Что значит преобладает в биологии

Законы Менделя

Что значит преобладает в биологии

Что значит преобладает в биологии

Что значит преобладает в биологии

С него часто начинаются генетические задачи (в качестве первого скрещивания). Этот закон гласит о том, что при скрещивании гомозиготных особей, отличающихся одной или несколькими парами альтернативных признаков, все гибриды первого поколения будут единообразны по данным признакам.

Что значит преобладает в биологии

Анализирующее скрещивание

Анализируя полученное потомство, можно сделать вывод о генотипе гибридной особи.

Что значит преобладает в биологии

Неполное доминирование

Что значит преобладает в биологии

«При скрещивании гетерозиготных гибридов (Aa) первого поколения F1 во втором поколении F2 наблюдается расщепление по данному признаку: по генотипу 1 : 2 : 1, по фенотипу 3 : 1″

Что значит преобладает в биологии

В нем речь идет о дигибридном скрещивании, то есть мы исследуем не один, а два признака у особей (к примеру, цвет семян и форма семян). Каждый ген имеет два аллеля, поэтому пусть вас не удивляют генотипы AaBb 🙂 Важно заметить, что речь в данном законе идет о генах, которые расположены в разных хромосомах.

Что значит преобладает в биологии

Запомните III закон Менделя так: «При скрещивании особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга, комбинируясь друг с другом во всех возможных сочетаниях.

Что значит преобладает в биологии

Очевидно, что расщепление по фенотипу среди гибридов второго поколения составляет: 9:3:3:1.

Пример решения генетической задачи №1

Доминантный ген отвечает за развитие у человека нормальных глазных яблок. Рецессивный ген приводит к почти полному отсутствию глазных яблок (анофтальмия). Гетерозиготы имеют глазное яблоко малых размеров (микрофтальмия). Какое строение глазных яблок будет характерно для потомства, если оба родителя страдают микрофтальмией?

Что значит преобладает в биологии

Пример решения генетической задачи №2

Полидактилия и отсутствие малых коренных зубов передаются как аутосомно-доминантные признаки. Гены, отвечающие за развитие этих признаков, расположены в разных парах гомологичных хромосом. Какова вероятность рождения детей без аномалий в семье, где оба родителя страдают обеими болезнями и гетерозиготны по этим парам генов.

Что значит преобладает в биологии

В данном случае мы построим решетку Пеннета, которая сделает генотипы потомства более наглядными. Вы видите, что на потомстве буквально нет ни одного живого места: почти все 16 возможных потомков больны либо одним, либо другим заболеванием, кроме одного, aabb. Вероятность рождения такого ребенка очень небольшая 1/16 = 6.25%.

Пример решения генетической задачи №3

У голубоглазой близорукой женщины от брака с кареглазым мужчиной с нормальным зрением родилась кареглазая близорукая девочка и голубоглазый мальчик с нормальным зрением. Ген близорукости (A) доминантен по отношению к гену нормального зрения (a), а ген кареглазости (D) доминирует над геном голубоглазости (d). Какова вероятность рождения в этой семье нормального кареглазого ребенка?

Что значит преобладает в биологии

Первый этап решения задачи очень важен. Мы учли описания генотипов родителей и, тем не менее, белые пятна остались. Мы не знаем гетерозиготна (Aa) или гомозиготная (aa) женщина по гену близорукости. Такая же ситуация и с мужчиной, мы не можем точно сказать, гомозиготен (DD) он или гетерозиготен (Dd) по гену кареглазости.

Что значит преобладает в биологии

Аутосомно-доминантный тип наследования

Я не забыл о том, что по ходу изучения генетики вас надо научить видеть различные варианты наследования на генеалогическом древе (родословной) =) Из предыдущей статьи мы узнали о том, как выглядит и чем характеризуется аутосомно-рецессивный тип наследования, сейчас поговорим об аутосомно-доминантном, с которым мы столкнулись в задачах выше.

Что значит преобладает в биологии

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Спорофит и гаметофит – поколения в жизненном цикле растений, которые постоянно чередуются друг с другом. Это означает, что у них происходит чередование полового с бесполым размножением.

Гаметофит отвечает за половое размножение, а спорофит – за бесполое. Тема, возможно, кажется нелегкой для школьников, однако вопросы по ней часто встречаются в заданиях в ЕГЭ и ОГЭ по биологии, потому следует разобраться.

Что такое гаметофит и спорофит в биологии

Спорофит – одно из чередующихся поколений, относится к бесполому. Многоклеточная диплоидная фаза, происходящая в период жизни водорослей и растений.

Что значит преобладает в биологии

Бесполое развитие происходит из зиготы, в которой появляются споры. Образование зиготы происходит на половой гаплоидной фазе из женской яйцеклетки, оплодотворенной мужской гаметой.

Что значит преобладает в биологии

Гаметофит — гаплоидная или половая фаза в жизненном цикле растений, которая, в свою очередь, развивается из спор и производит половые мужские и женские клетки, или гаметы. Когда гаметы сливаются вместе или оплодотворяются, снова наступает гаплоидное поколение.

Гаметы бывают двух видов:

Мужские гаметы. Появляются из мужских гаметангий – антеридий. У споровых и водорослей они называются сперматозоидами, у семенных – спермиями. Отличаются между собой подвижностью, сперматозоиды имеют жгутики, поэтому могут двигаться.

Женские гаметы, представляющие собой неподвижные яйцеклетки. Образуются в женских гаметангиях, которые носят название – архегонии.

У наземной растительности оплодотворение яйцеклетки происходит в архегонии, после которого появляются споры. Жизненный цикл продолжает свое чередование.

Чередование поколений особо выражено у споровых растений. У папоротников, плаунов, хвощей гаметофит находится раздельно от спорофита, но преобладает гаплоидность.

Что значит преобладает в биологии

Гаметофит выражен недолговечным маленьким ростком, на котором затем вырастает спорофит. У мхов нет разделения между фазами, коробочка со спорами развивается на гаметофите.

Цветковые или покрытосеменные растения для размножения используют опыление, когда мужские гаметы в тычинках переносятся к женским в пестиках. У голосеменных растений семена находятся в открытом виде – шишках, и оплодотворение происходит, как и у покрытосеменных.

Однако семя голосеменных развивается из семязачатка, который открыт на семенной чешуе, у покрытосеменных оно находится внутри плода.

Схема жизненного цикла высших растений проста: постоянное чередование полового (гаплоидного) с бесполым (диплоидным) поколением.

Таблица «Отличия гаметофита и спорофита у растений»

Гаметофит и спорофит могут отличаться по размеру и этапам формирования.

Относятся к гаплоидам, имеют только один набор хромосом.

Относятся к диплоидам из-за наличия двух наборов хромосом.

Размножение происходит половым путем.

Размножение происходит бесполым способом.

Для процесса характерно образование гамет – мужских и женских половых клеток: спермий, яйцеклеток и сперматозоидов.

Для стадии характерно образование специальной клетки – споры, предназначенной бесполому размножению.

Образование гамет происходит, когда в гаметофите начинается деление (митоз) из гаплоидных клеток.

Образование спор происходит, когда в спорофите начинается деление (мейоз) из диплоидных клеток.

При оплодотворении женской гаметы мужскими образуется зигота. Затем из зиготы образуются споры.

Когда спора делится способом, который называется митоз, наступает диплоидная фаза жизненного цикла.

Почему в жизненном цикле растений преобладает спорофит?

в водной среде происходит передвижение гамет, а на поверхности земли растения не способны перемещать свои споры;

из-за изменчивых условий на поверхности земли диплоидным организмам легче сохранить рецессивные признаки, которые могут стать необходимыми для выживания в изменившейся среде обитания.

Что значит преобладает в биологии

В жизни покрытосеменных, голосеменных, большей части споровых, кроме мхов, преобладает гаплоидность. Обусловлено это тем, что в природе важно наличие семени для дальнейшей жизни.

Гаметофит – это, непосредственно, оплодотворение, а спорофит – появление спор. Споры необходимы для дальнейшего распространения, произрастания вида растения на земле.

Именно диплоидный вид организма способен вынести меняющиеся условия наземной жизни.

Что значит преобладает в биологии

Примеры решения задач

Задача 1

Какой хромосомный набор у клеток гамет и заростка папоротника? Каким способом происходит деление этих клеток?

Заросток с гаметой папоротника обладают гаплоидным набором хромосом. Гаметы папоротника образуются с помощью митоза из клеток гаметофита в архегониях.

Задача 2

У соматических кукурузных клеток 20 хромосом. Какой набор хромосом содержат клетки пыльцы?

В генеративной клетке пыльцы содержится 10 хромосом, так как она образуется в процессе митоза.

Задача 3

Каким хромосомным набором обладают листья и заросток папоротника? Каким видом деления и из чего образуются эти клетки?

Взрослые клетки листьев характеризуются диплоидном хромосомным набором, заростка – гаплоидным, так как образуется из споры.

Источник

Биология

Как особая наука биология выделилась из естественных наук в XIX веке, когда учёные обнаружили, что живые организмы обладают некоторыми общими для всех характеристиками. Термин «биология» был введён независимо несколькими авторами: Фридрихом Бурдахом в 1800 году, в 1802 году Готфридом Рейнхольдом Тревиранусом [1] и Жаном Батистом Ламарком.

В биологии выделяют следующие уровни организации:

Большинство биологических наук является дисциплинами с более узкой специализацией. Традиционно они группируются по типам исследуемых организмов: ботаника изучает растения, зоология — животных, микробиология — одноклеточные микроорганизмы. Области внутри биологии далее делятся либо по масштабам исследования, либо по применяемым методам: биохимия изучает химические основы жизни, молекулярная биология — сложные взаимодействия между биологическими молекулами, клеточная биология и цитология — основные строительные блоки многоклеточных организмов, клетки, гистология и анатомия — строение тканей и организма из отдельных органов и тканей, физиология — физические и химические функции органов и тканей, этология — поведение живых существ, экология — взаимозависимость различных организмов и их среды.

Передачу наследственной информации изучает генетика. Развитие организма в онтогенезе изучается биологией развития. Зарождение и историческое развитие живой природы — палеобиология и эволюционная биология.

На границах со смежными науками возникают: биомедицина, биофизика (изучение живых объектов физическими методами), биометрия и т. д. В связи с практическими потребностями человека возникают такие направления, как космическая биология, социобиология, физиология труда, бионика.

Содержание

Биологи

Биологические общества

Биологические организации

Традиционно научными исследованиями в области биологии занимаются университеты, хотя не всегда соответствующие факультеты называются биологическими. Например, в Московском государственном университете им. М. В. Ломоносова кроме биологического факультета имеются также факультет биоинженерии и биоинформатики, факультет фундаментальной медицины и НИИ физико-химической биологии. Кроме университетов научные исследования проводят государственные и частные институты, которые в России преимущественно относятся к системе Российской академии наук (см. список институтов), Российской академии сельскохозяйственных наук или Российской академии медицинских наук.

Биологи

Биологический метод

Биологические науки используют методы наблюдения, моделирования (в т.ч. компьютерного), описания, сравнения, экспериментов (опыта) и исторического сравнения.

История биологии

Биологическая картина мира

Существует пять принципов, объединяющих все биологические дисциплины в единую науку о живой материи [2] :

Клеточная теория

Эволюция

Эволюционная история видов, описывающая их изменения и генеалогические отношения между собой, называется филогенез. Информация о филогенезе накапливается из разных источников, в частности, путём сравнения последовательностей ДНК или ископаемых останков и следов древних организмов. До XIX века считалось, что в определённых условиях жизнь может самозарождаться. Этой концепции противостояли последователи принципа, сформулированного Уильямом Гарвеем: «всё из яйца» («Omne vivum ex ovo», лат.), основополагающего в современной биологии. В частности, это означает, что существует непрерывная линия жизни, соединяющая момент первоначального её возникновения с настоящим временем. Любая группа организмов имеет общее происхождение, если у неё имеется общий предок. Все живые существа на Земле, как ныне живущие, так и вымершие, происходят от общего предка или общей совокупности генов. Общий предок всех живых существ появился на Земле около 3,5 млрд. лет назад. Главным доказательством теории общего предка считается универсальность генетического кода (см. происхождение жизни).

Теория гена

Что значит преобладает в биологии

Что значит преобладает в биологии

Совокупность генов организма или клетки называется генотипом. Гены хранятся в одной или нескольких хромосомах. Хромосома — длинная цепочка ДНК, на которой может быть множество генов. Если ген активен, то последовательность его ДНК копируется в последовательности РНК посредством транскрипции. Затем рибосома может использовать РНК, чтобы синтезировать последовательность белка, соответствующую коду РНК, в процессе, именуемом трансляция. Белки могут выполнять каталитическую (ферментативную) функцию, транспортную, рецепторную, защитную, структурную, двигательную функции.

Гомеостаз

Гомеостаз — способность открытых систем регулировать свою внутреннюю среду так, чтобы поддерживать её постоянство посредством множества корректирующих воздействий, направляемых регуляторными механизмами. Все живые существа, как многоклеточные, так и одноклеточные, способны поддерживать гомеостаз. На клеточном уровне, например, поддерживается постоянная кислотность внутренней среды (pH). На уровне организма у теплокровных животных поддерживается постоянная температура тела. В ассоциации с термином экосистема под гомеостазом понимают, в частности, поддержание растениями постоянной концентрации атмосферной двуокиси углерода на Земле.

Энергия

Выживание любого организма зависит от постоянного притока энергии. Энергия черпается из веществ, которые служат пищей, и посредством специальных химических реакций используется для построения и поддержания структуры и функций клеток. В этом процессе молекулы пищи используются как для извлечения энергии, так и для синтеза биологических молекул собственного организма.

Первичным источником энергии для 99 % земных существ является световая энергия, главным образом солнечная (для 1 % — хемосинтез). Световая энергия посредством фотосинтеза превращается растениями в химическую (органические молекулы) в присутствии воды и некоторых минералов. Часть полученной энергии затрачивается на наращивание биомассы и поддержание жизни, другая часть теряется в виде тепла и отходов жизнедеятельности. Общие механизмы превращения химической энергии в полезную для поддержания жизни называются дыхание и метаболизм.

Уровни организации жизни

Шесть основных структурных уровней жизни:

Биологические дисциплины

Биологическая литература

Первоисточниками информации по биологии являются научные журналы, списки которых предоставляет ряд учреждений, как российских, так и зарубежных:

Данные первоисточников обобщают авторы обзорных публикаций, которые могут представлять собой как журнальные статьи, так и монографии. На следующем уровне обобщения стоят учебники и справочные пособия.

Источник

РОСТ И РАЗВИТИЕ

РОСТ И РАЗВИТИЕ. С тех пор, как в ходе эволюции возникли многоклеточные организмы, превращение оплодотворенного яйца во взрослую особь совершается в каждом поколении в процессе роста и развития. Рост, т.е. увеличение размеров, достигается за счет повышения количества таких субъединиц, как молекулы и клетки. Развитие, т.е. качественное изменение, обеспечивается синтезом новых соединений и образованием клеток разных типов в результате дифференцировки.

Что значит преобладает в биологии

Процессам роста и развития присущи определенные физические ограничения, удерживающие увеличение размеров и изменения формы в известных пределах. С увеличением линейных размеров вдвое площадь поверхности увеличивается в 4 раза, а объем в 8 раз. Это имеет важнейшее значение для таких параметров, как регуляция температуры и прочность структуры, необходимой для поддержания возрастающей массы организма. Хотя клетки бывают самых разных размеров – от крошечного сперматозоида до огромного яйца страуса – их размеры тем не менее ограничиваются теми расстояниями, которые могут быстро преодолеть питательные вещества и продукты распада, диффундируя в цитоплазме. Некоторые из самых крупных клеток нашего тела – нервные и мышечные – справляются с этими ограничениями, сочетая увеличение длины с сильным сокращением диаметра. С другой стороны, уменьшение размеров клеток тоже не может быть безграничным: необходим некий минимальный объем, где могли бы разместиться все разнообразные внутриклеточные структуры.

Рост и развитие традиционно воспринимаются как процессы, идущие по нарастающей (со знаком «плюс»); на самом же деле они могут идти и со знаком «минус». Поэтому в общем смысле рост представляет собой изменение, а не «приращение». Фундаментальное свойство роста – обновление, т.е. утрата отдельных частей и добавление новых. При росте с положительным знаком процессы синтеза идут активнее, чем процессы распада. При старении преобладает обратное соотношение. На протяжении большей части жизни взрослого организма синтез и распад сбалансированы. Можно сказать, что в состоянии равновесия организм в каждый данный момент чуть-чуть умирает и чуть-чуть возрождается. Время полужизни содержащихся в организме веществ измеряется периодами от нескольких минут до нескольких месяцев. В состоянии постоянного обновления находятся все органеллы клетки. Продолжительность жизни клеток многих типов ограниченна, а это означает, что их число остается постоянным только потому, что образуются новые клетки данного типа. Обновление возможно даже на тканевом уровне – например, в яичниках созревают новые фолликулы для замещения утраченных в предыдущем менструальном цикле.

РОСТ КЛЕТОК

Все живое состоит из клеток. Поскольку клетки не могут быть крупнее некоторых максимальных размеров, рост организма возможен только за счет увеличения числа клеток. Последнее достигается с помощью митоза – клеточного деления, при котором сначала на две части делится ядро, а затем цитоплазма.

Каждая из двух клеток, образовавшихся в результате митоза, вдвое меньше исходной. Поэтому прежде чем приступить к следующему делению, клетки должны пройти период роста, в ходе которого у них удваивается число органелл и пополняется количество цитоплазмы. Лишь после восстановления нормальных размеров клетки готовы к следующего делению. См. также КЛЕТКА.

Что значит преобладает в биологии

Форма и размеры клеток зависят от их функции. Тело человека построено из клеток нескольких сот разных типов, которые по их способности к делению можно разбить на три категории. Наивысшей митотической активностью обладают клетки обновляющихся тканей, названных так потому, что они постоянно обновляются на клеточном уровне. Например, эпидермальные клетки делятся, находясь в базальном слое кожи; затем по мере продвижения к поверхности кожи они дифференцируются, а оказавшись на поверхности, отмирают и слущиваются, прожив лишь несколько недель. Эпителиальные клетки, выстилающие пищеварительный тракт, иногда живут всего несколько дней, после чего отмирают и выводятся с фекальными массами. Сперматозоидам, яйцеклеткам и клеткам крови уготована та же судьба: они рождаются, стареют и гибнут, и процесс замены их новыми клетками повторяется многократно.

Клетки второй категории способны к митозу, но потенциально могут существовать до тех пор, пока жив организм в целом. Такие клетки составляют т.н. разрастающиеся ткани: они растут только в период роста всего тела, а после того, как организм достигает окончательных размеров, митотическая активность прекращается. Разрастающиеся ткани образуют многие внутренние органы – печень, почки и железы, как эндо-, так и экзокринные.

К третьей категории относятся клетки, которые по окончании ранних стадий развития совершенно утрачивают способность к делению. Примерами могут служить клетки таких тканей, как нервная и мышечная. Хотя эти клетки могут оставаться живыми до тех пор, пока жив организм, они настолько высокоспециализированы, что митоз для них невозможен. Именно поэтому сердце и головной мозг не способны к регенерации. Их клетки могут увеличиваться в размерах, но не в числе, и эти органы, во всяком случае у высших животных, расходуют в процессе развития весь запас эмбриональных клеток, которые могли бы обеспечить в дальнейшем восстановление поврежденной ткани. У низших позвоночных животных – рыб и хвостатых амфибий – сохраняется достаточное количество недифференцированных клеток, чтобы обеспечить регенерацию некоторых частей как головного и спинного мозга, так и сердца. Среди тритонов есть виды, способные регенерировать даже хрусталик и сетчатку глаза после полного иссечения этих структур.

РАСТЕНИЯ

В семенах растений имеется эндосперм, снабжающий зародыш питательными веществами подобно тому, как желток обеспечивает питание развивающемуся зародышу животных. Семена сосудистых растений при прорастании образуют корни и побеги.

Несмотря на значительные различия между корнями и побегами, у них много общего. И те и другие многократно ветвятся, а их растущие кончики, состоящие из недифференцированных клеток, образуют конусы нарастания (верхушечные меристемы). Многократные митотические деления в конусе нарастания постоянно поставляют новые клетки, обеспечивающие рост в длину. Непосредственно за этой зоной пролиферации находятся зоны дифференцировки и растяжения; здесь новообразованные клетки превращаются в специализированные клетки ксилемы и флоэмы – проводящих тканей растения. В процессе дифференцировки эти клетки сильно растягиваются в длину, что обеспечивает очень быстрый рост побегов (например, у бамбука). Между ксилемой и флоэмой расположен слой камбиальных клеток, за счет которых происходит утолщение стеблей и корней.

Приведенное выше описание относится в основном к деревьям и кустарникам. В отличие от них, у многих травянистых растений зона нарастания листьев находится у основания, а не на верхушке. Листья растут у них снизу, и именно поэтому газон приходится подстригать многократно. Деревья и живые изгороди тоже подстригают, чтобы придать им определенную форму, однако при этом их зоны нарастания срезаются. В результате после обрезки ветвей кусты и деревья растут гуще, потому что при повреждении верхушки побега меристемы, отдаленные от его кончика, принимают на себя функции утраченной части. До удаления верхушечной меристемы, оказывавшей на них тормозящее воздействие, эти латеральные меристемы пребывали в латентном состоянии; освободившись от торможения, они дают начало боковым ветвям.

Это явление иллюстрирует механизм, регулирующий рост растения. Верхушечная меристема вырабатывает гормональные вещества (ауксины), которые, перемещаясь вниз по стеблю, тормозят рост других меристем. Ауксины определяют также тропизмы растений, например тенденцию расти в сторону источника света. Инактивируясь на освещенной стороне стебля, они стимулируют удлинение стебля на теневой стороне, заставляя его склоняться в направлении к источнику света.

От света зависят также сроки вегетации: каждый вид растений начинает и заканчивает рост, цветет и производит семена в определенное время года. В умеренных широтах жизненные циклы растений приспособлены к колебаниям температуры и к удлинению или укорочению светового дня. Некоторым видам для цветения необходим длинный, а другим короткий день. Там, где колебания температуры и длины светового дня минимальны, прежде всего в тропиках, в координации жизненных циклов растений может участвовать чередование периодов дождей и засухи.

Однолетние растения запрограммированы на прекращение роста и отмирание в первый (и единственный) год своей жизни, а продолжение существования вида обеспечивается семенами. В отличие от них многолетние растения, в частности деревья, обладают способностью к потенциально неограниченному росту. За счет верхушечных меристем всех побегов объем тканей ежегодно увеличивается, а за счет камбия происходит рост ствола в толщину и повышается его прочность. Способность деревьев расти до тех пор, пока они живут, а жить до тех пор, пока они растут, демонстрирует пример секвойи с ее гигантскими размерами и потенциальным бессмертием.

Жизнь многолетников удается продлить с помощью вегетативного размножения. У отводков можно вызвать образование корней (иногда при помощи гормонов) и вырастить из них новые растения, обладающие теми же генетическими признаками, что и родительское растение. См. также ГОРМОНЫ РАСТЕНИЙ.

ЖИВОТНЫЕ

В отличие от растений, рост которых происходит путем удлинения и разрастания в стороны, большинство развивающихся животных растут за счет увеличения размеров каждого органа или ткани. Головной мозг растет вначале быстро, но по мере того, как его клетки прекращают деление и только увеличиваются в размерах, его рост замедляется. Рост и развитие половых органов происходит в основном в период полового созревания. Хотя каждый орган следует своему собственному «расписанию», существует также механизм общего контроля, регулирующий конечные размеры тела животного. У позвоночных эту роль выполняет в основном гормон роста, вырабатываемый гипофизом. Под действием гормона роста происходит в первую очередь удлинение костей, каждая из которых прекращает рост в длину на определенной стадии развития. Связанные с костями ткани (мышцы, нервы, кровеносные сосуды, кожа) перестают расти, когда кривая роста животного достигает плато.

Описанный механизм роста свойствен животным с детерминированным, или ограниченным, ростом, в первую очередь – наземным животным: их размеры не могут перейти некий предел, за которым утрачивается способность поддерживать массу тела. У многих водных животных, напротив, рост продолжается неопределенно долго даже после наступления половой зрелости, и они достигают очень крупных размеров. Это объясняется тем, что в водной среде животные находятся как бы в состоянии невесомости и им не приходится поддерживать свое тело, а потому в процессе эволюции у них не возник механизм ограничения роста. В этом отношении рост рыб сходен с ростом многолетних растений.

Рост рыб на протяжении всей жизни происходит за счет увеличения числа функциональных единиц в их органах и тканях, т.е. в структурах, клетки которых у более высоко организованных животных перестают делиться на относительно ранней стадии жизни. Так, у рыб по мере роста добавляются новые клетки в головном мозге и новые палочки и колбочки в сетчатке глаз; возможна также дифференцировка дополнительных мышечных волокон в сердечной и скелетных мышцах. Кости у рыб растут за счет отложения на их поверхности нового материала. По мере увеличения челюстей на них вырастают как совершенно новые зубы, так и замещающие утраченные. Чешуи увеличиваются в результате добавления новых колец, а плавники удлиняются за счет формирования дополнительных сегментов на кончиках их костных лучей.

Многие животные в процессе развития претерпевают метаморфоз. При этом они получают возможность использовать на разных стадиях жизни разные местообитания и разную пищу. Например, у чешуекрылых личиночная стадия представлена листоядными гусеницами, а взрослая – бабочками, которые питаются нектаром, перелетая с цветка на цветок. На стадии куколки личиночные ткани постепенно разрушаются, а из скоплений недифференцированных клеток – т.н. имагинальных дисков – развиваются крылья и ноги. У лягушек из икры вылупляются растительноядные головастики, которые вначале обитают в воде, а затем превращаются в наземных плотоядных животных, дышащих воздухом. Хвосты и жабры головастиков резорбируются, а взамен развиваются ноги и легкие.

У некоторых животных свойственная зародышу способность к развитию сохраняется во взрослом состоянии, обеспечивая регенерацию утраченных частей тела.

ПРОЦЕСС РОСТА У ЧЕЛОВЕКА

Рост в высоту каждого человека предопределен его генами, о чем свидетельствуют расовые различия, например между пигмеями и бурунди. У высоких родителей дети обычно бывают тоже высокими, а дети тучных родителей предрасположены к полноте. Однако характер телосложения зависит также от питания и гормональных воздействий. Современный человек несколько выше ростом, чем были его предки, жившие несколько веков назад; это отчасти можно объяснить улучшением питания и здравоохранения, а отчасти – проявлением «гибридной мощности», создающейся в результате смешения генофондов при браках между людьми разных национальностей или рас.

Гормон роста способствует росту в детском и юношеском возрасте, но с наступлением зрелости его влияние ослабевает. Избыток гормона роста приводит к гигантизму, а его недостаточность – к карликовости.

Неудивительно, что питание оказывает глубокое влияние на рост, особенно в раннем возрасте. Плохое питание в период развития плода может вызвать нарушения пролиферации клеток в развивающемся головном мозге и привести к умственной отсталости. Дети, которые недоедают, растут медленнее тех, кто питается нормально, но если вовремя перевести их на достаточное питание, они догоняют по росту своих однолеток и, став взрослыми, мало или совсем не отличаются по росту от других людей.

На рост в утробе матери оказывают также влияние условия в матке, причем немалое значение имеет ограниченность пространства. У близнецов масса при рождении обычно бывает меньше, чем у ребенка, родившегося в результате одноплодной беременности, а у троен – меньше, чем у двоен. В таких случаях последующий ускоренный рост может, в конечном счете, сгладить прежнее отставание.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *