Что значит представить выражение в виде степени с натуральным показателем

Степенные выражения (выражения со степенями) и их преобразование

Рассмотрим тему преобразования выражений со степенями, но прежде остановимся на ряде преобразований, которые можно проводить с любыми выражениями, в том числе со степенными. Мы научимся раскрывать скобки, приводить подобные слагаемые, работать с основанием и показателем степени, использовать свойства степеней.

Что представляют собой степенные выражения?

В школьном курсе мало кто использует словосочетание «степенные выражения», зато этот термин постоянно встречается в сборниках для подготовки к ЕГЭ. В большинства случаев словосочетанием обозначаются выражения, которые содержат в своих записях степени. Это мы и отразим в нашем определении.

Степенное выражение – это выражение, которое содержит степени.

Приведем несколько примеров степенных выражений, начиная со степени с натуральным показателем и заканчивая степенью с действительным показателем.

С вопросом о том, что такое степенные выражения, мы разобрались. Теперь займемся их преобразованием.

Основные виды преобразований степенных выражений

В первую очередь мы рассмотрим основные тождественные преобразования выражений, которые можно выполнять со степенными выражениями.

Решение

Решение

Решение

Представим число 9 как степень 3 2 и применим формулу сокращенного умножения:

А теперь перейдем к разбору тождественных преобразований, которые могут применяться именно в отношении степенных выражений.

Работа с основанием и показателем степени

Проводятся преобразования степени и показателя по известным нам правилам отдельно друг от друга. Самое главное, чтобы в результате преобразований получилось выражение, тождественное исходному.

Использование свойств степеней

Применять свойства степеней без ограничений можно в тех случаях, когда основания степеней положительные или содержат переменные, область допустимых значений которых такова, что на ней основания принимают лишь положительные значения. Фактически, в рамках школьной программы по математике задачей учащегося является выбор подходящего свойства и правильное его применение.

При подготовке к поступлению в Вузы могут встречаться задачи, в которых неаккуратное применение свойств будет приводить к сужению ОДЗ и другим сложностям с решением. В данном разделе мы разберем всего два таких случая. Больше информации по вопросу можно найти в теме «Преобразование выражений с использованием свойств степеней».

Решение

Преобразование степенных выражений согласно свойству степеней может производиться как слева направо, так и в обратном направлении.

Решение

Есть еще один способ провести преобразования:

3 1 3 · 7 1 3 · 21 2 3 = 3 1 3 · 7 1 3 · ( 3 · 7 ) 2 3 = 3 1 3 · 7 1 3 · 3 2 3 · 7 2 3 = = 3 1 3 · 3 2 3 · 7 1 3 · 7 2 3 = 3 1 3 + 2 3 · 7 1 3 + 2 3 = 3 1 · 7 1 = 21

Ответ: 3 1 3 · 7 1 3 · 21 2 3 = 3 1 · 7 1 = 21

Решение

Преобразование дробей, содержащих степени

Обычно мы имеем дело с двумя вариантами степенных выражений с дробями: выражение представляет собой дробь со степенью или содержит такую дробь. К таким выражениям применимы все основные преобразования дробей без ограничений. Их можно сокращать, приводить к новому знаменателю, работать отдельно с числителем и знаменателем. Проиллюстрируем это примерами.

Решение

Мы имеем дело с дробью, поэтому проведем преобразования и в числителе, и в знаменателе:

Дроби, содержащие степени, приводятся к новому знаменателю точно также, как и рациональные дроби. Для этого необходимо найти дополнительный множитель и умножить на него числитель и знаменатель дроби. Подбирать дополнительный множитель необходимо таким образом, чтобы он не обращался в нуль ни при каких значениях переменных из ОДЗ переменных для исходного выражения.

Решение

б) Обратим внимание на знаменатель:

Решение

б) Здесь наличие одинаковых множителей неочевидно. Придется выполнить некоторые преобразования для того, чтобы получить одинаковые множители в числителе и знаменателе. Для этого разложим знаменатель, используя формулу разности квадратов:

К числу основных действий с дробями относится приведение к новому знаменателю и сокращение дробей. Оба действия выполняют с соблюдением ряда правил. При сложении и вычитании дробей сначала дроби приводятся к общему знаменателю, после чего проводятся действия (сложение или вычитание) с числителями. Знаменатель остается прежним. Результатом наших действий является новая дробь, числитель которой является произведением числителей, а знаменатель есть произведение знаменателей.

Решение

Начнем с вычитания дробей, которые располагаются в скобках. Приведем их к общему знаменателю:

Теперь умножаем дроби:

Преобразование выражений с корнями и степенями

В задачах встречаются степенные выражения, которые содержат не только степени с дробными показателями, но и корни. Такие выражения желательно привести только к корням или только к степеням. Переход к степеням предпочтительнее, так как с ними проще работать. Такой переход является особенно предпочтительным, когда ОДЗ переменных для исходного выражения позволяет заменить корни степенями без необходимости обращаться к модулю или разбивать ОДЗ на несколько промежутков.

Представьте выражение x 1 9 · x · x 3 6 в виде степени.

Решение

На этом множестве мы имеем право перейти от корней к степеням:

x 1 9 · x · x 3 6 = x 1 9 · x · x 1 3 1 6

Используя свойства степеней, упростим полученное степенное выражение.

x 1 9 · x · x 1 3 1 6 = x 1 9 · x 1 6 · x 1 3 1 6 = x 1 9 · x 1 6 · x 1 · 1 3 · 6 = = x 1 9 · x 1 6 · x 1 18 = x 1 9 + 1 6 + 1 18 = x 1 3

Преобразование степеней с переменными в показателе

Мы можем заменить произведением степени, в показателях которых находится сумма некоторой переменной и числа. В левой части это можно проделать с первым и последним слагаемыми левой части выражения:

Преобразование выражений со степенями и логарифмами

Источник

Свойства степеней. Действия со степенями

Что значит представить выражение в виде степени с натуральным показателем

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Что такое степень числа

В учебниках по математике можно встретить такое определение:

«Степенью n числа а является произведение множителей величиной а n раз подряд»

a — основание степени;

n — показатель степени.

Что значит представить выражение в виде степени с натуральным показателем

Читается такое выражение, как a в степени n

Если говорить проще то, степень, а точнее показатель степени (n), говорит нам о том, сколько раз следует умножить это число (основание степени) само на себя.

А значит, если у нас есть задачка, где спрашивают, как возвести число в степень, например, число 2 в третью степень, то она решается довольно просто:

2 — основание степени;

3 — показатель степени.

Если вам нужно быстро возвести число в степень, можно использовать наш онлайн-калькулятор. Но чтобы не упасть в грязь лицом на контрольной по математике, придется все-таки разобраться с теорией.

Рассмотрим пример из жизни, чтобы было понятно, для чего можно использовать возведение чисел в степень на практике.

Задачка про миллион: представьте, что у вас есть миллион рублей. В начале каждого года вы зарабатываете на нем еще два. Получается, что миллион каждый год утраивается. Был один, а стало три — и так каждый год. Здорово, правда? А теперь посчитаем, какая сумма у вас будет через 4 года.

Как решаем: один миллион умножаем на три (1·3), затем результат умножаем на три, потом еще на три. Наверное, вам уже стало стало скучно, потому что вы поняли, что три нужно умножить само на себя четыре раза. Так и сделаем:

Математики заскучали и решили все упростить:

Ответ: через четыре года у вас будет 81 миллион.

Таблица степеней

Здесь мы приведем результаты возведения в степень натуральных чисел от 1 до 10 в квадрат (показатель степени два) и куб (показатель степени 3).

Источник

Степень с натуральным показателем

Что такое степень?

Степенью называют произведение из нескольких одинаковых множителей. Например:

Значение данного выражения равно 8

Левую часть этого равенства можно сделать короче – сначала записать повторяющийся множитель и указать над ним сколько раз он повторяется. Повторяющийся множитель в данном случае это 2. Повторяется он три раза. Поэтому над двойкой записываем тройку:

Это выражение читается так: « два в третьей степени равно восемь» или « третья степень числа 2 равна 8».

Короткую форму записи перемножения одинаковых множителей используют чаще. Поэтому надо помнить, что если над каким-то числом надписано другое число, то это есть перемножение нескольких одинаковых множителей.

А число, которое надписано над числом 5 называют показателем степени. В выражении 5 3 показателем степени является число 3. Показатель степени показывает сколько раз повторяется основание степени. В нашем случае основание 5 повторяется три раза

Что значит представить выражение в виде степени с натуральным показателем

Саму операцию перемножения одинаковых множителей называют возведением в степень.

Например, если нужно найти произведение из четырёх одинаковых множителей, каждый из которых равен 2, то говорят, что число 2 возводится в четвёртую степень:

Что значит представить выражение в виде степени с натуральным показателем

Видим, что число 2 в четвёртой степени есть число 16.

Отметим, что в данном уроке мы рассматриваем степени с натуральным показателем. Это вид степени, показателем которой является натуральное число. Напомним, что натуральными называют целые числа, которые больше нуля. Например, 1, 2, 3 и так далее.

Вообще, определение степени с натуральным показателем выглядит следующим образом:

Что значит представить выражение в виде степени с натуральным показателем

Примеры:

Что значит представить выражение в виде степени с натуральным показателем

Следует быть внимательным при возведении числа в степень. Часто по невнимательности человек умножает основание степени на показатель.

