Что значит приближенное значение

Урок 43 Бесплатно Приближенные значения чисел. Округление чисел

Человеку постоянно приходится сталкиваться с решением различных практических и теоретических задач, которые чаще всего связаны с нахождением числовых значений величин.

Измерить какую-либо величину- это значит сравнить ее с однородной величиной, принятой за единицу измерения.

В большинстве случаев полученные значения в результате вычислений и измерений получаются неточными, приближенными: немного больше или меньше истинного значения.

Точность- это степень приближения результата измерения (вычисления) к реальному значению.

Чем меньше точность, тем больше погрешность (расхождение истинного и полученного значения) и, соответственно, чем меньше погрешность, тем выше точность.

Точные измерения проблематичны в реальности по ряду причин:

Что значит приближенное значение

Так, например, невозможно точно до метра определить протяженность рек, гор, расстояние от Земли до Луны, с точностью до грамма проблематично определить массу грузовика и т.д.

Сегодня на уроке мы научимся находить приближенные значения с избытком и недостатком.

Что значит приближенное значение

Познакомимся с правилом округления чисел до заданного разряда.

Рассмотрим несколько примеров округления чисел.

Приближенные значения чисел

В настоящее время в различные сферы жизни человека все больше внедряются современные высокоточные устройства, которые позволяют быстро и точно производить измерения и вычисления.

Однако, порой нам даже нет необходимости знать точное значение величины.

Не раз нам приходилось встречать такие фразы: «около одного часа», «примерно один килограмм» или «приблизительно двадцать тысяч рублей» и т.п.

В подобных фразах синонимы: «около», «примерно», «приблизительно» и т.д. указывают на приближенность значений величины, на чуть большее или меньшее значение относительно реального.

Например, говоря о своем возрасте, мы чаще всего называем количество лет и месяцев, не упоминая о прожитых днях и часах.

На вопрос «который час?» мы скорее всего назовем сколько часов и минут в данный промежуток времени, не указывая секунды.

Числа, с которыми нам приходится встречаться и использовать в действительности, бывают двух типов:

Например, говоря о том, что у треугольника 3 стороны, число 3 представляет собой точным числом.

Что значит приближенное значение

В утверждении о том, что стул имеет 4 ножки, число 4 так же является точным.

Что значит приближенное значение

На практике, измеряя расстояние, массу, температуру, объем, площадь и другие величины, мы не можем определить их точные значения, а порой эти точные значения вовсе не требуется находить.

Что значит приближенное значение

Поэтому важно знать (заранее установить) с какой точностью необходимо выполнить измерения и вычисления, т.е. необходимо выяснить какие доли единицы измерения необходимо принять во внимание, а какими можно пренебречь.

Приближенные значения делят на:

Рассмотрим поясняющий пример.

Обратите внимание на рисунок.

Что значит приближенное значение

Улитка проползла некоторое расстояние и остановилась, данное расстояние обозначим как х (см).

Заметим, что улитка смогла преодолеть больше 7 см, но не смогла доползти до отметки 8 см.

Получается, что расстояние, которое проползла улитка больше 7 см, но меньше 8 см:

Математический язык использует огромное количество специальных символов и знаков, которые однозначно отражают свойства изучаемых процессов, явлений, объектов, освобождают от громоздких записей, конкретны в своей трактовке.

Одним из таких знаков является приближенное равенство.

Приближенное значение указывают с помощью специального знака.

Обозначается данный знак в виде двух волнистых линий:

Что значит приближенное значение

Знак «приближенное равенство» в 1882 г. предложил немецкий физик-математик Адам Вильгельм Зигмунд Гюнтер.

Запись приближенное равно читается как «приблизительно равно» или «приближенно равно».

Например, a + b c читается так: сумма a и b приближенно равна с.

Пройти тест и получить оценку можно после входа или регистрации

Округление чисел

Чтобы найти приближенное значение числа, используют математическое действие- округление чисел (замена числа его ближайшим «круглым» числом).

«Круглым» числом называют число, оканчивающееся одним или несколькими нулями.

Округление- это математическая операция, с помощью которой можно уменьшить количество знаков в числе за счет замены этого числа его близким значением с определенной точностью.

Суть операции округления заключается в нахождении числа ближайшего по своему значению к истинному.

Округлить можно любое число до любого разряда.

Важно знать и помнить правильное название и расположение разрядов в числе.

Вспомним разряды десятичных дробей.

Что значит приближенное значение

Замену числа ближайшим к нему натуральным числом или нулем называют округлением этого числа до целых.

Десятичные дроби возможно округлять так же как натуральные числа до единиц, десятков, сотен, тысяч и т.д.

При округлении числа до десятков число заменяют «круглым» числом, которое должно состоять из целых десятков, а вместо разряда единиц должен быть нуль.

Если необходимо округлить число, например, до сотен, это число заменяют «круглым» числом, в котором остается разряд сотен, а в разряде десятков и единиц должны стоять нули.

Округлим 1,7 до целого.

Рассмотрим процесс округления десятичной дроби с помощью координатного луча.

Разложим заданное число по разрядам.

1,7 = 1 + 0,7

Изобразим горизонтальный координатный луч, направленный вправо, с началом отсчета в точке О(0) и единичным отрезком ОЕ, равным 1 единице.

Что значит приближенное значение

Отметим на координатном луче точку с координатой 1,7.

Отложим один целый единичный отрезок от начала координат, получим одну целую единицу.

Чтобы отметить дробь 0,7, второй единичный отрезок разделим на десять долей, каждая такая доля будет равна \(\mathbf<\frac<1> <10>= 0,1>\).

От точки с координатой 1 отложим вправо семь долей единичного отрезка ОЕ, получим точку с координатой 1,7.

Обратим внимание, что точка 1,7 находится между натуральными числами 1 и 2.

Точка с координатой 1,7 удалена от точки Е(1) на семь долей единичного отрезка ОЕ, а от точки с координатой 2— всего на три доли единичного отрезка ОЕ.

Таким образом, можно утверждать, что точка с координатой 1,7 расположена ближе к точке с координатой 2.

Значит, при округлении числа 1,7 до целых получается число 2 (1,7 приближенно равно 2).

1,7 ≈ 2

Десятичные дроби так же можно округлять до определенного разряда, стоящего после десятичной запятой: до десятых, сотых, тысячных и т.д.

При округлении до какого-либо разряда все последующие за этим разрядом цифры заменяют нулями, а если они стоят после запятой, то их просто отбрасывают.

Округление чисел происходит по определенному правилу, рассмотрим его.

Чтобы округлить число до какого-либо разряда нужно:

Что значит приближенное значение

Поясним на примерах.

Пример №1.

Округлим 83421 до сотен.

Подчеркнем в числе цифру 4, так как она стоит в разряде сотен.

83 4 21

За подчеркнутой цифрой стоит цифра 2, следовательно, необходимо действовать согласно Правила №1: оставить цифру 4 без изменения.

Все цифры, стоящие после разряда сотен (цифры 2 и 1), заменим нулями.

Что значит приближенное значение

В итоге получим округление числа 83 4 21 до 83 4 00.

Результат запишем следующим образом: 83421 ≈ 83400.

Пример №2.

Округлим до разряда единиц число 316,52.

Число 316,52 будем округлять до целых.

Известно, что десятичная дробь состоит из целой части (находящейся до десятичной запятой) и дробной части (находящейся после десятичной запятой).

В заданной десятичной дроби 316,52 в разряде единиц стоит цифра 6.

Подчеркнем цифру 6.

Цифра, стоящая справа от подчеркнутой цифры- это цифра 5, следовательно, необходимо действовать согласно Правила №2: к подчеркнутой цифре 6 прибавить единицу.

Получим в разряде единиц цифру 7, все цифры, стоящие следом за округляемым разрядом (стоящие после десятичной запятой), отбрасываем.

Что значит приближенное значение

Результат запишем следующим образом: 316,52 ≈ 317.

Пример №2.

Округлим число 27,819 до разряда сотых.

В заданной десятичной дроби 27,819 в разряде сотых стоит цифра 1, подчеркнем ее.

27,8 1 9

За подчеркнутым разрядом стоит цифра 9, следовательно, необходимо действовать согласно Правила №2: к подчеркнутой цифре 1 прибавить единицу.

Получим в разряде сотых цифру 2, все цифры, следующие за разрядом сотых, просто отбрасываем.

Что значит приближенное значение

Результат запишем следующим образом: 27,819 ≈ 27,82.

У меня есть дополнительная информация к этой части урока!

Что значит приближенное значение

Округлим до тысячных число 1,2397.

В разряде тысячных стоит цифра 9, подчеркнем ее.

1,23 9 7

Справа от подчеркнутой цифры находится цифра 7, значит, необходимо действовать согласно Правила №2: к подчеркнутой цифре 9 прибавить единицу.

9 + 1 = 10

Ноль необходимо оставить в разряде тысячных, а единицу добавить к предыдущему (старшему) разряду, все цифры, стоящие после разряда тысячных нужно просто отбросить.

Получим следующий результат: 1,23 9 7 ≈ 1,240.

Ноль, в полученной десятичной дроби 1,240 оставляем, чтобы показать до какого разряда производилось округление.

Пройти тест и получить оценку можно после входа или регистрации

Источник

Приближённые вычисления в математике

Содержание:

Приближённые вычисления

Приближённые вычисления — вычисления, в которых данные и результат (или только результат) являются числами, приближенно представляющими истинные значения соответствующих величин. Числовые данные, полученные измерением реальных объектов, редко бывают точными значениями соответствующей величины, а обычно имеют некоторую погрешность

Абсолютная и относительная погрешности

При решении практических задач часто приходится иметь дело с приближёнными значениями разных числовых величин. К ним относятся: результаты измерения разных величин с помощью приборов; значения полученные при считывании на графиках, диаграммах, номограммах; проектные данные; результаты округления чисел; результаты действий над приближёнными числами; табличные значения некоторых величин; результаты вычислений значений функции. Приближённые значения (приближение, приближённые числа) могут значительно отличаться от точных, либо быть близкими к ним.

Для оценки отклонения приближённых чисел от точных используют такие понятия как абсолютная и относительная погрешности.

Абсолютной погрешностью приближённой называется модуль разности между точным значением величины Что значит приближенное значениеи её приближённым значением х, то есть

Что значит приближенное значение

Пример.

Абсолютная погрешность приближённого числа Что значит приближенное значениечислом 0,44 составляет

Что значит приближенное значение

Если точное число неизвестно, то найти абсолютную погрешность Что значит приближенное значениеневозможно. На практике вводят оценку допустимой при данных измерениях или вычислениях абсолютной погрешности, которую называют пределом абсолютной погрешности и обозначают буквой h. Считают, что hЧто значит приближенное значение. Как правило, предел абсолютной погрешности устанавливают из практических соображений, например, при измерениях пределом абсолютной погрешности считают наименьшее деление прибора.

При записи приближённых чисел часто используют понятия верной и сомнительной цифры.

Цифра Что значит приближенное значениеназывается верной, если предел абсолютной погрешности данного приближения не превышает единицы того разряда, в котором записана эта цифра. В другом случае цифра называется сомнительной.

Например: в числе Что значит приближенное значениедве цифры верны, поскольку погрешность 0,04 не превышает единицу разряда десятых. Цифры 9 и 7 верны, поскольку Что значит приближенное значениеа цифры 4 и 6 являются сомнительными, поскольку Что значит приближенное значение

В конечной записи приближённого числа сохраняют только верные цифры. Так число Что значит приближенное значениеможно записать в виде Что значит приближенное значение, число Что значит приближенное значениев виде Что значит приближенное значениеЕсли в десятичной дроби последние верные цифры — нули, то их оставляют в записи числа.

Например: если Что значит приближенное значение, то правильной записью числа будет 0,260.

Если в целом числе последние нули являются сомнительными, их исключают из записи числа.

Именно поэтому при работе с приближёнными числами широко используют стандартную форму записи числа.

Например: в числе Что значит приближенное значениеверными являются три первые цифры, а два последних нуля — сомнительные цифры. Запись числа возможна только в виде:

Что значит приближенное значение

Следовательно, в десятичной записи приближённого числа последняя цифра указывает на точность приближённости, то есть предел абсолютной погрешности не превышает единицу последнего разряда.

Например:

1. Запись Что значит приближенное значениеозначает, что Что значит приближенное значение, то есть предел абсолютной погрешности h=0,01.

2. Запись Что значит приближенное значение

3. Если Что значит приближенное значение

В десятичной записи числа значимыми цифрами называются все его верные цифры начиная с первой слева, отличной от нуля.

Например: в числе 1,13 — три значимых цифры, в числе 0,017 — две, в числе 0,303 — три, в числе 5,200 — четыре, в числе 25*10 3 — две значимых цифры.

При таком подходе к записи приближенного числа необходимо уметь округлять числа.

Правила округления чисел:

— Если первая цифра, которую отбрасываем является меньше пяти, то в основном разряде, который сохраняется цифра не меняется. Например: 879,673≈879,67.

— Если первая цифра, которую отбрасываем больше пяти, то в последнем разряде, который сохраняется цифра увеличивается на единицу. Например: 456,87≈456,9.

— Если первая цифра, которая отбрасывается пять и за ней есть ещё отличны от нуля, то в последнем разряде, который сохраняется цифра увеличивается на единицу. Например: 1246,5002≈1247.

— Если первая цифра, которая отбрасывается — пять и за ней нет больше никаких цифра, то в последнем разряде, который сохраняется цифра увеличивается на единицу. Например: 0,275≈0,28; 1,865≈1,86.

Абсолютная погрешность не полностью характеризует точность приближения. Например, Что значит приближенное значениебудет грубой ошибкой при измерении жука, и незначительной при измерении кита. Тоже самое можно сказать и про предел абсолютной погрешности. Качество (точность) приближённости лучше характеризуется относительной погрешностью.

Относительной погрешностью Что значит приближенное значение(омега) приближённости х величины Что значит приближенное значениеназывается отношением абсолютной погрешности Что значит приближенное значениеэтого приближения к модулю приближённого значения х, то есть

Что значит приближенное значение

Поскольку абсолютная погрешность Что значит приближенное значениеобычно бывает неизвестна, то на практике оценивают модуль относительной погрешности некоторым числом, которое не меньше чем этот модуль:

Что значит приближенное значение

Число Что значит приближенное значениеназывается пределом относительной погрешности.

Предел относительной погрешности можно вычислить по формуле: Что значит приближенное значение

Конечно относительная погрешность выражается в процентах.

С помощью относительной погрешности легко установить точность приближённости.

Пример 1. Найти относительную погрешность числа Что значит приближенное значение

Решение: Имеем Что значит приближенное значение

Следовательно Что значит приближенное значение

Пример 2. Сравнить точность измерения толщины книги d (см) и высоты стола H (см), если известно, что Что значит приближенное значение.

Решение:

Что значит приближенное значение

Как видим, точность измерения высоты стола значительно выше.

Выполнение действий над приближёнными числами

Результат арифметических действий над приближёнными числами является также приближённым числом.

Что значит приближенное значение

Пример 3. Вычислить приближение значения выражения Что значит приближенное значениеи найти предел погрешностей результата.

Решение: находим значение квадрата числа 5,62 и квадратного корня из числа 18,50. Что значит приближенное значение

Найдём границу относительной погрешности результата:

Что значит приближенное значение

Граница абсолютной погрешности результата:

Что значит приближенное значение

Ответ: Что значит приближенное значение

Пример 4. Вычислить приближение значения выражения Что значит приближенное значениеи найти предел погрешностей результата.

Решение: находим значение квадратного корня из числа 6,24 и Что значит приближенное значение, имеем:

Что значит приближенное значение

Граница относительной погрешности результата:

Что значит приближенное значение

Граница абсолютной погрешности результата: Что значит приближенное значение

Ответ: Что значит приближенное значение

Выполнение действий без точного учёта погрешности

Точный учёт погрешности усложняет вычисление. Поэтому, если не надо учитывать погрешность промежуточных результатов, можно использовать более простые правила.

Сложение и вычитание приближённых вычислений рекомендуется выполнять так:

а) выделить слагаемое с наименьшим числом верных десятичных знаков;

б) округлить другие слагаемые так, чтобы каждое из них содержало на один десятичный знак больше чем выделенное;

в) выполнить действия, учитывая все сохранённые десятичные знаки;

г) результаты округлить и сохранить столько десятичных знаков, сколько их есть в приближённом числе с наименьшим числом десятичных знаков.

Умножение и деление приближённых вычислений рекомендуется выполнять так:

а) выделить среди данных чисел, число с наименьшим количеством верных значимых цифр;

б) округлить оставшиеся данные так, чтобы каждое из них содержало на одну значащую цифру больше, чем в выделенном;

в) выполнить действия — сохранить все значимые цифры;

г) сохранять в результате столько значащих цифр, сколько их имеет выделенное число с наименьшим количеством верных значимых цифр.

При возведении в степень приближённого числа в результате сохраняют столько значимых цифр, сколько верных значимых цифр имеет основа степени.

При извлечении корня из приближённого числа в результате сохраняют столько верных цифр, сколько имеет подкоренное число.

Присылайте задания в любое время дня и ночи в ➔ Что значит приближенное значениеЧто значит приближенное значение

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *