Что значит преобразовать выражение в многочлен
Учимся приводить многочлены к стандартному виду
В изучении темы о многочленах отдельно стоит упомянуть о том, что многочлены встречаются как стандартного, так и не стандартного вида. При этом многочлен нестандартного вида можно привести к стандартному виду. Собственно, этот вопрос и будем разбирать в данной статье. Закрепим разъяснения примерами с подробным пошаговым описанием.
Смысл приведения многочлена к стандартному виду
Немного углубимся в само понятие, действие – «приведение многочлена к стандартному виду».
Многочлены, подобно любым другим выражениям, возможно тождественно преобразовывать. Как итог, мы получаем в таком случае выражения, которые тождественно равны исходному выражению.
Привести многочлен к стандартному виду – означает замену исходного многочлена на равный ему многочлен стандартного вида, полученный из исходного многочлена при помощи тождественных преобразований.
Способ приведения многочлена к стандартному виду
Порассуждаем на тему того, какие именно тождественные преобразования приведут многочлен к стандартному виду.
Согласно определению, каждый многочлен стандартного вида состоит из одночленов стандартного вида и не имеет в своем составе подобных членов. Многочлен же нестандартного вида может включать в себя одночлены нестандартного вида и подобные члены. Из сказанного закономерно выводится правило, говорящее о том, как привести многочлен к стандартному виду:
Примеры и решения
Разберем подробно примеры, в которых приведем многочлен к стандартному виду. Следовать будем правилу, выведенному выше.
Отметим, что иногда члены многочлена в исходном состоянии уже имеют стандартный вид, и остается только привести подобные члены. Случается, что после первого шага действий не оказывается подобных членов, тогда второй шаг пропускаем. В общих случаях необходимо совершать оба действия из правила выше.
5 · x 2 · y + 2 · y 3 − x · y + 1 ,
Необходимо привести их к стандартному виду.
Решение
рассмотрим сначала многочлен 5 · x 2 · y + 2 · y 3 − x · y + 1 : его члены имеют стандартный вид, подобные члены отсутствуют, значит многочлен задан в стандартном виде, и никаких дополнительных действий не требуется.
В полученном многочлене все члены – стандартные, подобных членов не имеется, значит наши действия по приведению многочлена к стандартному виду завершены.
Приведем его члены к стандартному виду и получим:
Мы видим, что в составе многочлена имеются подобные члены, произведем приведение подобных членов:
Ответ:
Во многих задачах действие приведения многочлена к стандартному виду – промежуточное при поиске ответа на заданный вопрос. Рассмотрим и такой пример.
Решение
Приведем члены заданного многочлена к стандартному виду:
Следующим шагом приведем подобные члены:
Остается только расположить члены по убывающим степеням переменных. С этой целью мы просто переставим местами члены в полученном многочлене стандартного вида с учетом требования. Таким образом, получим:
Ответ:
Преобразование целого выражения в многочлен
Урок 37. Алгебра 7 класс
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Преобразование целого выражения в многочлен»
· ввести понятие «целое выражение»;
· показать, что любое целое выражение можно представить в виде многочлена;
· показать способ определения целого выражения;
· показать способ преобразования целого выражения в многочлен стандартного вида.
В первую очередь необходимо выяснить, какие же выражения называют целыми.
Посмотрите внимательно на следующие выражения
Они составлены из чисел и переменных с помощью действий сложения, вычитания и умножения. Также некоторые из выражений содержат степени.
Такие выражения называют целыми. Причём если выражение содержит, кроме действий сложения, вычитания и умножения, действие деление на число, не равное нулю, то оно также является целым, так как действие деление можно заменить умножением на число обратное делителю.
Следующее же выражение не является целым, так содержит деление на выражение с переменной.
Обратите внимание, что среди целых выражений есть многочлены и одночлены.