Например, число 5 во второй степени есть произведение двух множителей каждый из которых равен 5. Это произведение равно 25

Что значит представить выражение в виде степени с натуральным показателем

Теперь представим, что мы по невнимательности умножили основание 5 на показатель 2

Что значит представить выражение в виде степени с натуральным показателем

Получилась ошибка, поскольку число 5 во второй степени не равно 10.

Дополнительно следует упомянуть, что степень числа с показателем 1, есть само это число:

Что значит представить выражение в виде степени с натуральным показателем

Например, число 5 в первой степени есть само число 5

Что значит представить выражение в виде степени с натуральным показателем

Соответственно, если у числа отсутствует показатель, то надо считать, что показатель равен единице.

Например, числа 1, 2, 3 даны без показателя, поэтому их показатели будут равны единице. Каждое из этих чисел можно записать с показателем 1

Что значит представить выражение в виде степени с натуральным показателем

А если возвести 0 в какую-нибудь степень, то получится 0. Действительно, сколько бы раз ничего не умножалось на само себя получится ничего. Примеры:

Что значит представить выражение в виде степени с натуральным показателем

А выражение 0 0 не имеет смысла. Но в некоторых разделах математики, в частности анализе и теории множеств, выражение 0 0 может иметь смысл.

Для тренировки решим несколько примеров на возведение чисел в степени.

Пример 1. Возвести число 3 во вторую степень.

Число 3 во второй степени это произведение двух множителей, каждый из которых равен 3

Пример 2. Возвести число 2 в четвертую степень.

Число 2 в четвертой степени это произведение четырёх множителей, каждый из которых равен 2

2 4 =2 × 2 × 2 × 2 = 16

Пример 3. Возвести число 2 в третью степень.

Число 2 в третьей степени это произведение трёх множителей, каждый из которых равен 2

Возведение в степень числа 10

Чтобы возвести в степень число 10, достаточно дописать после единицы количество нулей, равное показателю степени.

Например, возведем число 10 во вторую степень. Сначала запишем само число 10 и в качестве показателя укажем число 2

Теперь ставим знак равенства, записываем единицу и после этой единицы записываем два нуля, поскольку количество нулей должно быть равно показателю степени

Значит, число 10 во второй степени это число 100. Связано это с тем, что число 10 во второй степени это произведение двух множителей, каждый из которых равен 10

Пример 2. Возведём число 10 в третью степень.

В данном случае после единицы будут стоять три нуля:

Пример 3. Возведем число 10 в четвёртую степень.

В данном случае после единицы будут стоять четыре нуля:

Пример 4. Возведем число 10 в первую степень.

В данном случае после единицы будет стоять один нуль:

Представление чисел 10, 100, 1000 в виде степени с основанием 10

Чтобы представить числа 10, 100, 1000 и 10000 в виде степени с основанием 10, нужно записать основание 10, и в качестве показателя указать число, равное количеству нулей исходного числа.

Представим число 10 в виде степени с основанием 10. Видим, что в нём один нуль. Значит, число 10 в виде степени с основанием 10 будет представлено как 10 1

Пример 2. Представим число 100 в виде степени основанием 10. Видим, что число 100 содержит два нуля. Значит, число 100 в виде степени с основанием 10 будет представлено как 10 2

Пример 3. Представим число 1 000 в виде степени с основанием 10.

Пример 4. Представим число 10 000 в виде степени с основанием 10.

Возведение в степень отрицательного числа

При возведении в степень отрицательного числа, его обязательно нужно заключить в скобки.

Например, возведём отрицательное число −2 во вторую степень. Число −2 во второй степени это произведение двух множителей, каждый из которых равен (−2)

Когда мы ставим перед положительным числом минус, мы тем самым выполняем операцию взятия противоположного значения.

Допустим, дано число 2, и нужно найти его противоположное число. Мы знаем, что противоположное числу 2 это число −2. Иными словами, чтобы найти противоположное число для 2, достаточно поставить минус перед этим числом. Вставка минуса перед числом уже считается в математике полноценной операцией. Эту операцию, как было указано выше, называют операцией взятия противоположного значения.

В случае с выражением −2 2 происходит две операции: операция взятия противоположного значения и возведение в степень. Возведение в степень является более приоритетной операцией, чем взятие противоположного значения.

Поэтому выражение −2 2 вычисляется в два этапа. Сначала выполняется операция возведения в степень. В данном случае во вторую степень было возведено положительное число 2

Затем выполнилось взятие противоположного значения. Это противоположное значение было найдено для значения 4. А противоположное значение для 4 это −4

Скобки же имеют самый высокий приоритет выполнения. Поэтому в случае вычисления выражения (−2) 2 сначала выполняется взятие противоположного значения, а затем во вторую степень возводится отрицательное число −2. В результате получается положительный ответ 4, поскольку произведение отрицательных чисел есть положительное число.

Пример 2. Возвести число −2 в третью степень.

Число −2 в третьей степени это произведение трёх множителей, каждый из которых равен (−2)

Пример 3. Возвести число −2 в четвёртую степень.

Число −2 в четвёртой степени это произведение четырёх множителей, каждый из которых равен (−2)

(−2) 4 = (−2) × (−2) × (−2) × (−2) = 16

Легко заметить, что при возведении в степень отрицательного числа может получиться либо положительный ответ либо отрицательный. Знак ответа зависит от показателя исходной степени.

Если показатель степени чётный, то ответ будет положительным. Если показатель степени нечётный, ответ будет отрицательным. Покажем это на примере числа −3

Что значит представить выражение в виде степени с натуральным показателем

В первом и в третьем случае показатель был нечётным числом, поэтому ответ стал отрицательным.

Во втором и в четвёртом случае показатель был чётным числом, поэтому ответ стал положительным.

Пример 7. Возвести число −5 в третью степень.

Число −5 в третьей степени это произведение трёх множителей каждый из которых равен −5. Показатель 3 является нечётным числом, поэтому мы заранее можем сказать, что ответ будет отрицательным:

Пример 8. Возвести число −4 в четвёртую степень.

Число −4 в четвёртой степени это произведение четырёх множителей, каждый из которых равен −4. При этом показатель 4 является чётным, поэтому мы заранее можем сказать, что ответ будет положительным:

(−4) 4 = (−4) × (−4) × (−4) × (−4) = 256

Нахождение значений выражений

При нахождении значений выражений, не содержащих скобки, возведение в степень будет выполняться в первую очередь, далее умножение и деление в порядке их следования, а затем сложение и вычитание в порядке их следования.

Пример 1. Найти значение выражения 2 + 5 2

Сначала выполняется возведение в степень. В данном случае во вторую степень возводится число 5 — получается 25. Затем этот результат складывается с числом 2

Пример 10. Найти значение выражения −6 2 × (−12)

Сначала выполняется возведение в степень. Заметим, что число −6 не взято в скобки, поэтому во вторую степень будет возведено число 6, затем перед результатом будет поставлен минус:

Завершаем пример, умножив −36 на (−12)

−6 2 × (−12) = −36 × (−12) = 432

Пример 11. Найти значение выражения −3 × 2 2

Сначала выполняется возведение в степень. Затем полученный результат перемножается с числом −3

Если выражение содержит скобки, то сначала нужно выполнить действия в этих скобках, далее возведение в степень, затем умножение и деление, а затем сложение и вычитание.

Пример 12. Найти значение выражения (3 2 + 1 × 3) − 15 + 5

Что значит представить выражение в виде степени с натуральным показателем

(3 2 + 1 × 3) − 15 + 5 = 12 − 15 + 5 = 2

Пример 13. Найти значение выражения 2 × 5 3 + 5 × 2 3

Сначала возведем числа в степени, затем выполним умножение и сложим полученные результаты:

2 × 5 3 + 5 × 2 3 = 2 × 125 + 5 × 8 = 250 + 40 = 290

Тождественные преобразования степеней

Над степенями можно выполнять различные тождественные преобразования, тем самым упрощая их.

(2 3 ) 2 это произведение двух степеней, каждая из которых равна 2 3

Что значит представить выражение в виде степени с натуральным показателем

При этом каждая из этих степеней является произведением трёх множителей, каждый из которых равен 2

Что значит представить выражение в виде степени с натуральным показателем

Что значит представить выражение в виде степени с натуральным показателем

Этот пример можно значительно упростить. Для этого показатели выражения (2 3 ) 2 можно перемножить и записать это произведение над основанием 2

Что значит представить выражение в виде степени с натуральным показателем

Что значит представить выражение в виде степени с натуральным показателем

После перемножения показателей, получится другая степень, значение которой можно найти.

Пример 2. Найти значение выражения (3 2 ) 2

В данном примере основанием является 3, а числа 2 и 2 являются показателями. Воспользуемся правилом возведения степени в степень. Основание оставим без изменений, а показатели перемножим:

Что значит представить выражение в виде степени с натуральным показателем

Что значит представить выражение в виде степени с натуральным показателем

Рассмотрим остальные преобразования.

Умножение степеней

Чтобы перемножить степени, нужно по отдельности вычислить каждую степень, и полученные результаты перемножить.

2 2 × 3 3 = 4 × 27 = 108

В этом примере основания степеней были разными. В случае, если основания будут одинаковыми, то можно записать одно основание, а в качестве показателя записать сумму показателей исходных степеней.

Например, умножим 2 2 на 2 3

Что значит представить выражение в виде степени с натуральным показателем

Что значит представить выражение в виде степени с натуральным показателем

Что значит представить выражение в виде степени с натуральным показателем

Вообще, для любого a и показателей m и n выполняется следующее равенство:

Что значит представить выражение в виде степени с натуральным показателем

Отметим, что данное преобразование можно применять при любом количестве степеней. Главное, чтобы основание было одинаковым.

Что значит представить выражение в виде степени с натуральным показателем

В некоторых задачах достаточным бывает выполнить соответствующее преобразование, не вычисляя итоговую степень. Это конечно же очень удобно, поскольку вычислять большие степени не так-то просто.

Пример 1. Представить в виде степени выражение 5 8 × 25

В данной задаче нужно сделать так, чтобы вместо выражения 5 8 × 25 получилась одна степень.

Что значит представить выражение в виде степени с натуральным показателем

В этом выражении можно применить основное свойство степени — основание 5 оставить без изменений, а показатели 8 и 2 сложить:

Что значит представить выражение в виде степени с натуральным показателем

Запишем решение покороче:

Что значит представить выражение в виде степени с натуральным показателем

Пример 2. Представить в виде степени выражение 2 9 × 32

Что значит представить выражение в виде степени с натуральным показателем

Все хорошо знают, что три умножить на три равно девять, но задача требует в ходе решения воспользоваться основным свойством степени. Как это сделать?

Вспоминаем, что если число дано без показателя, то показатель нужно считать равным единице. Стало быть сомножители 3 и 3 можно записать в виде 3 1 и 3 1

Теперь воспользуемся основным свойством степени. Основание 3 оставляем без изменений, а показатели 1 и 1 складываем:

Далее вычисляем значение выражения. Число 3 во второй степени равно числу 9

Что значит представить выражение в виде степени с натуральным показателем

Далее вычисляем значение каждой степени и находим произведение:

Что значит представить выражение в виде степени с натуральным показателем

Пример 5. Выполнить умножение x × x

Это два одинаковых буквенных сомножителя с показателями 1. Для наглядности запишем эти показатели. Далее основание x оставим без изменений, а показатели сложим:

Что значит представить выражение в виде степени с натуральным показателем

Находясь у доски, не следует записывать перемножение степеней с одинаковыми основаниями так подробно, как это сделано здесь. Такие вычисления нужно выполнять в уме. Подробная запись скорее всего будет раздражать учителя и он снизит за это оценку. Здесь же подробная запись дана, чтобы материал был максимально доступным для понимания.

Решение данного примера желательно записать так:

Что значит представить выражение в виде степени с натуральным показателем

Пример 6. Выполнить умножение x 2 × x

Показатель второго сомножителя равен единице. Для наглядности запишем его. Далее основание оставим без изменений, а показатели сложим:

Что значит представить выражение в виде степени с натуральным показателем

Пример 7. Выполнить умножение y 3 y 2 y

Показатель третьего сомножителя равен единице. Для наглядности запишем его. Далее основание оставим без изменений, а показатели сложим:

Что значит представить выражение в виде степени с натуральным показателем

Пример 8. Выполнить умножение aa 3 a 2 a 5

Показатель первого сомножителя равен единице. Для наглядности запишем его. Далее основание оставим без изменений, а показатели сложим:

Что значит представить выражение в виде степени с натуральным показателем

Пример 9. Представить степень 3 8 в виде произведения степеней с одинаковыми основаниями.

Что значит представить выражение в виде степени с натуральным показателем

Что значит представить выражение в виде степени с натуральным показателем

Представление степени в виде произведения степеней с одинаковыми основаниями это по большей части творческая работа. Поэтому не нужно бояться экспериментировать.

Что значит представить выражение в виде степени с натуральным показателем

Конструкции с суммами показателей были записаны для наглядности. Чаще всего их можно пропустить. Тогда получится компактное решение:

Что значит представить выражение в виде степени с натуральным показателем

Возведение в степень произведения

Чтобы возвести в степень произведение, нужно возвести в указанную степень каждый множитель этого произведения и перемножить полученные результаты.

Что значит представить выражение в виде степени с натуральным показателем

Теперь возведём во вторую степень каждый множитель произведения 2 × 3 и перемножим полученные результаты:

Что значит представить выражение в виде степени с натуральным показателем

Принцип работы данного правила основан на определении степени, которое было дано в самом начале.

Возвести произведение 2 × 3 во вторую степень означает повторить данное произведение два раза. А если повторить его два раза, то можно получить следующее:

От перестановки мест сомножителей произведение не меняется. Это позволяет сгруппировать одинаковые множители:

Что значит представить выражение в виде степени с натуральным показателем

Данное свойство справедливо для любого количества множителей. Следующие выражения также справедливы:

Что значит представить выражение в виде степени с натуральным показателем

Пример 2. Найти значение выражения (2 × 3 × 4) 2

Что значит представить выражение в виде степени с натуральным показателем

Пример 3. Возвести в третью степень произведение a × b × c

Заключим в скобки данное произведение, и в качестве показателя укажем число 3

Что значит представить выражение в виде степени с натуральным показателем

Далее возводим в третью степень каждый множитель данного произведения:

Что значит представить выражение в виде степени с натуральным показателем

Пример 4. Возвести в третью степень произведение 3xyz

Заключим в скобки данное произведение, и в качестве показателя укажем 3

Возведём в третью степень каждый множитель данного произведения:

В некоторых примерах умножение степеней с одинаковыми показателями можно заменять на произведение оснований с одним показателем.

5 2 × 3 2 = 25 × 9 = 225

5 2 × 3 2 = (5 × 3) 2 = (15) 2 = 225

Возведение степени в степень

Это преобразование мы рассматривали в качестве примера, когда пытались понять суть тождественных преобразований степеней.

При возведении степени в степень основание оставляют без изменений, а показатели перемножают:

К примеру, выражение (2 3 ) 2 является возведением степени в степень — два в третьей степени возводится во вторую степень. Чтобы найти значение этого выражения, основание можно оставить без изменений, а показатели перемножить:

(2 3 ) 2 = 2 3 × 2 = 2 6

(2 3 ) 2 = 2 3 × 2 = 2 6 = 64

Данное правило основано на предыдущих правилах: возведении в степень произведения и основного свойства степени.

А это есть возведение в степень произведения, которое мы изучили ранее. Напомним, что для возведения в степень произведения, нужно возвести в указанную степень каждый множитель данного произведения и полученные результаты перемножить:

(2 × 2 × 2) 2 = 2 2 × 2 2 × 2 2

Теперь имеем дело с основным свойством степени. Основание оставляем без изменений, а показатели складываем:

(2 × 2 × 2) 2 = 2 2 × 2 2 × 2 2 = 2 2 + 2 + 2 = 2 6

(2 × 2 × 2) 2 = 2 2 × 2 2 × 2 2 = 2 2 + 2 + 2 = 2 6 = 64

В степень также может возводиться произведение, сомножители которого тоже являются степенями.

(2 2 × 3 2 ) 3 = 2 2×3 × 3 2×3 = 2 6 × 3 6 = 64 × 729 = 46656

Примерно тоже самое происходит при возведении в степени произведения. Мы говорили, что при возведении в степень произведения, в указанную степень возводится каждый множитель этого произведения.

Например, чтобы возвести произведение 2 × 4 в третью степень, нужно записать следующее выражение:

Что значит представить выражение в виде степени с натуральным показателем

Перепишем решение с помощью правила возведения степени в степень. У нас должен получиться тот же результат:

Что значит представить выражение в виде степени с натуральным показателем

Пример 2. Найти значение выражения (3 3 ) 2

Основание оставляем без изменений, а показатели перемножаем:

Что значит представить выражение в виде степени с натуральным показателем

Что значит представить выражение в виде степени с натуральным показателем

Пример 3. Выполнить возведение в степень в выражении (xy

Возведём в третью степень каждый множитель произведения:

Что значит представить выражение в виде степени с натуральным показателем

Пример 4. Выполнить возведение в степень в выражении (abc)⁵

Возведём в пятую степень каждый множитель произведения:

Что значит представить выражение в виде степени с натуральным показателем

Пример 5. Выполнить возведение в степень в выражении (−2ax) 3

Возведём в третью степень каждый множитель произведения:

Что значит представить выражение в виде степени с натуральным показателем

Поскольку в третью степень возводилось отрицательное число −2, оно было взято в скобки.

Что значит представить выражение в виде степени с натуральным показателем

Пример 6. Выполнить возведение в степень в выражении (10xy) 2

Что значит представить выражение в виде степени с натуральным показателем

Пример 7. Выполнить возведение в степень в выражении (−5x) 3

Что значит представить выражение в виде степени с натуральным показателем

Пример 8. Выполнить возведение в степень в выражении (−3y) 4

Что значит представить выражение в виде степени с натуральным показателем

Пример 9. Выполнить возведение в степень в выражении (−2abx)⁴

Что значит представить выражение в виде степени с натуральным показателем

Пример 10. Упростите выражение x 5 × (x 2 ) 3

Степень x 5 пока оставим без изменений, а в выражении (x 2 ) 3 выполним возведение степени в степени:

Основное свойство степени можно использовать в случае, если основания исходных степеней одинаковы. В данном примере основания разные, поэтому для начала исходное выражение нужно немного видоизменить, а именно сделать так, чтобы основания степеней стали одинаковыми.

Запишем решение данного примера:

Что значит представить выражение в виде степени с натуральным показателем

Деление степеней

Чтобы выполнить деление степеней, нужно найти значение каждой степени, затем выполнить деление обыкновенных чисел.

Что значит представить выражение в виде степени с натуральным показателем

Если при делении степеней основания окажутся одинаковыми, то основание можно оставить без изменений, а из показателя степени делимого вычесть показатель степени делителя.

Например, найдем значение выражения 2 3 : 2 2

Основание 2 оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя:

Что значит представить выражение в виде степени с натуральным показателем

Данное свойство основано на умножении степеней с одинаковыми основаниями, или как мы привыкли говорить на основном свойстве степени.

Разделить одно число на другое означает найти такое число, которое при умножении на делитель даст в результате делимое.

Что значит представить выражение в виде степени с натуральным показателем

Таким образом, при делении степеней с одинаковыми основаниями выполняется следующее равенство:

Что значит представить выражение в виде степени с натуральным показателем

Может случиться и так, что одинаковыми могут оказаться не только основания, но и показатели. В этом случае в ответе получится единица.

Что значит представить выражение в виде степени с натуральным показателем

При решении примера 2 2 : 2 2 также можно применить правило деления степеней с одинаковыми основаниями. В результате получается число в нулевой степени, поскольку разность показателей степеней 2 2 и 2 2 равна нулю:

Что значит представить выражение в виде степени с натуральным показателем

В математике принято считать, что любое число в нулевой степени есть единица:

Что значит представить выражение в виде степени с натуральным показателем

Почему число 2 в нулевой степени равно единице мы выяснили выше. Если вычислить 2 2 : 2 2 обычным методом, не используя правило деления степеней, получится единица.

Пример 2. Найти значение выражения 4 12 : 4 10

Воспользуемся правилом деления степеней. Основание 4 оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя:

4 12 : 4 10 = 4 12 − 10 = 4 2 = 16

Пример 3. Представить частное x 3 : x в виде степени с основанием x

Воспользуемся правилом деления степеней. Основание x оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя. Показатель делителя равен единице. Для наглядности запишем его:

Что значит представить выражение в виде степени с натуральным показателем

Пример 4. Представить частное x 3 : x 2 в виде степени с основанием x

Воспользуемся правилом деления степеней. Основание x оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя:

Что значит представить выражение в виде степени с натуральным показателем

Деление степеней можно записывать в виде дроби. Так, предыдущий пример можно записать следующим образом:

Что значит представить выражение в виде степени с натуральным показателем

Что значит представить выражение в виде степени с натуральным показателем

Что значит представить выражение в виде степени с натуральным показателем

Что значит представить выражение в виде степени с натуральным показателем

Деление степеней подробно можно не расписывать. Приведённое сокращение можно выполнить короче:

Что значит представить выражение в виде степени с натуральным показателем

Что значит представить выражение в виде степени с натуральным показателем

Пример 5. Выполнить деление x 12 : x 3

Воспользуемся правилом деления степеней. Основание x оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя:

Что значит представить выражение в виде степени с натуральным показателем

Что значит представить выражение в виде степени с натуральным показателем

Пример 6. Найти значение выражения Что значит представить выражение в виде степени с натуральным показателем

В числителе выполним умножение степеней с одинаковыми основаниями:

Что значит представить выражение в виде степени с натуральным показателем

Теперь применяем правило деления степеней с одинаковыми основаниями. Основание 7 оставляем без изменений, а из показателя степени делимого вычтем показатель степени делителя:

Что значит представить выражение в виде степени с натуральным показателем

Завершаем пример, вычислив степень 7 2

Что значит представить выражение в виде степени с натуральным показателем

Пример 7. Найти значение выражения Что значит представить выражение в виде степени с натуральным показателем

Выполним в числителе возведение степени в степень. Сделать это нужно с выражением (2 3 ) 4

Что значит представить выражение в виде степени с натуральным показателем

Теперь выполним в числителе умножение степеней с одинаковыми основаниями:

Что значит представить выражение в виде степени с натуральным показателем

Теперь применяем правило деления степеней с одинаковыми основаниями:

Что значит представить выражение в виде степени с натуральным показателем

Значит, значение выражения Что значит представить выражение в виде степени с натуральным показателемравно 16

В некоторых примерах можно сокращать одинаковые множители в ходе решения. Это позволяет упростить выражение и само вычисление в целом.

Что значит представить выражение в виде степени с натуральным показателем

В числителе выполним возведение степени в степень. Сделать это нужно с выражением (2 2 ) 3

Что значит представить выражение в виде степени с натуральным показателем

Что значит представить выражение в виде степени с натуральным показателем

Пример 8. Найти значение выражения Что значит представить выражение в виде степени с натуральным показателем

Что значит представить выражение в виде степени с натуральным показателем

Теперь можно применить правило деления степеней:

Что значит представить выражение в виде степени с натуральным показателем

Что значит представить выражение в виде степени с натуральным показателем

Возведение в степень обыкновенных дробей

Чтобы возвести в степень обыкновенную дробь, нужно возвести в указанную степень числитель и знаменатель этой дроби.

Например, возведём обыкновенную дробь во вторую степень. Возьмём в скобки данную дробь и в качестве показателя укажем 2

Что значит представить выражение в виде степени с натуральным показателем

Итак, чтобы вычислить значение выражения Что значит представить выражение в виде степени с натуральным показателем, нужно возвести во вторую степень числитель и знаменатель данной дроби:

Что значит представить выражение в виде степени с натуральным показателем

Получили дробь в числителе и в знаменателе которой содержатся степени. Вычислим каждую степень по отдельности

Что значит представить выражение в виде степени с натуральным показателем

Значит обыкновенная дробь во второй степени равна дроби Что значит представить выражение в виде степени с натуральным показателем.

Приведённое правило работает следующим образом. Дробь во второй степень это произведение двух дробей, каждая из которых равна

Что значит представить выражение в виде степени с натуральным показателем

Мы помним, что для перемножения дробей необходимо перемножить их числители и знаменатели:

Что значит представить выражение в виде степени с натуральным показателем

А поскольку в числителе и в знаменателе происходит перемножение одинаковых множителей, то выражения 2 × 2 и 3 × 3 можно заменить на 2 2 и 3 2 соответственно:

Что значит представить выражение в виде степени с натуральным показателем

Откуда и получится ответ Что значит представить выражение в виде степени с натуральным показателем.

Вообще, для любого a и b ≠ 0 выполняется следующее равенство:

Что значит представить выражение в виде степени с натуральным показателем

Это тождественное преобразование называют возведением в степень обыкновенной дроби.

Пример 2. Возвести дробь Что значит представить выражение в виде степени с натуральным показателемв третью степень

Заключим данную дробь в скобки и в качестве показателя укажем число 3. Далее возведём числитель и знаменатель данной дроби в третью степень и вычислим получившуюся дробь:

Что значит представить выражение в виде степени с натуральным показателем

Отрицательная дробь возводится в степень таким же образом, но перед вычислениями надо определиться какой знак будет иметь ответ. Если показатель четный, то ответ будет положительным. Если показатель нечетный, то ответ будет отрицательным.

Например, возведём дробь Что значит представить выражение в виде степени с натуральным показателемво вторую степень:

Что значит представить выражение в виде степени с натуральным показателем

Показатель является чётным числом. Значит ответ будет положительным. Далее применяем правило возведения в степень дроби и вычисляем получившуюся дробь:

Что значит представить выражение в виде степени с натуральным показателем

Ответ положителен по причине того, что выражение Что значит представить выражение в виде степени с натуральным показателемпредставляет собой произведение двух сомножителей, каждый из которых равен дроби Что значит представить выражение в виде степени с натуральным показателем

Что значит представить выражение в виде степени с натуральным показателем

А произведение отрицательных чисел (в том числе и рациональных) есть положительное число:

Что значит представить выражение в виде степени с натуральным показателем

Если возводить дробь Что значит представить выражение в виде степени с натуральным показателемв третью степень, то ответ будет отрицательным, поскольку в данном случае показатель будет нечётным числом. Правило возведения в степень остаётся тем же, но перед выполнением этого возведения, нужно будет поставить минус:

Что значит представить выражение в виде степени с натуральным показателем

Здесь ответ отрицателем по причине того, что выражение Что значит представить выражение в виде степени с натуральным показателемпредставляет собой произведение трёх множителей, каждый из которых равен дроби Что значит представить выражение в виде степени с натуральным показателем

Что значит представить выражение в виде степени с натуральным показателем

Сначала перемножили Что значит представить выражение в виде степени с натуральным показателеми Что значит представить выражение в виде степени с натуральным показателем, получили Что значит представить выражение в виде степени с натуральным показателем, но затем умножив Что значит представить выражение в виде степени с натуральным показателемна Что значит представить выражение в виде степени с натуральным показателеммы получим отрицательный ответ Что значит представить выражение в виде степени с натуральным показателем

Что значит представить выражение в виде степени с натуральным показателем

Пример 3. Найти значение выражения Что значит представить выражение в виде степени с натуральным показателем

Выполним возведение в степень обыкновенной дроби:

Что значит представить выражение в виде степени с натуральным показателем

Далее вычислим значение получившегося выражения:

Что значит представить выражение в виде степени с натуральным показателем

Возведение в степень десятичных дробей

При возведении в степень десятичной дроби её необходимо заключить в скобки. Например, возведём во вторую степень десятичную дробь 1,5

Что значит представить выражение в виде степени с натуральным показателем

Допускается переводить десятичную дробь в обыкновенную и возводить в степень эту обыкновенную дробь. Решим предыдущий пример, переведя десятичную дробь в обыкновенную:

Что значит представить выражение в виде степени с натуральным показателем

Пример 2. Найти значение степени (−1,5) 3

Показатель степени является нечётным числом. Значит ответ будет отрицательным

Что значит представить выражение в виде степени с натуральным показателем

Пример 3. Найти значение степени (−2,4) 2

Показатель степени является чётным числом. Значит ответ будет положительным:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *