значениях t задача допускает вполне определённое решение? Очевидно, только для тех значений, при которых путь, пройденный грузом, меньше 1000 м, т. е. при условии, что
4,9t²+20t Квадратный трёхчлен, имеющий действительные различные корни
Пример:
Пусть дан трёхчлен:
y=2x² — 7x+3. (1)
Требуется определить, при каких значениях х этот трёхчлен будет иметь положительные и при каких отрицательные значения.
Мы знаем, что всякий квадратный трёхчлен можно представить в виде произведения коэффициента при х² и разностей между переменным и корнями трёхчлена.
Найдём корни данного трёхчлена, для чего решим уравнение
2x² — 7x+3=0. (2)
Получим: ; x₂=3 (через x₁ будем в дальнейшем обозначать меньший из действительных корней). Тогда данный трёхчлен можно представить в таком виде:
(3)
Исследуем теперь, при каких значениях х это произведение будет числом положительным и при каких отрицательным. Разберём три случая.
1. Пусть , тогда и подавно x 3, тогда и подавно . Отсюда получаем:
х — 3 >> 0 и х
Произведение , а следовательно, и произведение
будут положительными числами. Значит, при х>3
данный трёхчлен — число положительное. Итак, мы пришли к следующему выводу. Трёхчлен 2x²-7x+3 имеет положительные значения при всех значениях х, меньших , и при всех значениях х, больших 3. Трёхчлен имеет отрицательные значения при всех значениях х, заключённых между и 3.
Проверка сделанных выводов на некоторых числовых значениях х дана в следующей таблице, где в верхней строке даны значения х, а в нижней — соответствующие значения трёхчлена:
x | -5 | -3 | -1 | 0 | 1 | 2 | 4 | 7 | 10 |
2x²-7х+3 | 88 | 42 | 12 | 3 | -2 | -3 | 7 | 52 | 133 |
К тем же результатам мы придём, если рассмотрим график трёхчлена 2x²-7х+3. Мы знаем, что этим графиком является парабола, пересекающая ось x-ов в точках, абсциссы которых равны и 3. Из рассмотрения графика (черт. 36) непосредственно видно, что точки параболы, абсциссы которых меньше или больше 3, расположены выше оси х-ов, и значит, их ординаты, т. е. значения y=2x²-7x+3, будут положительны.
Точки же параболы, абсциссы которых заключены между и 3, находятся ниже оси х-ов, и значит, их ординаты отрицательны.
Черт. 36.
Пример:
Исследуем таким же способом трёхчлен:
y=3x²-x-10.
Решив квадратное уравнение Зх²-х-10=0, найдём корни данного трёхчлена. Они будут равны: и х₂=2. Тогда трёхчлен
можно представить в таком виде:
или
Рассуждая так же, как и в первом примере, найдём:
1) При будет также и x 2 будет также и . Тогда будем иметь:
и х — 2 > 0.
Отсюда:
и трёхчлен имеет положительные значения.
Общий вывод будет такой же, как и в первом примере: трёхчлен имеет положительные значения при всех значениях х, меньших , и при всех значениях х, больших 2.
Он имеет отрицательные значения для всех значений х, заключённых между и 2. Этот вывод подтверждается таблицей, а также графиком трёхчлена Зх² — х — 10 (черт. 37).
Черт. 37.
x | -5 | -2 | -1 | 0 | 1 | 2 | 3 | 5 |
Зх²-х-10 | 70 | 4 | -6 | -10 | -8 | 0 | 14 | 60 |
Пример:
Рассмотрим теперь такой трёхчлен, у которого первый коэффициент (т. е. коэффициент при х²) является отрицательным
числом. Пусть, например, дан трёхчлен:
y=-2x²+4x+16.
Найдя корни этого трёхчлена: x₁= — 2 и x₂=4, мы можем его переписать так:
y=-2(x+2) (x-4)
Исследуя знак этого произведения в том же порядке, как и в предыдущих примерах, мы найдём:
Произведение (x+2) (х-4) — число положительное. По умножении его на — 2 получим отрицательное число, и, значит, трёхчлен при х>4 имеет отрицательные значения.
Мы видим, что в этом случае мы имеем положение, обратное тому, которое наблюдали в первых двух примерах: при значениях х, меньших — 2, и при значениях, больших 4, он имеет отрицательные значения; при значениях х, заключённых между корнями трёхчлена, он имеет положительные значения. Этот вывод подтверждает и таблица для отдельных числовых значений х.
x | -5 | -3 | -2 | -1 | 0 | 1 | 3 | 4 | 5 | 8 |
-2x²+4x+16 | -54 | -14 | 0 | 10 | 16 | 18 | 10 | 0 | -14 | -80 |
Убедимся в том, что такой вывод верен для любых значений коэффициентов а, b и с в случае действительных и различных корней. Для этого исследуем квадратный трёхчлен в общем виде.
Общий случай:
Пусть дан трёхчлен:
y=αx²+bx+c,
где а, b и с — любые действительные числа, удовлетворяющие лишь тому условию, что трёхчлен имеет действительные и различные корни (и, конечно, α≠0). Обозначим эти корни через
x₁ и x₂ (x₁ 0 и x-x₂ х₂, а значит, и x>x₁ (так как x₂ >x₁).
Тогда:
х —x₂>0 и х —x₁>0
Произведение (х — x₁) (х — x₂) будет положительным, а следовательно, произведение а (х — x₁) (х — x₂) положительно при а положительном и отрицательно при а отрицательном. Значит, в этом случае числовое значение трёхчлена имеет тот же знак, что и коэффициент а.
Объединяя все три случая, мы можем теперь сделать такой общий вывод:
Если квадратный трёхчлен ax²+bx+c имеет действительные различные корни, то при значениях х, меньших меньшего из корней, и при значениях х, больших большего из корней, он имеет тот же знак, что и коэффициент при x². При значениях х, заключённых между корнями трёхчлена, он имеет знак, противоположный знаку коэффициента при х².
Примечание. Если условиться называть значения х x₂ значениями х вне промежутка между корнями, а значения x₁ Квадратный трёхчлен, имеющий равные корни
Пример:
Пусть требуется исследовать трёхчлен:
y=2x²-8х+8.
Найдём корни этого трёхчлена, для чего приравняем его нулю и решим уравнение:
2х² —8x+8=0.
Получим x₁= x₂=2. Значит, данный трёхчлен можно представить в таком виде:
y=2(x-2) (х-2),
или
y=2 (х — 2)².
Очевидно, что при любых действительных значениях x, кроме х=2, выражение (х — 2)² — число положительное. А значит, и по умножении его на положительное число 2 будем иметь положительное число. Следовательно, трёхчлен 2x²-8x+8 имеет положительные значения при всех значениях х, кроме значения, равного корню трёхчлена, т. е. при х=2.
(При х=2 трёхчлен равен нулю.)
Построив график трёхчлена 2x²-8x+8, мы замечаем (черт. 39), что при всех значениях х точки кривой расположены выше оси х, т. e. y>0, и только при x= 2 будет y=0. В этой точке кривая касается оси абсцисс.
Пример:
Исследуем трёхчлен:
Найдём корни этого трёхчлена, для чего решим уравнение:
Получим: x₁=x₂=3. Следовательно, данный трёхчлен можем представить в таком виде:
или
Как и в предыдущем примере, заключаем, что выражение (х-3)² при всех значениях х, кроме х=3, является числом положительным.
По умножении его на получим отрицательное число.
Таким образом, в этом случае при всех значениях х, кроме х=3, трёхчлен имеет отрицательные значения.
Построив график трёхчлена , мы видим
(черт. 40), что все точки параболы, кроме точки (3; 0), находятся ниже оси х-ов. Значит, ординаты всех этих точек, т. е. значения , будут отрицательны.
Сопоставляя оба примера, мы замечаем, что в обоих случаях знак численной величины трёхчлена совпадает со знаком коэффициента при x². Чтобы убедиться, что это имеет место при любых коэффициентах (в случае равных корней), рассмотрим трёхчлен в общем виде.
Общий случай: Пусть дан трёхчлен:
y=ax²+bx+c,
причём известно, что он имеет равные корни. Обозначив корень через x₁, представим трёхчлен в таком виде:
y = α(x- x₁) (x-x₁),
или
y = α(x- x₁)²
Отсюда заключаем: какова бы ни была разность x-x₁, если только она не равна нулю, квадрат этой разности является числом положительным. Значит, при положительном а произведение а (x-x₁ )², а следовательно, и у будут числами положительными, а при отрицательном а — отрицательными. Таким образом, мы можем сделать вывод:
Если трёхчлен имеет равные корни, то при всех значениях х, кроме значения, равного корню трёхчлена, значения трёхчлена имеют тот же знак, что и коэффициент при х².
Квадратный трёхчлен, имеющий мнимые корни
Пример:\
Исследуем трёхчлен:
y=2x²-3x+3.
Решая уравнение 2x²-3x+3=0, мы получим:
Корни трёхчлена оказались мнимыми. В этом случае разности x-x₁ и x-x₂ будут мнимыми числами. Так как вопрос о знаке мнимых чисел не имеет смысла, то мы проведём исследование данного случая другим способом. Вынесем сначала за скобки первый коэффициент, получим:
Рассматривая теперь второй член , равный , как удвоенное произведение х и дополним выражение
до полного квадрата, прибавив, а затем вычтя
Будем иметь:
Исследуем теперь полученное выражение. Очевидно, что при любых значениях х выражение — число положительное и
только при равно нулю. Второе слагаемое в прямых скобках — тоже положительное число. Значит, и вся сумма в прямых скобках положительна. От умножения её на положительное число 2 получим опять положительное число. Итак, в данном случае трёхчлен имеет положительные значения при всех значениях х.
График трёхчлена y=2x²-3x+3 (черт. 41) показывает, что действительно все точки параболы расположены выше оси х-ов, т. е. их ординаты положительны.
Пример:
Исследуем трёхчлен:
y= — 3x²+2x- 1.
Решив уравнение —3x²+2x—1=0, найдём его корни.
Имеем:
Корни трёхчлена оказались мнимыми. Применим поэтому тот же способ исследования, что и в примере 1. Вынесем за скобки первый коэффициент и в скобках выделим квадрат двучлена:
Выражение равно нулю при и положительно при всех других значениях х. Значит, сумма всегда положительна.
По умножении её на — 3 получим отрицательное число. Отсюда делаем вывод, что трёхчлен — 3x²+2x — 1 имеет отрицательные значения при всех значениях х. График трёхчлена (черт. 42) показывает, что все точки параболы расположены ниже оси х-ов, т. е. их ординаты отрицательны.
Сопоставляя примеры 1 и 2, замечаем, что в обоих случаях знак численной величины трёхчлена совпадал со знаком коэффициента при х² при всех без исключения значениях переменного х. Покажем, что это будет иметь место для всякого трёхчлена, имеющего мнимые корни.
Общий случай: Пусть дан трёхчлен:
y=ax²+bx+c,
причём известно, что он имеет мнимые корни. Мы знаем, что в этом случае должно быть
b² — 4αc 0, то корни действительны и различны.
2) Если b² — 4αc=0, то корни действительны и равны.
3) Если b² — 4ас 0
x=x₁=x₂
а=-2 8 — отрицателен.
3. у = —x²+4х-15. Дискриминант: 16- 4·15=-44 0. Следовательно, при всех значениях х, кроме х=1, трёхчлен положителен.
5. Определить, при каких значениях m трёхчлен 2x²-6x+m будет иметь положительные значения при любом значении х. Так как здесь α=2>0, то трёхчлен будет иметь положительные значения при любом х в том случае, если b²— 4αc . Итак, при m, большем , данный трёхчлен будет иметь положительные значения при любом значении х.
6. Определить, при каких значениях р трёхчлен x²+(p— 2) x+4-2p+l будет иметь положительные значения при любом значении х.
Дискриминант трёхчлена (р — 2)²—4(2p+1) =p²-12p=p(p—12). Следовательно, для того чтобы данный трёхчлен имел положительные значения при любом х, должно быть:
p(p-12) 0 или
II р>0 и р—12≤0.
Первая система неравенств несовместна (при р 0 (1)
и
ax²+bx+c 0. (1)
Это значит, что нам нужно определить, при каких значениях х трёхчлен 2x²— 13x-f-15 является числом положительным. Решение проведём в таком порядке:
Находим: x₁=; x₂=5.
Следовательно, данное неравенство справедливо при значениях х, меньших, и при значениях х, больших 5.
Пример:
Решить неравенство:
— 4x²+4x-1 0. (2)
а) Коэффициент α=4>0.
б) Дискриминант 4²-4·4=0.
Следовательно, трёхчлен имеет равные корни. В этом случае, как мы знаем, трёхчлен (2) имеет положительные значения при всех значениях х, кроме значения, равного корню трёхчлена. Найдём этот корень, решив уравнение:
4x² — 4x+1=0.
Получим . Итак, данное неравенство (1) справедливо при всех значениях х, кроме .
Пример:
Решить неравенство:
3x²- 5x+4 >0.
а) Коэффициент α=3 > 0.
б) Дискриминант 5²-4∙3∙4=-23 0. (2)
а) Коэффициент
а= —1 0.
Следовательно, неравенство (2), а значит, и (1) справедливо при всех значениях х, заключённых между корнями трёхчлена. Найдём эти корни:
х² —5x+4=0,
отсюда x₁=1, x₂=4. Итак, неравенство (1) справедливо при 1 0. (2)
а) Коэффициент а=-1 0.
I. Если b²-4αc 0 неравенство справедливо при любых значениях х;
б) при α 0 неравенство справедливо при всех значениях х, кроме значения, равного корню трёхчлена в левой части;
б) при α 0, то:
а) при α > 0 неравенство справедливо при значениях х, больших большего, и при значениях х, меньших меньшего из корней трёхчлена в левой части (или, как мы условились говорить короче: „при значениях х вне промежутка между корнями трёхчлена»);
б) при α 5, вторая: х 5 и при значениях х 0, то трёхчлен x²-8x+7 имеет действительные и различные корни. Решив уравнение х²-8x+7=0, найдём: x₁=1; x₂=7. В таком случае, как мы знаем, неравенство (1) будет иметь место при x 7.
Но решив неравенство (2), найдём х>3. Значит, обоим неравенствам удовлетворяют лишь значения х>7.
Решим вторую систему. Неравенство (3) будет справедливо при всех значениях х, заключающихся между 1 и 7, т. е. при 1 7.
Проверьте правильность решения подстановкой в данное неравенство значений: x=- 1; 0; 1; 2; 4; 6; 8; 10.
Пример:
Решить неравенство:
Решение приводится к решению систем:
или
Так как 9²-56=25>0 и 5²-16=9>0, то оба трёхчлена имеют действительные и различные корни. Решив соответствующие уравнения, найдём для первого трёхчлена: x₁=2; x₂=7, второго трёхчлена: x₁=1;x₂=4. Отсюда заключаем:
1) Неравенство (1) справедливо при x 7, а неравенство (2) — при х 4. Следовательно, оба неравенства вместе будут верны лишь при х 7.
2) Неравенство (3) верно при 2 7.
Замечание:
Найдя корни обоих трёхчленов, мы могли данное неравенство представить в таком виде:
Тогда решение этого неравенства свелось бы к решению двух систем:
или
Решение каждого из этих неравенств мы можем провести подобно тому, как это было сделано в первом примере. Очевидно, что мы пришли бы к тому же результату, как и выше, но ход решения был бы значительно более длинным.
Пример:
Решить неравенство:
Решение сводится к решению систем:
или
Дискриминанты трёхчленов: 3²+4∙ 10=49>0 и 3²-4∙10= =-31 Квадратный трехчлен и квадратные неравенства
Умение решать квадратные неравенства необходимо каждому учащемуся, готовящемуся к выпускным экзаменам в школе и вступительным экзаменам в вузе. Чтобы успешно решать квадратные неравенства и сводящиеся к ним, следует твердо знать свойства квадратного трехчлена и квадратичной функции.
График квадратичной функции.
где а,b,с — действительные числа, причем , называют квадратичной. Область ее определения — множество R действитель-ных чисел.
Применив метод выделения полного квадрата, запишем квадратичную функцию (1) в виде
где
Введем следующие обозначения:
Тогда формула (1) примет вид
Из формулы (4) следует, что графиком квадратичной функции является такая же парабола, как но сдвинутая вдоль оси Ох на |m| единиц и вдоль оси Оу на |l| единиц так, что ее вершина — точка А(m;l).
Знак числа а определяет направление ветвей параболы: при а > 0 ветви параболы направлены вверх, при а
Теорема:
Квадратичная функция принимает при наименьшее значение, если а > 0, и наибольшее значение, если а 0, то самая нижняя точка параболы (рис. 20.2) — ее вершина А(m;l). Ордината l вершины и есть наименьшее значение функции т. е. Значение l функция принимает при Аналогично рассматривается случай а
Исследование квадратного трехчлена
Теорема:
Если то при всех знак квадратичной функции совпадает со знаком числа а (рис. 20.3 и 20.4).
Теорема:
Если D = 0, то при всех , кроме знак квадратичной функции совпадает со знаком числа а; при квадратичная функция обращается в нуль (рис. 20.5 и 20.6).
Теорема:
Если D > 0, то знак квадратичной функции
а) совпадает со знаком числа а для всех х, лежащих вне отрезка где — корни уравнения
такие, что (рис. 20.7 и 20.8),
б) противоположен знаку числа а при всех х таких, что (рис. 20.7 и 20.8).
Теоремы 2 и 3 можно доказать с помощью формулы (5), записанной в виде
а теорему 4 — с помощью разложения квадратного трехчлена на множители:
Теорема:
Квадратичная функция принимает положительные значения при всех тогда и только тогда, когда
Доказательство:
Достаточность следует из теоремы 2. В самом деле, если то по теореме 2 знак у совпадает со знаком числа при и при для всех .
Докажем необходимость, т. е. покажем, что если при всех , то и . Предположим, что условие не выполняется, тогда и поэтому квадратный трехчлен имеет действительные корни и ( при ), т. е.
что противоречит условию ( при всех ). Итак, и в силу теоремы 2 имеем .
Квадратные неравенства.
Пусть где — заданные числа, причем — неизвестное. Тогда неравенства вида
называют квадратными неравенствами или неравенствами второй степени, причем первые два из этих неравенств называют строгими, остальные — нестрогими.
Перейдем к нахождению решений квадратных неравенств. Ограничимся рассмотрением строгих неравенств и заметим, что всякое строгое квадратное неравенство можно привести к одному из следующих видов:
Из теорем 2-4 следует:
1) если
то решениями неравенства (1) являются все действительные числа (см. рис. 20.3), а неравенство (2) не имеет решений;
2) если , то решениями неравенства (1) являются все действительные значения , кроме (см. рис. 20.5), а неравенство (2) не имеет решений;
3) если то решениями неравенства (1) являются все числа такие, что или (см. рис. 20.7), где и— корни квадратного уравнения т.е. все значения , лежащие вне отрезка решениями неравенства (2) являются числа такие, что (см. рис. 20.7), т.е. все значения из интервала
Примеры с решениями:
Пример:
Определить знаки чисел если парабола расположена так, как указано на рис. 20.9.
Решение:
Ветви параболы направлены вверх и поэтому . Из рис. 20.9 видно, что абсцисса вершины параболы отрицательна, т. е. , откуда следует, что так как .
Наконец, , поскольку — ордината точки , в которой парабола пересекает ось
Ответ.
Пример:
Квадратичная функция при принимает наибольшее значение равное , а при она обращается в нуль. Найти значение этой функции при
Решение:
Так как — значение функции при , то в формуле (5) и поэтому По условию т. е. откуда Итак, откуда находим
Ответ.
Пример:
Квадратный трехчлен не имеет действительных корней, а его коэффициенты связаны условием Определить знак числа .
Решение:
По условию график квадратичной функции не пересекает ось . Это означает, что либо , либо при всех . Заметим, что и поэтому при всех . В частности,
Ответ. .
Пример:
Квадратичная функция принимает при положительное значение, а при — отрицательное значение. Можно ли утверждать, что квадратный трехчлен имеет действительные корни?
Решение:
Предположим, что квадратный трехчлен не имеет действительных корней. Тогда парабола не пересекает ось и поэтому либо при всех , либо при всех , что противоречит условиям данного примера. Следовательно, квадратный трехчлен имеет действительные корни.
Пример:
Решение:
а) Неравенство равносильно неравенству а его Решениями являются все значения .
б) Неравенство равносильно неравенству и имеет единственное решение
в) Уравнение имеет корни а решения неравенства
все числа , лежащие вне отрезка т.е. все значения такие, что или
г) Уравнение имеет корни а решения неравенства — все числа из отрезка т. е.
Пример:
Решить неравенство
Решение:
Полагая получаем неравенство равносильное неравенству откуда находим Поэтому множество решений исходного неравенства — объединение множеств решений неравенств и которые равносильны неравенствам и соответственно.
Ответ.
Пример:
Найти все значения , при которых неравенство
верно для всех .
Решение:
Если , то неравенство (3) справедливо Если то неравенство (3) имеет вид и не является верным для всех (например, число не является решением этого неравенства).
Пусть т. е. и Тогда задачу можно сформулировать так: найти все значения , при которых квадратичная функция
принимает положительные значения для всех .
По теореме 5 это имеет место тогда и только тогда, когда дискриминант квадратного трехчлена (4) отрицателен, а коэффициент при положителен, т. е. для всех , удовлетворя-ющих системе неравенств
Неравенство (5) равносильно каждому из неравенств а его решения — значения такие, что или
Неравенство (6) справедливо при и Следовательно, решениями системы (5), (6) являются значения такие, что или
Ответ.
Пример:
Найти все значения , при которых неравенство
верно для всех значений .
Решение:
для всех , то, умножая обе части исходного неравенства на получаем равносильное неравенство
равносильное неравенству (7), не является верным при
Если то неравенство (8) является квадратным и справедливо для всех тогда и только тогда, когда и
Отсюда следует, что , т. е.
Ответ.
Пример:
Найти все значения , при которых неравенство
верно для всех значений
Решение:
Пусть неравенство (9) является верным для каждого Тогда оно верно при и Подставляя эти значения в (9), получаем систему неравенств
Первому неравенству системы (10) удовлетворяют значения и , второму — значения и откуда следует, что множество решений системы (10) — совокупность промежутков
Таким образом, условия (11) являются необходимыми (искомыми значениями могут быть только такие значения, которые содержатся в промежутках и ).
Покажем, что условия (11) являются достаточными. Пусть и ; тогда и, значит, неравенство (9) — верное.
Пусть и ; тогда и поэтому неравенство (9) справедливо.
Ответ.
Пример:
Решить неравенство
Решение:
Данное неравенство равносильно системе неравенств
которая равносильна следующей системе:
Множество решений первого неравенства — интервал второе неравенство является верным при всех
Ответ.
Пример:
Решить неравенство
Решение:
На рис. 20.10 изображены графики четных функций и Решив уравнение найдем его положительный корень
График функции лежит выше графика функции вне отрезка Поэтому множество решений данного неравенства— совокупность промежутков и
Ответ.
Пример:
Решить неравенство
Решение:
Данное неравенство равносильно совокупности неравенств
Множество решений первого неравенства, равносильного неравенству
представляет собой объединение промежутков и . Множество решений второго неравенства, равносильного неравенству
есть интервал
Ответ.
Пример:
Решить неравенство
Решение:
Первый способ. Число не является решением данного неравенства, а при неравенство справедливо: его левая часть неотрицательна при всех , а правая отрицательна.
Если , то исходное неравенство равносильно совокупности неравенств
Эти неравенства равносильны неравенствам
соответственно. Решив систему
получаем
Аналогично, из системы
следует, что . Итак, множество решений данного неравенства — объединение промежутков
Ответ.
Второй способ. Построим графики функций и (рис. 20.11).
Эти графики имеют общую точку . Две другие общие точки получим, найдя отрицательные корни уравнений и Такими корнями являются и При и график функции лежит выше графика функции
Пример:
Решение:
Воспользуемся тем, что неравенство равносильно каждому из неравенств Тогда данное неравенство равносильно каждому из следующих неравенств где Отсюда находим множество решений неравенства:
Ответ.
Пример:
Найти множество значений функции , если:
Решение:
а) Число а принадлежит множеству значений функции тогда и только тогда, когда уравнение имеет действительные корни. Функция определена при , а уравнение
можно записать в виде или в виде
Уравнение (12) при имеет корень , а при является квадратным и имеет действительные корни тогда и только тогда, когда , где Отсюда получаем
Ответ.
б) Пусть , тогда и где
График функции на отрезке изображен на рис.20.12.
Из рис. 20.12 видно, что т. е. причем функция принимает все значения из отрезка Следовательно,
Ответ.
Пример:
Найти все значения , при которых расстояние между вершинами парабол и меньше .
Решение:
Для нахождения координат вершин парабол воспользуемся методом выделения полного квадрата. Получим
Пусть и — вершины парабол, —расстояние между вершинами. Тогда
Пусть тогда По условию , откуда или
Так как то полученное неравенство равносильно неравенству , откуда
Ответ.
Этот материал взят со страницы решения задач с примерами по всем темам предмета математика:
Возможно вам будут полезны эти страницы:
Квадратный трехчлен и алгоритм решения с примерами
Почти вся теория квадратного трехчлена, а также решение многих задач, связанных с ним, основываются на приеме, называемом «выделение полного квадрата». Применяя этот прием к квадратному трехчлену приходим к равенству
Нет необходимости эту формулу запоминать. Гораздо важнее в каждом конкретном случае уметь проделать соответствующие преобразования и выделить полный квадрат. Например,
Выражение называется дискриминантом квадратного трехчлена Квадратное уравнение имеет соответственно 2, 1 или 0 решений в зависимости от того, будет его дискриминант положительным (D>0), равным нулю (D = 0), или отрицательным ( D
Правда, нумерация корней условна. Обычно стараются за нумеровать их в порядке возрастания, но это не обязательно.
Дадим два практических совета. Во-первых, если второй коэффициент (b) четный (причем он может быть просто четным числом, а может иметь вид b = 2k), то удобнее пользоваться для нахождения корней формулами
Во-вторых, старайтесь по возможности «работать» с квадратным трехчленом, у которого старший коэффициент (а — коэффициент при ) положительный. Этого всегда можно добиться при решении уравнений, неравенств с числовыми коэффициентами.
Задачи, связанные с квадратным трехчленом, встречающиеся в школьной и конкурсной практике, чрезвычайно разнообразны.
Нередки среди них такие, где основное, что требуется от учащегося,— это внимательность к формулировке. Например:
1.Определить все значения параметра а, при которых уравнение имеет один корень.
Решение:
Здесь главное — не забыть про случай а = 0, поскольку в условии не сказано, что рассматривается квадратное уравнение. При а = 0 имеем линейное уравнение с единственным корнем . Остальные значения параметра а мы получим из уравнения D = 0, а лучше
Ответ.
К азбуке квадратного трехчлена относится и теорема Виета. Для того чтобы были корнями уравнения необходимо и достаточно выполнения равенств Обратите внимание на то, что здесь сформулировано два утверждения — прямое и обратное. Часто, формулируя теорему Виета, ограничиваются одним прямым утверждением: «Если — корни квадратного уравнения то выполняются равенства…»
Некоторые логические и терминологические проблемы возникают в случае D = 0, но мы их не будем обсуждать. Заметим лишь, что выражения «квадратное уравнение, имеющее одно решение» и «квадратное уравнение с равными корнями» означают одно и то же.
Из теоремы Виета следует следующее разложение на множители квадратного трехчлена:
На теореме Виета основан целый ряд традиционных задач и методов решения.
2.Решить уравнение
Решение:
Решение этого уравнения непосредственно по формуле корней квадратного уравнения приводит к большим вычислительным трудностям.
Если же заметить, что 319-1988+1669 = 0, откуда следует, что является корнем уравнения, то по теореме Виета
Ответ.
Сталкиваясь с квадратным уравнением, решение которого требует громоздких арифметических или алгебраических пре образований, попытайтесь выяснить, не имеет ли это уравнение «хорошего» целого корня, в частности 1 (в этом случае имеет место равенство а+b + с = 0) или —1 (а —b + с = 0).
3.Пусть — корни уравнения Выразить через р и q.
Решение:
Нам нужно выразить через — и Имеем
Ответ.
4. Разложить на множители выражение
Решение:
Данное выражение можно рассматривать как квадратное относительно любого входящего в него переменного. Сгруппируем его члены и расположим их по степеням х. Получим
Коэффициент при х представляет собой квадратный трехчлен относительно у (можно z) Найдем его корни:
Таким образом, в каждом из коэффициентов квадратного трех члена (1) есть множитель у — 2z. Вынося его за скобки, получим
Квадратный трехчлен имеет корни (проверьте):
Ответ.
Решая эту задачу, мы сознательно не стали использовать некоторые соображения, которые могли бы привести к цели быстрее. Так, например, выделив множитель (у — 2z), учитывая цикличность исходного выражения (оно не меняется при замене х на у, у на z, z на х), можно было сразу получить требуемое разложение на множители. В данном случае мы следовали по говоркам: «От добра добра не ищут» и «Тише едешь…» Однако в других, более сложных случаях подобного рода особенности могут сыграть решающую роль. И еще на одно очень важное обстоятельство следует обратить внимание: надо учиться «видеть» квадратный трехчлен в тех случаях, когда он не задан в стандарт ной канонической форме; уметь выделять переменное, параметр, алгебраическое выражение, относительно которого данное выражение представляет собой квадратный трехчлен; делать замену переменного, превращающую его в квадратный трехчлен.
Существование корней квадратного уравнения. Знаки корней
Как мы знаем, для того чтобы квадратное уравнение имело корни, необходимо и достаточно выполнения неравенства Как правило, в случае необходимости доказать, что заданное квадратное уравнение имеет решение, начинают с вычисления его дискриминанта, с тем чтобы затем до казать его неотрицательность. Однако в некоторых случаях можно указать и иные, более простые способы доказательства существования решения квадратного уравнения. Эти способы основываются на очевидных графических соображениях. Так, если а>0, то для доказательства того, что уравнение имеет два решения, достаточно указать одну точку в которой Чаще всего в качестве берут 0 (дает достаточное условие с
Решение:
Можно, конечно, попытаться найти дискриминант и доказать, что он положителен. Но не будем спешить.
Обозначим левую часть данного уравнения через f (х). Сразу видно, что при любом а. Утверждение задачи будет доказано, если мы найдем для которого Попробуем . (Выбор такого значения выглядит естественным, поскольку в этом случае пропадают члены с ) при любом а. Теперь легко сделать вывод, что наше уравнение всегда имеет решение. Более того, если т. е. данное уравнение имеет два корня; при этом всегда имеется корень, удовлетворяющий неравенству 0
имеет решение? Определить знаки корней в зависимости от а.
Решение:
Прежде всего, если то уравнение имеет корни разных знаков. (Дискриминант при этом «автоматически» положителен.) В остальных случаях или корней нет, или они одного знака. Отдельно надо рассмотреть случаи, когда корни равны или один из них равен 0. В случае положительности дискриминанта и свободного члена на основании теоремы Виета знаки обоих корней противоположны по знаку коэффициенту при х — второму коэффициенту уравнения. Значит, для того чтобы было необходимо и достаточно выполнения неравенств
откуда а >5. Точно так же рассматриваются другие случаи.
Ответ. Если а 5, то
Ответ выглядит сложнее, чем решение задачи.
Расположение корней квадратного трехчлена
Выделим прежде всего два наиболее распространенных типа задач, связанных с расположением корней квадратного трех члена. Первый тип — задачи, в которых изучается расположение корней относительно заданной точки А. Возможны три случая, не считая случая отсутствия корней: оба корня меньше А; один корень меньше, а другой больше А; оба корня больше А. Задачи первого типа без труда сводятся к проблеме,— определению знаков корней квадратного трехчлена. Это делается при помощи замены t = х —A, х =t+A, в результате которой трехчлен относительно х переходит в трехчлен относительно t. Знаки корней нового квадратного трехчлена очевидным образом определяют расположение корней исходного квадратного трехчлена относительно А. Можно и не делать замену.
7. При каком значении параметра а один корень уравнения больше 1, а другой меньше 1?
Решение:
Решение легко получается на основании следующего простого графического соображения. График функции представляет собой параболу, ветви которой направлены вверх. По условию эта парабола должна пересекать ось х, причем отрезок должен содержать внутри себя точку 1 (рис. 7). Следовательно, значение квадратного трехчлена при х = 1 должно быть отрицательным. Это условие является необходимым и достаточным для того, чтобы выполнялись неравенства
В общем случае для того, чтобы уравнение имело бы один корень меньше A, а другой больше А, не обходимо и достаточно выполнения неравенства (Докажите
это самостоятельно.) Не следует последнее условие заучивать. Необходимо понять принцип его получения и уметь провести необходимые рассуждения в конкретных задачах.
8. При каких значениях параметра а оба корня уравнения
больше 1?
Решение:
Для того чтобы оба корня уравнения
были больше 1, необходимо и достаточно выполнения следующих условий:
Необходимость условия 1) очевидна. Неравенство 2) означает, что знак f (х) при х=1 совпадает со знаком старшего коэффициента. Квадратные трехчлены, удовлетворяющие условиям 1) и 2), обладают тем свойством, что все они имеют два корня и оба эти корня либо меньше 1, либо больше 1 (рис. 8). Неравенство 3) выделяет из них те трехчлены, у которых оба корня больше 1. Оно означает, что вершина параболы расположена правее прямой х = 1.
Система неравенств 1) —3) дает нам необходимое и достаточное условие для того, чтобы оба корня данного уравнения были больше 1. Неравенство 2) дает А из равенства 3) следует, что Таким образом, нам нет необходимости решать неравенство 1), поскольку уже неравенства 2) и 3) несовместимы.
Ответ. Ни при каких.
В задачах второго типа исследуется расположение корней квадратного трехчлена относительно заданного отрезка [А; В].
Здесь можно выделить 6 возможных случаев расположения корней (оба меньше А, один меньше А, а другой на отрезке [А; В] и т. д.). Если же отдельно рассматривать ситуацию, когда D = 0, то добавится еще 3 случая. Мы вновь не будем заниматься по строением общей теории, а рассмотрим конкретные примеры.
9. При каких значениях параметра а все решения уравнения удовлетворяют условию 0
(Проверьте, что если f (х) имеет корни на данном отрезке, то все неравенства выполняются. Проверьте обратное утверждение, что если выполняются все неравенства, то корни f (х) расположены на отрезке [0; 3]. Покажите, что ни одно из не равенств нельзя отбросить, т. е. если выполняются все неравенства, кроме одного, то квадратный трехчлен не удовлетворяет условию задачи.)
Оба неравенства 2) и 3) выполняются при или а
При 1
параболы направлены вниз, значения f (х) при х= —1 и х=4 отрицательны, вершина параболы расположена между прямыми х=-1 и х = 4 (рис. 9,б). Следовательно, в этом случае оба корня расположены между — 1 и 4.
2) (случай рассматривается отдельно). Имеем А поскольку а
относительно отрезка [1; 3].
Решение:
В данном случае приемы, которые мы использовали при решении предыдущего примера, не нужны; все гораздо проще, рассматриваемое уравнение всегда (при ) имеет корни: (Проверьте. Здесь не обязательно ) Теперь закончить решение не составляет труда.
Вывод очевиден — при решении задач не стоит увлекаться общими теориями, следует попытаться сначала выявить специфику данного конкретного примера.
Взаимное расположение корней двух квадратных трехчленов
12. Найти все значения параметра а, при которых уравнения имеют хотя бы один общий корень.
Решение:
Решение основывается на следующей простой идее: если два уравнения имеют общий корень то при любых и уравнение имеет тот же корень
Возьмем сначала и так, чтобы в комбинации исчез свободный член: Получим после сокращения на х, поскольку очевидно, что уравнение
Затем выберем и так, чтобы исчез член с
Так как х должен удовлетворять обоим полученным линейным уравнениям, для а должно выполняться соотношение
Далее получаем Левая часть разлагается на множители:
Ответ.
Два замечания. 1. Для каждого из найденных значений а необходимо убедиться, что соответствующие уравнения имеют решения, (Достаточно проверить существование корней у одного из них.) 2. Заданную пару квадратных уравнений можно рассматривать как систему из двух уравнений с неизвестными х и а.
13. Расположить корни уравнений
в порядке возрастания.
Решение:
Обозначим — корни уравнения — корни уравнения g(x) = 0. По смыслу задачи следует рассматривать лишь те значения параметра а, для которых оба уравнения имеют решения. Условие неотрицательности обоих дискриминантов дают нам неравенства.
Найдем значения х, при которых Уравнения имеют общий корень, если откуда а=—3.
Таким образом, множество значений параметра а, при которых оба уравнения имеют корни, разбито на три интервала (рис. 10, а). Концы интервалов удобнее рассматривать отдельно. Возникают три случая.
С точностью до обозначений, какая из двух парабол соответствует f(х), а какая g (х), возможны два случая (рис. 10, б, в). Посмотрим, как расположены вершины каждой из парабол по отношению к прямой . Для f (х) имеем . На рассматриваемом интервале изменения а имеем (Докажите.) Вершина второй параболы также левее прямой (Проверьте правильность неравенства ) Следовательно, имеет место случай, изображенный на рисунке 10, б. (На рис. 4, в вершины парабол расположены по разные стороны от прямой ) Осталось выяснить, какая из двух парабол на этом рисунке соответствует f (х), а какая g (х).
Если Значит, при идет выше Если
2) В этом случае Как и в предыдущем пункте, при т. е. графики f (х) и g(х) расположены так, как показано на рисунке 10, г, и Если
3) Имеем Обе вершины — слева от прямой (рис. 10, д). Следовательно, Если
Заметим, что получить правильный ответ в данном примере можно было бы несколько проще, хотя и менее законно. Из соображений непрерывности следует, что на каждом из трех интервалов имеет место один и тот же порядок следования корней (граничными точками такого рода интервалов являются: запрещенные значения параметра, в данном случае а = 0; нули дискриминантов— точки и значения параметра, при которых уравнения имеют один и тот же корень а = — 3; в общем случае сюда надо добавить значения параметра, при которых обращается в ноль коэффициент при ). Для выявления этого порядка следования достаточно рассмотреть какое-либо значение параметра а из соответствующего интервала. В нашем случае для крайних интервалов можно взять даже их концы: а для среднего, например, а =— 1.
Уравнения, неравенства и системы с параметром
В большинстве задач, рассмотренных в предыдущих пунктах, требовалось узнать «при каких значениях параметра…?». Подобного рода вопрос для уравнений, неравенств, систем уравнений или неравенств с параметром не всегда фигурирует в условии задачи. Однако наличие параметра заранее предполагает специальную форму записи ответа, такую, чтобы по ней можно было указать, каков будет ответ для любого допустимого значения параметра.
14. Решить уравнение
Решение:
Обозначим тогда Для у получаем уравнение
которое надо решить при условии Неотрицательность дискриминанта дает нам неравенство . Если корни уравнения, то по теореме Виета Следовательно, оба корня не могут быть отрицательными. При получаем одно решение: при два решения: при — одно решение: Теперь возвращаемся к неизвестному х.
Ответ. Если если если если , то решений нет.
Если решать уравнение 14 более обычным путем, возводя в квадрат обе его части, то приходим к уравнению при условии Технически этот путь несколько сложнее. (Доведите его до конца самостоятельно.)
15. Решить уравнение
Решение:
Возводим обе части уравнения в квадрат (условие ):
Еще раз возводим в квадрат (условие ). Получаем окончательно уравнение
среди решений которого надо найти те, для которых Получившееся уравнение имеет четвертую степень относительно неизвестного х, но зато является квадратным относительно параметра а. (Умение «видеть» квадратный трехчлен!) Попробуем этим обстоятельством воспользоваться:
Найдем дискриминант, надеясь, что он окажется полным квадратом:
Итак, наши надежды оправдались. Теперь правая часть уравнения раскладывается на множители Наше уравнение распадается на два: каждое из которых надо решить при условии, что
Начнем с уравнения Поскольку то из того, что следует, что Значит, нам достаточно найти лишь те решения, для которых х>0; тогда неравенство будет выполняться автоматически. Но сумма корней (если они есть) равна —1; следовательно, уравнение может иметь лишь один неотрицательный корень при условии Значит, при будет
Перейдем ко второму уравнению Из этого уравнения Левая часть неположительна, правая неотрицательна. Равенство возможно лишь, если а = 0, х = 0.
Ответ. Если если а = 0, то х = 0; при остальных а решений нет.
16. Для каждого неотрицательного значения параметра а
решить неравенство
Решение:
Левая часть неравенства представляет собой многочлен как относительно х, так и относительно параметра а. Степени соответственно равны 4 и 3. Однако если умножить многочлен на а, а затем сделать замену у = ах, то в новом многочлене максимальная степень параметра а будет равна 2. Случай а = 0 дает нам ответ . Будем теперь считать, что а>0. Умножив обе части неравенства на а и сделав замену у = ах, получим
Левая часть представляет собой квадратный трехчлен относительно а:
Раскладывая левую часть неравенства на множители, получим
Второй множитель положителен при всех у, если а>0. Приходим к неравенству откуда, если 0
Область изменения параметра а оказалась разделенной на 4 части (не считая граничных точек).
1) Если а , второе неравенство, а следовательно, и данная система не имеют решения. То же имеет место и при
2) Если Для вершины и
параболы выполняется неравенство (рис. 11, а).
Следовательно, множество решений второго неравенства не содержит
точек отрезка [1; 2] Система не имеет решения. То же имеет место и при а = 0.
3) Если 0
Вычисляя их дискриминанты, получим, что первое уравнение имеет корни, если второе — если . Найдем — абсциссу точки пересечения графиков Имеем следующие три случая.
1) a Уравнения, неравенства и системы с параметром. Графические интерпретации
Начнем с того, что еще раз решим систему неравенств 18.
Эту систему можно переписать в виде двойного неравенства
Рассмотрим координатную плоскость (х; а). Множество точек, координаты которых удовлетворяют нашей системе неравенств, ограничено графиками двух квадратных трехчленов и состоит из точек, расположенных выше первого графика и ниже второго. Графики этих двух квадратных трехчленов пересекаются в точке (3; 0) На рисунке 13 изображено это множество точек. Сразу «видно», что при система не имеет решений.
Чтобы найти решение системы неравенств при некотором рассмотрим горизонтальную прямую Эта прямая пересекает найденное нами множество по отрезку. Абсциссы концов этого отрезка и будут задавать интервал изменения х, при этом Понятно, что для нахождения этих абсцисс надо решить относительно х уравнения и и взять большие корни этих уравнений. Таким образом, мы получим найденный выше ответ, причем, как нам кажется, с меньшими затратами.
Рассмотрим еще несколько примеров.
19. При каких значениях а уравнение х |х —2а| —За + 2=0 имеет один корень?
Решение:
Рассмотрим функцию у = х|х — 2а| — За + 2. Ее график состоит из частей двух парабол: если то если х 2а и убывает на отрезке [а; 2а]. При а а и убывает на отрезке [2а; а].
Нетрудно сделать вывод, что, для того чтобы уравнение имело единственное решение, необходимо и достаточно, чтобы у (а) и у (2а) были одного знака (у (а) и у (2а) одновременно или выше, или ниже оси х), т. е. у (а) у (2d) > 0.
Получаем неравенство для а:
Найдем, где обращается в ноль первый множитель: а|а| — За + 2 =0. Если Если а 2 первый множитель положителен, второй
отрицателен, т. е. (а|а| — За + 2)( — За + 2)
Изобразим на плоскости (х; а) множество точек, координаты которых удовлетворяют полученной системе (рис. 16). При конкретном значении параметра а =а, решением нашего неравенства будут абсциссы тех точек горизонтальной прямой а = а, которые находятся в заштрихованной области. Найдем точки пересечения А (2; 2), В ( — 2; —2) наших парабол и вершину С ( — 0,5; —4,25) параболы
Далее получаем: если а>2, решений нет; горизонтальная прямая не пересекается с заштрихованной областью.
Если то соответствующая прямая пересекается с заштрихованной областью по отрезку. Концами этого отрезка будут точки с абсциссами (больший корень уравнения (больший корень уравнения или
Если то горизонтальная прямая, соответствующая таким а, пересекается с заштрихованной областью по двум отрезкам. Решением неравенства будет
Если
Подведем итог этому пункту. Мы рассмотрели здесь задачи, при решении которых использовались наглядно-графические соображения. Подчеркнем два характерных приема.
Первый прием (использовался при решении задачи 19). На плоскости (х; у) рассматривается семейство кривых, зависящих от параметра a: y = f(x; а). Затем в этом семействе выделяется множество кривых, обладающих требуемым свойством. При этом очень часто поступают следующим образом: изучают, как перемещается кривая семейства при изменении параметра, и находят граничные значения параметра, отделяющие множество значений параметра, которым соответствуют кривые, имеющие нужное свойство. (Правда, в задаче 19 путь решения был несколько иной. Нам удалось сразу получить удобное необходимое и достаточное условие, выделяющее искомое множество кривых.)
Второй прием состоит в том, что рассматривается плоскость (х; а), на которой изображается множество точек, координаты которых удовлетворяют данному уравнению или неравенству (см. решения задач 20 и 21). После этого, проводя прямые, параллельные оси х, находят решение этого уравнения или не равенства при соответствующем значении параметра. Значения параметра, при переходе через которые меняется формула, дающая решение, естественным образом определяются построенным множеством.
Задачи на максимум-минимум. Доказательство неравенств
Простейший прием нахождения наибольших и наименьших значений, основанный на свойствах квадратичной функции, состоит в том, что исследуемая функция при помощи преобразований или замены переменной приводится к квадратичной, после чего выделяется полный квадрат.
22. Найти наибольшее значение функции
Решение:
Обозначим тогда Отсюда . Переходя к переменной t, получаем, что надо найти
наибольшее значение функции при условии Выделим полный квадрат: Наибольшее значение будет у=1 при t=1. Возвращаясь к х (в данной задаче это не обязательно), найдем, что наибольшее значение у=1 будет при х = 0.
Другой прием иллюстрирует следующая задача.
23. Найти наибольшее и наименьшее значения функции
Решение:
Рассмотрим данное равенство как уравнение с неизвестным х и параметром у. (Можно для создания большего психологического комфорта заменить у на а.) После преобразований получим
Для того чтобы это уравнение имело решение, необходимо и достаточно, чтобы выполнялось неравенство
Слева в неравенстве стоит наименьшее значение у, справа — наибольшее.
Интересно сравнить данное решение задачи с решением, использующим производные.
Идея, на которой основано решение задачи 23, чрезвычайно проста. Чтобы найти наибольшее и наименьшее значения функции y=f(x) мы, рассматривая данное равенство как уравнение с неизвестным х, решаем задачу, при каких у это уравнение имеет решение.
Рассмотрим еще два примера, в которых работает эта же идея с небольшими вариациями.
24. Найти наибольшее и наименьшее значения выражения
2х— Зу, если
Решение:
Обозначим 2х — 3y = s, тогда Заменим у через х и s в заданном соотношении. После упрощений получим
Для того чтобы это уравнение (относительно х) имело решение, необходимо и достаточно выполнения неравенства
Как и в предыдущем случае, слева в двойном неравенстве стоит наименьшее значение s = 2x —Зу, справа — наибольшее.
25. Найти наибольшее и наименьшее значения выражения при условии, что
Решение:
Задача сводится к определению наибольшего и наименьшего значений а, при которых система
Левые части каждого из уравнений представляют собой однородные многочлены второй степени относительно х и у. Умножим первое уравнение на 4, второе на — а и сложим получившиеся уравнения. Получим
Разделив это уравнение на , будем иметь квадратное относительно уравнение
Нам необходимо, чтобы дискриминант этого уравнения был неотрицателен:
откуда Осталось проверить, для любых ли а из этого отрезка система имеет решение. Подставляя во второе уравнение x = yt, получим уравнение которое имеет решение при любом t. Следовательно, если а таково, что квадратное уравнение, определяющее t, имеет неотрицательный дискриминант, то исходная система имеет решение.
Ответ. Наименьшее значение при условии, что равно а наибольшее равно
Рассмотрим еще две задачи, решение которых основывается на графических соображениях.
26. Пусть М — точка на прямой у = 2х+1, а N — точка на параболе Чему равно наименьшее значение длины отрезка MN?
Решение:
Найдем уравнение прямой, параллельной данной прямой у = 2х+1 и касающейся параболы Для этого, учитывая, что прямая у = 2х+1 не параллельна оси параболы, надо среди прямых вида у = 2х + b найти ту, которая имеет единственную общую точку с параболой. Это означает, что уравнение
имеет дискриминант, равный нулю: Прямая у = 2х+1 и парабола расположены в разных полуплоскостях по отношению к прямой (За исключением одной точки на параболе, которая принадлежит также и прямой рис. 17.)
Теперь очевидно, что наименьшее значение длины отрезка МN равно расстоянию между параллельными прямыми у = 2х+1 и Это расстояние равно Но tga = 2, следовательно, cos
Ответ.
Замечание:
Возможно, более простым будет следующее решение. Найдем наименьшее значение разности где (рис. 17). Поскольку
искомое наименьшее значение равно и достигается при Для нахождения расстояния между данными прямой и параболой надо умножить на .
27. Найти все значения параметра а, для которых наименьшее значение функции меньше —
Решение:
График данной функции состоит из частей двух парабол, «склеенных» в точке с абсциссой при Наименьшее значение эта функция принимает или при х= — 2 (соответствует вершине первой параболы), или при х= —1 (соответствует вершине второй параболы), или при х = а (абсцисса точки склейки).
Мы перечислили все возможные значения аргумента, которые «подозреваются на минимум». (Не беда, если среди них окажутся лишние. Единственное следствие — некоторое увеличение объема вычислительной работы.) Следовательно» условию задачи удовлетворяют все те значения (и только те) параметра а, для которых выполняется хотя бы одно из трех неравенств
Все три неравенства объединены квадратной скобкой, что означает, что нам надо, решив каждое из них, полученные ответы объединить (а не находить множество значений параметра а, удовлетворяющее всем трем одновременно, как это делается в системах уравнений или неравенств).
Решая неравенства, получим для каждого из них соответственно
Ответ.
Мы не будем здесь подробно рассматривать задачи на доказательство неравенств, решения которых основываются на использовании тех или иных свойств квадратного трехчлена. (Выделение полного квадрата, оценка дискриминанта и т. д.) Ограничимся одним известным и полезным неравенством, при доказательстве которого свойства квадратного трехчлена используются весьма нестандартно.
28. Доказать, что для любых справедливо неравенство
Решение:
Рассмотрим следующую квадратичную функцию от х:
При всех х функция Следовательно, где D — дискриминант:
откуда получаем требуемое неравенство. Легко видеть, что равенство в неравенстве Коши-Буняковского имеет место, если существует х, обращающий в ноль все слагаемые в выражении для иными словами, если наборы пропорциональны.
Доказанное неравенство имеет очевидную геометрическую интерпретацию. Для n = 2; 3 оно выражает известный факт, что скалярное произведение двух векторов на плоскости и в пространстве не превосходит произведения их длин. Так же можно
интерпретировать неравенство Коши-Буняковского и для произвольных n.
Из полученного неравенства можно получить следствия. На пример, возьмем Будем иметь неравенство
Небольшой обзор различных типов и видов задач, относящихся к теме «Квадратный трехчлен», показывает, сколь разно образны по тематике, методам решения, уровню сложности за дачи, составляющие эту тему. Многие идеи, рассмотренные в нашем обзоре, носят достаточно общий характер и с успехом могут быть использованы при решении задач, относящихся к самым различным разделам алгебры и анализа.
Решение заданий и задач по предметам:
Дополнительные лекции по высшей математике:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института