Нам с вами известно, что сумму, разность и произведение многочленов можно преобразовать в многочлен. Поэтому любое целое выражение можно представить в виде многочлена.
Прежде, чем рассмотреть примеры преобразования целого выражения в многочлен, вспомним, что если перед скобками стоит знак плюс, то скобки можно опустить, сохранив знак каждого слагаемого, заключённого в скобки.
Если же перед скобками стоит знак минус, то скобки можно опустить, изменив знак каждого слагаемого, заключённого в скобки, на противоположный.
Также вспомним, что при умножении одночлена на многочлен надо умножить одночлен на каждый член многочлена.
А при умножении многочлена на многочлен надо каждый член одного многочлена умножить на каждый член другого многочлена и полученные произведения сложить.
Ну а теперь давайте рассмотрим примеры.
Итак, чтобы преобразовать целое выражение в многочлен, надо:
1. раскрыть скобки, если они есть;
2. применить формулы сокращённого умножения, если возможно;
3. при необходимости привести подобные слагаемые, чтобы получить многочлен стандартного вида.
Помним, что многочленом стандартного вида называется многочлен, все члены которого имеют стандартный вид и среди них нет подобных.
Преобразование целых выражений
Благодаря курсу алгебры, известно, что все выражения требуют преобразования для более удобного решения. Определение целых выражений способствует тому, что для начала выполняются тождественные преобразования. Будем преобразовывать выражение в многочлен. В заключении разберем несколько примеров.
Определение и примеры целых выражений
Целые выражения – это числа, переменные или выражения со сложением или вычитанием, которые записываются в виде степени с натуральным показателем, которые также имеют скобки или деление, отличное от нуля.
Многочлен и одночлен являются целыми выражениями, с которыми встречаемся в школе при работе с рациональными числами. Иначе говоря, целые выражения не включают в себя записи иррациональных дробей. Другое название – это целые иррациональные выражения.
Какие преобразования целых выражений возможны?
Целые выражения рассматриваются при решении как основные тождественные преобразования, раскрытие скобок, группирование, приведение подобных.
Для начала необходимо применить правило раскрытия скобок. Получим выражение вида 2 · ( a 3 + 3 · a · b − 2 · a ) − 2 · a 3 − ( 5 · a · b − 6 · a + b ) = = 2 · a 3 + 2 · 3 · a · b + 2 · ( − 2 · a ) − 2 · a 3 − 5 · a · b + 6 · a − b = = 2 · a 3 + 6 · a · b − 4 · a − 2 · a 3 − 5 · a · b + 6 · a − b
После чего можем привести подобные слагаемые:
Представить выражение 6 · x 2 · y + 18 · x · y − 6 · y − ( x 2 + 3 · x − 1 ) · ( x 3 + 4 · x ) в виде произведения.
6 · y · ( x 2 + 3 · x − 1 ) − ( x 2 + 3 · x − 1 ) · ( x 3 + 4 · x ) = = ( x 2 + 3 · x − 1 ) · ( 6 · y − ( x 3 + 4 · x ) )
Ответ: 6 · x 2 · y + 18 · x · y − 6 · y − ( x 2 + 3 · x − 1 ) · ( x 3 + 4 · x ) = = ( x 2 + 3 · x − 1 ) · ( 6 · y − x 3 − 4 · x )
Тождественные преобразования требуют строгое выполнение порядка действий.
8 · x 8 + 4 · x : 8 = 8 · x 8 + 4 · x · 1 8 = 8 · x 8 + 4 · 1 8 · x = 8 · x 8 + 1 2 · x
Преобразование в многочлен
Большинство случаев преобразования целых выражений – это представление в виде многочлена. Любое выражение можно представить в виде многочлена. Любое выражение может быть рассмотрено как многочлены, соединенные арифметическими знаками. Любое действие над многочленами в итоге дает многочлен.
Для того, чтобы выражение было представлено в виде многочлена, необходимо выполнять все действия с многочленами, согласно алгоритму.
Разберем умножение. Видно, что 2 · ( 2 · x 3 − 1 ) = 4 · x 3 − 2 и ( 4 · x 2 − 4 · x + 1 ) · ( 3 − x ) = 12 · x 2 − 4 · x 3 − 12 · x + 4 · x 2 + 3 − x = = 16 · x 2 − 4 · x 3 − 13 · x + 3
Выполняем сложение, после чего придем к выражению:
Умножение и возведение в степень многочлена говорит о том, что необходимо использовать формулы сокращенного умножения для ускорения процесса преобразования. Это способствует тому, что действия будут выполнены рационально и правильно.
Чтобы преобразование не было слишком длинным, необходимо заданное выражение приводить к стандартному виду.
Упростить выражение вида ( 2 · a · ( − 3 ) · a 2 · b ) · ( 2 · a + 5 · b 2 ) + a · b · ( a 2 + 1 + a 2 ) · ( 6 · a + 15 · b 2 ) + ( 5 · a · b · ( − 3 ) · b 2 )
− 6 · a 3 · b · ( 2 · a + 5 · b 2 ) + a · b · ( 2 · a 2 + 1 ) · ( 6 · a + 15 · b 2 ) − 15 · a · b 3 = = − 12 · a 4 · b − 30 · a 3 · b 3 + ( 2 · a 3 · b + a · b ) · ( 6 · a + 15 · b 2 ) − 15 · a · b 3 = = − 12 · a 4 · b − 30 · a 3 · b 3 + 12 · a 4 · b + 30 · a 3 · b 3 + 6 · a 2 · b + 15 · a · b 3 − 15 · a · b 3 = = ( − 12 · a 4 · b + 12 · a 4 · b ) + ( − 30 · a 3 · b 3 + 30 · a 3 · b 3 ) + 6 · a 2 · b + ( 15 · a · b 3 − 15 · a · b 3 ) = 6 · a 2 · b
Ответ: ( 2 · a · ( − 3 ) · a 2 · b ) · ( 2 · a + 5 · b 2 ) + a · b · ( a 2 + 1 + a 2 ) · ( 6 · a + 15 · b 2 ) + + ( 5 · a · b · ( − 3 ) · b 2 ) = 6 · a 2 · b
Тема №3. «Многочлены. Преобразование выражений»
Главная > Документ
Информация о документе | |
Дата добавления: | |
Размер: | |
Доступные форматы для скачивания: |
Глава 2. Буквенные выражения.
Тема №3. «Многочлены. Преобразование выражений»
Многочленом называется алгебраическая сумма одночленов. Если все одночлены в многочлене приведены к стандартному виду и нет подобных слагаемых, то говорят, что это многочлен стандартного вида.
Формулы преобразования многочленов.
Для любых а, b и с верны следующие равенства:
2. (а + b) 2 = а 2 + 2аb + b 2 ;
4. (а + b) 3 = а 3 + 3a 2 b + 3аb 2 + b 3 ;
Предлагаю вашему вниманию демонстрационный вариант, изучите на его примере алгоритмы выполнения заданий и попробуйте свои силы.
1. Какое из приведённых ниже выражений тождественно равно произведению
Решение. Рассмотрим каждое из предложенных выражений.
(-1)) = 3 • (6 + 4) = 3 • 10 = 30.
8. Соотнесите каждое выражение
A> Б) В> с тождественно равным ему выражением:
Решение. Преобразуем каждое из заданных выражений.
A) . Это выражение тождественно равно выражению 1).
Б) . Это выражение тождественно равно выражению 3).
B) . Это выражение тождественно равно выражению 4).
Тождественные преобразования многочленов
Возведение двучлена в степень
Двучлен — это многочлен, состоящий из двух членов. В прошлых уроках мы возводили двучлен во вторую и третью степень, тем самым получили формулы сокращенного умножения:
Но двучлен можно возводить не только во вторую и третью степень, но и в четвёртую, пятую или более высокую степень.
К примеру, возведём двучлен a + b в четвертую степень:
Представим это выражение в виде произведения двучлена a + b и куба этого же двучлена
Сомножитель (a + b) 3 можно заменить на правую часть формулы куба суммы двух выражений. Тогда получим:
А это обычное перемножение многочленов. Выполним его:
То есть при возведении двучлена a + b в четвертую степень получается многочлен a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + b 4
Возведение двучлена a + b в четвертую степень можно выполнить ещё и так: представить выражение (a + b) 4 в виде произведения степеней (a + b) 2 (a + b) 2
А это опять же обычное перемножение многочленов. Выполним его. У нас получится тот же результат, что и раньше:
Возведение трёхчлена в степень
Трёхчлен — это многочлен, состоящий из трёх членов. Например, выражение a + b + c является трёхчленом.
Иногда может возникнуть задача возвести трёхчлен в степень. Например, возведём в квадрат трехчлен a + b + c
Два члена внутри скобок можно заключить в скобки. К примеру, заключим сумму a + b в скобки:
В этом случае сумма a + b будет рассматриваться как один член. Тогда получается, что в квадрат мы возводим не трёхчлен, а двучлен. Сумма a + b будет первым членом, а член c — вторым членом. А как возводить в квадрат двучлен мы уже знаем. Для этого можно воспользоваться формулой квадрата суммы двух выражений:
Применим эту формулу к нашему примеру:
Таким же способом можно возвести в квадрат многочлен, состоящий из четырёх и более членов. Например, возведем в квадрат многочлен a + b + c + d
Теперь воспользуемся формулой квадрата суммы двух выражений:
Выделение полного квадрата из квадратного трёхчлена
Ещё одно тождественное преобразование, которое может пригодиться при решении задач это выделение полного квадрата из квадратного трёхчлена.
Квадратным трехчленом называют трёхчлен второй степени. Например, следующие трехчлены являются квадратными:
Итак, переменная a равна 2x
Отсюда делаем вывод, что переменная b равна 4
Значит, нашим полным квадратом будет выражение (2x) 2 + 2 × 2x × 4 + 4 2
Итак, возвратимся к исходному трехчлену 4x 2 + 16x + 19 и попробуем аккуратно внедрить в него полученный нами полный квадрат (2x) 2 + 2 × 2x × 4 + 4 2
Вместо 4x 2 записываем (2x) 2
Далее вместо 16x записываем удвоенное произведение, а именно 2 × 2x × 4
Далее прибавляем квадрат второго выражения:
А член 19 пока переписываем как есть:
4x 2 + 16x + 19 = (2x) 2 + 2 × 2x × 4 + 4 2 + 19
(2x) 2 + 2 × 2x × 4 + 4 2 + 19 = 4x 2 + 16x + 4 2 + 19
Чтобы сохранить значение исходного многочлена, нужно после прибавления члена 4 2 сразу же вычесть его
4x 2 + 16x + 19 = (2x) 2 + 2 × 2x × 4 + 4 2 − 4 2 + 19
4x 2 + 16x + 19 = (2x) 2 + 2 × 2x × 4 + 4 2 − 4 2 + 19 = (2x + 4) 2 − 4 2 + 19
4x 2 + 16x + 19 = (2x) 2 + 2 × 2x × 4 + 4 2 − 4 2 + 19 = (2x + 4) 2 − 4 2 + 19 = (2x + 4) 2 + 3
Значит, 4x 2 + 16x + 19 = (2x + 4) 2 + 3
Пример 2. Выделить полный квадрат из квадратного трёхчлена x 2 + 2x + 2
Следующий член исходного трёхчлена 2x перепишем в виде удвоенного произведение первого выражения (это у нас x ) и второго выражения b (это будет 1).
Теперь вернёмся к исходному квадратному трёхчлену и внедрим в него полный квадрата x 2 + 2x + 1 2
x 2 + 2x + 2 = x 2 + 2x + 1 2 − 1 2 + 2 = (x + 1) 2 + 1
Как и в прошлом примере член b (в данном примере это 1) после прибавления сразу был вычтен с целью сохранения значения исходного трёхчлена.
Рассмотрим следующее числовое выражение:
Значение этого выражения равно 17
Второй член 6 представим в виде удвоенного произведения первого члена 3 и второго 1
3 2 + 6 + 2 = 3 2 + 2 × 3 × 1 + 1 2 − 1 2 + 2
Свернем полный квадрат, а члены −1 2 и 2 слóжим:
3 2 + 6 + 2 = 3 2 + 2 × 3 × 1 + 1 2 − 1 2 + 2 = (3 + 1) 2 + 1
(3 + 1) 2 +1 = 4 2 + 1 = 17
Допустим, у нас имеются квадрат и два прямоугольника. Квадрат со стороной 3 см, прямоугольник со сторонами 2 см и 3 см, а также прямоугольник со сторонами 1 см и 2 см
Запишем сумму площадей этих прямоугольников:
Это выражение можно понимать как объединение квадрата и двух прямоугольников в единую фигуру:
Попробуем из имеющейся фигуры образовать квадрат. Причем максимально большой квадрат. Для этого будем использовать части от розового и сиреневого прямоугольника.
Чтобы образовать максимально большой квадрат из имеющейся фигуры, можно желтый квадрат оставить без изменений, а половину от розового прямоугольника прикрепить к нижней части желтого квадрата:
Видим, что до образования полного квадрата не хватает еще одного квадратного сантиметра. Его мы можем взять от сиреневого прямоугольника. Итак, возьмем один квадрат от сиреневого прямоугольника и прикрепим его к образуемому большому квадрату:
Теперь внимательно посмотрим к чему мы пришли. А именно на желтую часть фигуры и розовую часть, которая по сути увеличила прежний жёлтый квадрат. Не означает ли это то, что была сторона квадрата равная 3 см, и эта сторона была увеличена на 1 см, что привело в итоге к увеличению площади?
(3 + 1) 2
(3 + 1) 2 = 3 2 + 6 + 1 = 9 + 6 + 1 = 16
Действительно, в образовавшемся квадрате содержится 16 квадратов.
Оставшийся один квадратик от сиреневого прямоугольника можно прикрепить к образовавшемуся большому квадрату. Ведь речь изначально шла о единой фигуре:
(3 + 1) 2 + 1
9 + 6 + 2 = 3 2 + 6 + 2 = 3 2 + 2 × 3 × 1 + 1 2 − 1 2 + 2 = (3 + 1) 2 + 1
Пример 4. Выполним выделение полного квадрата из квадратного трёхчлена x 2 + 6x + 8
x 2 + 6x + 8 = x 2 + 2 × x × 3 + 3 2 − 3 2 + 8 = (x + 3) 2 − 1
Например, выполним выделение полного квадрата из квадратного трёхчлена x 2 + 3x + 2
Возвращаемся к нашему примеру и прибавляем квадрат второго выражения, и чтобы значение выражения не изменилось, сразу же вычитаем его:
Прибавляем оставшийся член 2
Свернём полный квадрат:
Оставшийся квадрат второго выражения и число 2 можно сложить. В итоге получим:
Пример 6. Выполним выделение полного квадрата из квадратного трёхчлена 9x 2 + 18x + 7
Пример 7. Выполним выделение полного квадрата из квадратного трёхчлена x 2 − 10x + 1
Пример 8. Выполним выделение полного квадрата из квадратного трёхчлена 16x 2 + 4x + 1
Пример 9. Разложить многочлен x 2 + 6x + 8 на множители при помощи выделения полного квадрата.
Сначала выделим полный квадрат: