Что значит подмножество в математике дроби

6.1.6. Множество и его элементы

I. Множество представляет собой совокупность некоторых предметов или чисел, составленных по каким-либо общим свойствам или законам (множество букв на странице, множество правильных дробей со знаменателем 5, множество звезд на небе и т.д.).

Для записи множества используют фигурные скобки: « <»- множество открывается; «>» — множество закрывается. А само множество называют заглавными латинскими буквами: А, В, С и так далее.

Примеры.

1. Записать множество А, состоящее из всех гласных букв в слове «математика».

Решение. А=<а, е, и>. Вы видите: несмотря на то,что в слове «математика» имеется три буквы «а» — в записи множества повторений не допускается, и буква «а» записывается только один раз. Множество А состоит из трех элементов.

2. Записать множество всех правильных дробей со знаменателем 5.

Решение. Вспоминаем: правильной называют обыкновенную дробь, у которой числитель меньше знаменателя. Обозначим через В искомое множество. Тогда:

Что значит подмножество в математике дробиМножество В состоит из четырех элементов.

II. Множества состоят из элементов и бывают конечными или бесконечными. Множество, которое не содержит ни одного элемента, называют пустым множеством и обозначают Ø.

III. Множество В называют подмножеством множества А, если все элементы множества В являются элементами множества А.

3. Какое из двух данных множеств В и С является подмножеством множества К,

Решение. Все элементы множества С являются также элементами множества К, поэтому, множество С является подмножеством множества К. Записывают:

Что значит подмножество в математике дроби

IV. Пересечением множеств А и В называется множество, элементы которого принадлежат и множеству А и множеству В.

4. Показать пересечение двух множеств М и F с помощью кругов Эйлера.

Решение.

Что значит подмножество в математике дроби

V. Объединением множеств А и В называется множество, элементы которого принадлежат хотя бы одному из данных множеств А и В.

5. Показать с помощью кругов Эйлера объединение множеств Т и Р.

Источник

Множества

Множество — это совокупность любых объектов. Множества обозначают большими буквами латинского алфавита — от A до Z.

Основные числовые множества: множество натуральных чисел и множество целых чисел, всегда обозначаются одними и теми же буквами:

N — множество натуральных чисел,

Z — множество целых чисел.

Множества делятся на конечные и бесконечные. Конечное множество — множество, содержащее определённое (конечное) количество элементов. Бесконечное множество — множество, содержащее бесконечно много элементов. К бесконечным множествам можно отнести множества натуральных и целых чисел.

Для определения множества используются фигурные скобки, в которых через запятую перечисляются элементы. Например, запись

означает, что множество L состоит из четырёх чётных чисел.

Термин множество употребляется независимо от того, сколько элементов оно содержит. Множества не содержащие ни одного элемента называются пустыми.

Подмножество

Подмножество — это множество, все элементы которого, являются частью другого множества.

Визуально продемонстрировать отношение множества и входящего в него подмножества можно с помощью кругов Эйлера. Круги Эйлера — это геометрические схемы, помогающие визуализировать отношения различных объектов, в нашем случае, множеств.

Рассмотрим два множества:

Что значит подмножество в математике дроби

Каждый элемент множества L принадлежит и множеству M, значит, множество L является подмножеством множества M. Такое соотношение множеств обозначают знаком ⊂ :

Рассмотрим два множества:

Так как оба множества состоят из одних и тех же элементов, то L = M.

Пересечение и объединение множеств

Что значит подмножество в математике дроби

Из данного примера следует, что пересечением множеств называется множество, которое содержит только те элементы, которые встречаются во всех пересекающихся множествах.

Что значит подмножество в математике дроби

При объединении равных множеств объединение будет равно любому из данных множеств:

Источник

Множество и его элементы. Подмножества

Понятие множества

Что такое «множество», мы понимаем интуитивно. В этом смысле это понятие первично, так же как «точка» или «плоскость».

Создатель теории множеств Г.Кантор описывал множество как «многое, мыслимое нами как единое».

Приведём примеры множеств:

Множество людей в салоне самолёта

Множество деревьев в парке

Что значит подмножество в математике дроби

Что значит подмножество в математике дроби

Множество планет Солнечной системы

Множество электронов в атоме

Что значит подмножество в математике дроби

Что значит подмножество в математике дроби

Множество натуральных чисел

Множество «синих-синих презелёных красных шаров»

Конечное, бесконечное и пустое множества

Людей в салоне самолёта легко посчитать, это множество конечно.

С деревьями в парке, планетами и электронами – сложней. Скорее всего, мы не сможем назвать точное количество элементов этих множеств в данный момент времени. Однако, и эти множества конечны.

Натуральное число – это идеальный объект, абстракция. Множество натуральных чисел бесконечно. Как оказалось, человек может оперировать и абстракциями, и бесконечностями.

Можно себе представить даже то, «чего на свете вообще не может быть». Поскольку таких объектов нет, их множество будет пустым. Пустое множество является частью любого другого множества.

Помидоры на грядке

Числа (натуральные, рациональные, действительные и т.д.)

Количество рациональных чисел на отрезке [0;1]

Полосатые летающие слоны

Все точки пересечения двух параллельных прямых на плоскости

Способы задания множеств

1) Перечисление – в списке задаются все элементы множества.

Множество всех континентов Земли:

Множество букв слова «математика»:

Множество натуральных чисел меньших 5:

2) Характеристическое свойство – указывается особенность элементов множества.

D = – множество всех материков планеты Земля

3) Графическое изображение – визуальное моделирование с помощью различных диаграмм (круги Эйлера, интервалы, графики и т.п.)

Подмножества

Говорят, что B содержит A, или B покрывает A.

Пустое множество является подмножеством любого множества.

Что значит подмножество в математике дроби

Множество людей является подмножеством приматов, живущих на Земле.

Множество квадратов является подмножеством прямоугольников.

Множество всех подмножеств данного множества A называют булеаном или степенью множества A.

Примеры

Пример 1. Запишите данное множество с помощью перечисления элементов:

Задано множество целых чисел, квадрат которых меньше 5. Перечисляем:

Задано множество целых чисел, модуль которых не больше 3. Перечисляем:

Задано множество рациональных чисел, являющихся корнями уравнения

(x-1)(2x+5) = 0. Перечисляем:

Пример 2. Запишите данное множество с помощью характеристического свойства:

а) Множество всех натуральных чисел меньше 10

б) Множество всех действительных чисел, кроме 0

в) Множество всех точек с целыми координатами, принадлежащих прямой y = 2x+1

Пример 3. Изобразите на графике в координатной плоскости данное множество:

Задано конечное множество точек, которое можно представить перечислением:

Что значит подмножество в математике дроби

Что значит подмножество в математике дроби

Пример 4. Укажите и запишите с помощью перечисления одно из непустых конечных подмножеств для данного множества:

Источник

Что такое множество в математике и как оно обозначается

Множество – это количество предметов или чисел, обладающих общими свойствами.

Что значит подмножество в математике дроби

Данное определение подходит к любой совокупности с одинаковыми признаками, независимо оттого, сколько предметов в нее входит: толпа людей, стог сена, звезды в небе.

В математике изучаемое понятие обозначается заглавными латинскими буквами, например: А, С, Z, N, Q, A1, A2 и т. д.

Объекты, составляющие группу, называются элементами множества и записываются строчными латинскими буквами: a, b, c, d, x, y, a1, a2 и т. д.

Границы совокупности обозначаются фигурными скобками < >.

А = <а, в, с, у>– А состоит из четырех элементов.

Записать совокупность Z согласных букв в слове «калькулятор»:

Z = <к, л, т, р>, повторяющиеся согласные записываются один раз. Z состоит из четырех элементов.

Принадлежность элементов множеству обозначается знаком – Є.

Пример: N = , а Є N – элемент «а» принадлежит N.

Что значит подмножество в математике дроби

Выделяют три вида множеств:

пустые (обозначаются Ø) – не имеющие элементов.

Пример: А = <а, в, с, у>и В = <а, в, с, е, к>– все элементы А являются элементами совокупности В, следовательно А ⊆ В.

Если множества состоят из одинаковых элементов, их называют равными.

Пример: А = <23, 29, 48>и В = <23, 29, 48>, тогда А = В.

В математике выделяют несколько числовых совокупностей. Рассмотрим их подробнее.

Множество натуральных чисел

Что значит подмножество в математике дроби

Относится ли ноль к натуральным числам? Это до сих пор открытый вопрос для математиков всего мира.

Множество целых чисел

Совокупность целых чисел (Z) включает в себя положительные натуральные и отрицательные числа, а также ноль:

Что значит подмножество в математике дроби

Множество рациональных чисел

Совокупность рациональных чисел (Q) состоит из дробей (обыкновенных и десятичных), целых и смешанных чисел:

Любое рациональное число можно представить в виде дроби, у которой числителем служит любое целое число, а знаменателем – натуральное:

Следовательно, N и Z являются подмножествами Q.

Операции над множествами

Точно так же, как и все математические объекты, множества можно складывать и вычитать, то есть совершать операции.

Что значит подмножество в математике дроби

Если две группы образуют третью, содержащую элементы исходных совокупностей – это называется суммой (объединением) множеств и обозначается знаком ∪.

Если две группы совокупностей образуют третью, состоящую только из общих элементов заданных составляющих, это называется произведением (пересечением) множеств, обозначается значком ∩.

Если две совокупности образуют третью, включающую элементы одной из заданных групп и не содержащую элементы второй, получается разность (дополнение) совокупностей, обозначается значком /.

В случае, когда В / С = С / В, получается симметричная разность и обозначается значком Δ.

Для «чайников» или кому трудно даётся данная тема операции с совокупностями можно отобразить с помощью диаграмм Венна:

Объединение

Что значит подмножество в математике дроби

Пересечение

Что значит подмножество в математике дроби

Дополнение

Что значит подмножество в математике дроби

С помощью данных диаграмм можно разобраться с законами де Моргана по поводу логической интерпретации операций над множествами.

Свойства операций над множествами

Операции над множествами обладают свойствами, аналогичными правилу свойств сложения, умножения и вычитания чисел:

Что значит подмножество в математике дроби

Коммутативность – переместительные законы:

умножения S ∩ D = D ∩ S;

сложения S ∪ D = D ∪ S.

Ассоциативность – сочетательные законы:

умножения (S ∩ F) ∩ G = S ∩ (F ∩ G);

сложения (S ∪ F) ∪ G = S ∪ (F ∪ G).

Дистрибутивность – законы распределения:

умножения относительно вычитания S ∩ (F – G) = (S ∩ F) – (S ∩ G);

умножения относительно сложения G ∩ (S ∪ F) = (G ∩ S) ∪ (G ∩ F);

сложения относительно умножения G ∪ (S ∩ F) = (G ∪ S) ∩ (G ∪ F).

если S ⊆ Fи F ⊆ J, то S ⊆ J;

если S ⊆ F и F ⊆ S, то S = F.

Идемпотентность объединения и пересечения:

О других свойствах операций можно узнать из картинки:

Что значит подмножество в математике дроби

Счетные и несчетные множества

Если между элементами двух групп можно установить взаимное немногозначное соответствие, то эти группы чисел равномощны, при условии равного количества элементов.

Что значит подмножество в математике дроби

Мощность данной математической единицы равна количеству элементов в ней. Например, множество всех нечетных положительных чисел равномощно группе всех четных чисел больше ста.

Что значит подмножество в математике дроби

Но не все группы действительных чисел счетные. Примером несчетной группы предметов является бесконечная десятичная дробь.

Источник

Что такое множество 👨‍🎓. Свойства и операции над множествами

В этой статье рассмотрим очень важную тему, как в математике, так и в информатике – множества. Ниже Вы найдете основные определения и понятия, свойства множеств, их виды и примеры. Материал изложен таким образом, что разберется даже полный чайник. Здесь приведены, только основы, которые обычно проходятся в рамках школьной программы. Читайте!

Основные положения и обозначения

Теория множеств появилась благодаря знаменитому немецкому математику Гео́рг Ка́нтор (3 марта 1845, Санкт-Петербург — 6 января 1918, Галле (Заале)) — немецкий математик, ученик Вейерштрасса. Наиболее известен как создатель теории множеств.

Что значит подмножество в математике дроби

Итак, начнем с основных понятий. Основное определение имеет следующий вид:

Множества (м-ва – сокр.) – наборы элементов объединенных по какому либо признаку.

Обозначаются они с помощью заглавных латинских букв, а их элементы указываются в фигурных скобках.

Примеры

​ \( S = \left\ < а, б, в, г, д, …, ю, я \right\>\) – мн-во букв русского алфавита.
\( S = \left\ < Алексей, Анатолий, Галина, …, Александр, Ирина \right\>\) – мн-во имен студентов в группе.
\( S = \left\ < 🐵, 🙈, 🙉, 🙊 \right\>\) – мн-во смайликов с изображением обезьянок.

Также стоит обговорить про принадлежность элементов к множеству. Записать её можно с помощью специального значка «принадлежности» – ​ \( \in \) ​. Так запись вида \( x \in S \) обозначает, что элемент x принадлежит множеству S.

С основным понятием разобрались, перейдем к остальной теории.

Подмножества

Подмножество – множество S1 является подмножеством S, если каждый элемент из S1 содержится (включен) в S.

Обозначают подмножества при помощи специального значка «включения», который имеет вид ​ \( \subset \) \( (\ S_1 \subset S \ ) \) ​. Также их можно отобразить схематично, используя диаграммы Эйлера, которые отображают отношения между подмножествами.

Что значит подмножество в математике дроби

Также Вы можете выделить подмножество мужских имен, или сделать любую выборку по какому-нибудь признаку.

Мощность

Следует также выделить такое понятие, как мощность. Имеет оно следующий вид:

Мощность – количество элементов, которое содержится в множестве.

Мн-ва называются равномощными тогда и только тогда, когда количество элементов одного из них равно количеству элементов другого.

Причем неважно, какие элементы будут в этих мн-ах. Так в одном из них могут содержаться 26 букв английского алфавита, а в другом 26 марок японских автомобилей, при этом они будут равномощными.

Мощность является одним из тех свойств, благодаря которому мы можем проводить сравнение двух (или более) м-в.​​

Равенство

Необходимо сказать и про равенство. Для чайников правило будет выглядеть так:

Два (или несколько) множеств равны только тогда, когда равны все их элементы.

Теперь изучим виды и другие свойства мн-в в математике.

Существует много критериев и свойств, по которым мы можем классифицировать множества. Например, мы можем разделить их по количеству элементов:

А можем поделить их на конечные (ограниченные) и бесконечные:

Теперь рассмотрим примеры множеств в математике.

Примеры

Натуральные числа

Натуральные числа в математике – это те числа, которые мы используем при счете (1, 2, 3 и т.д.). Сюда не относятся отрицательные величины и нуль. Запись: \( N = \left\ < 1, 2, 3, 4, 5, … \right\>\).

Целые числа

Получаются из множества натуральных чисел. К ним добавляются отрицательные числа и нуль. \( Z = \left\ < 0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, … \right\>\).

Рациональные числа

Здесь множество задается следующим образом: ​ \( Q = \left\ < \ | \ m \in Z, \ n \in N\right\> \) ​. В формуле m представляет собой целый числитель, а nнатуральный знаменатель.

Так как любое число в математике можно представить в виде дроби (например, ​ \( 5 = <5 \over 1>\) ​), то целые числа являются подмножеством рациональных чисел. Натуральные же числа являются подмножеством целых чисел.

\[ N \subset Z \subset Q \]

Эту теорию Вам надо запомнить.

Операции

В этом разделе рассмотрим основные операции (действия) над множествами в математике.

Пересечение

Чтобы поняли даже чайники, вернемся к нашим «мартышкам»:

\( S_ <1>= \left\ < 🙉, 🙊 \right\>\) — обезьянки показывающие лапки и глаза

\( S_ <2>= \left\ < 🙈, 🙉 \right\>\) — мартышки показывающие лапы и рот

Надо найти \( S_ <1>\ \cap \ S_ <2>\). Для этого воспользуемся диаграммами Эйлера — Венна:

Что значит подмножество в математике дроби

Решение: ​ \( S_ <1>\ \cap \ S_ <2>= \left\ < 🙉 \right\>\) т.к. 🙉 ​ входит и в S1 и в S2.​

Объединение

Что значит подмножество в математике дроби

Решение: ​ \( S_ <1>\ \cup \ S_ <2>= \left\ < 🙈, 🙉, 🙊 \right\>\) ​

Разность

Что значит подмножество в математике дроби

Решение: ​ \( S_ <1>\ \setminus \ S_ <2>= \left\ < 🙊 \right\>\)

Следует отметить, что здесь приведены не все операции. Например, не написано про симметрическую разность и законы Моргана. Их проходят в рамках высшей математики.

Заключение

Теперь Вы знаете, что такое мн-ва, знаете их свойства и какие операции над ними можно выполнять. Надеюсь я объяснил всю теорию так, что понял даже полный чайник. Если же у Вас возникли вопросы, то задавайте их в комментариях. Также на нашем сайте Вы можете прочитать другие статьи, например про представления чисел в компьютере. Рассказывается как выполнять с ними такие действия, как перемножение, получение суммы и деление.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *