Что значит плоскость проходит через точку
Уравнение плоскости, виды уравнения плоскости
В предыдущем разделе, посвященном плоскости в пространстве, мы рассмотрели вопрос с позиции геометрии. Теперь же перейдем к описанию плоскости с помощью уравнений. Взгляд на плоскость со стороны алгебры предполагает рассмотрение основных видов уравнения плоскости в прямоугольной системе координат O х у z трехмерного пространства.
Определение уравнения плоскости
Плоскость – это геометрическая фигура, состоящая из отдельных точек. Каждой точке в трехмерном пространстве соответствуют координаты, которые задаются тремя числами. Уравнение плоскости устанавливает зависимость между координатами всех точек.
Подстановка в уравнение плоскости координат точки данной плоскости, обращает уравнение в тождество. При подстановке координат точки, лежащей вне плоскости, уравнение превращается в неверное равенство.
Уравнение плоскости может иметь несколько видов. В зависимости от специфики решаемых задач уравнение плоскости может быть записано по-разному.
Общее уравнение плоскости
Сформулируем теорему, а затем запишем уравнение плоскости.
Плоскости, которые задаются неполными уравнениями, могут быть параллельны координатным осям, проходить через оси координат, совпадать с координатными плоскостями или располагаться параллельно им, проходить через начало координат.
Когда говорят об уравнении плоскости, то подразумевают общее уравнение плоскости. Все виды уравнений плоскости, которые мы разберем в следующем разделе статьи, получают из общего уравнения плоскости.
Нормальное уравнение плоскости
Для более детального изучения нормального уравнения плоскости мы рекомендуем перейти в соответствующий раздел. В теме приведены разборы задач и характерные примеры, а также способы приведения общего уравнения плоскости к нормальному виду.
Уравнение плоскости в отрезках
Точки удалены от начала координат в отрицательном направлении на 5 единиц по оси абсцисс, на 4 единицы в отрицательном направлении по оси ординат и на 4 единицы в положительном направлении по оси аппликат. Отмечаем точки и соединяем их прямыми линиями.
Более подробно информация об уравнении плоскости в отрезках, приведении уравнения плоскости в отрезках к общему уравнению плоскости размещена в отдельной статье. Там же приведен ряд решений задач и примеров по теме.
Продолжим изучение темы уравнение плоскости. В этой статье мы всесторонне рассмотрим общее уравнение плоскости в трехмерном пространстве в фиксированной прямоугольной системе координат. Сначала получим вид общего уравнения плоскости, приведем примеры и необходимые пояснения. Далее остановимся на общем уравнении плоскости, проходящей через заданную точку пространстве. В заключении разберем частные случаи общего уравнения плоскости, рассмотрим общее неполное уравнение плоскости и приведем подробные решения задач.
Навигация по странице.
Прежде чем записать общее уравнение плоскости, напомним определение прямой перпендикулярной к плоскости: прямая перпендикулярна к плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости. Из этого определения следует, что любой нормальный вектор плоскости перпендикулярен любому ненулевому вектору, лежащему в этой плоскости. Этот факт мы используем при доказательстве следующей теоремы, которая задает вид общего уравнения плоскости.
Начнем с доказательства первой части теоремы.
Равенство представляет собой необходимое и достаточное условие перпендикулярности векторов и . Иными словами, координаты плавающей точки удовлетворяют уравнению тогда и только тогда, когда перпендикулярны векторы и . Тогда, учитывая факт, приведенный перед теоремой, мы можем утверждать, что если справедливо равенство , то множество точек определяет плоскость, нормальным вектором которой является , причем эта плоскость проходит через точку . Другими словами, уравнение определяет в прямоугольной системе координат Oxyz в трехмерном пространстве указанную выше плоскость. Следовательно, эквивалентное уравнение определяет эту же плоскость. Первая часть теоремы доказана.
Приступим к доказательству второй части.
Пусть нам дана плоскость, проходящая через точку , нормальным вектором которой является . Докажем, что в прямоугольной системе координат Oxyz ее задает уравнение вида .
Для этого, возьмем произвольную точку этой плоскости. Пусть этой точкой будет . Тогда векторы и будут перпендикулярны, следовательно, их скалярное произведение будет равно нулю: . Приняв , уравнение примет вид . Это уравнение и задает нашу плоскость. Итак, теорема полностью доказана.
Уравнение называется общим уравнением плоскости в прямоугольной системе координат Oxyz в трехмерном пространстве.
Общее уравнение плоскости вида , где — некоторое действительное число, отличное от нуля, определяет в прямоугольной системе координат Oxyz плоскость, совпадающую с плоскостью , так как задает то же самое множество точек трехмерного пространства. К примеру, уравнения и задают одну и ту же плоскость, так как им удовлетворяют координаты одних и тех же точек трехмерного пространства.
Немного поясним смысл теоремы.
Приведем пример, иллюстрирующий последнюю фразу.
Общее уравнение плоскости, проходящей через точку.
Еще раз повторим, что точка принадлежит плоскости, которая задана в прямоугольной системе координат в трехмерном пространстве общим уравнением плоскости , если при подстановке координат точки в уравнение оно обращается в тождество.
Принадлежат ли точки и плоскости, общее уравнение которой имеет вид .
Подставим координаты точки М0 в общее уравнение плоскости: . В результате приходим к верному равенству, следовательно, точка лежит в плоскости.
Проделаем такую же процедуру с координатами точки N0 : . Получаем неверное равенство, поэтому, точка не лежит в плоскости, определенной общим уравнением плоскости .
М0 лежит в плоскости, а N0 – не лежит.
Из доказательства теоремы об общем уравнении плоскости виден один полезный факт: вектор является нормальным вектором плоскости . Таким образом, если мы знаем вид общего уравнения плоскости, то мы сразу можем записать координаты нормального вектора этой плоскости.
Плоскость в прямоугольной системе координат Oxyz задана общим уравнением плоскости . Запишите координаты всех нормальных векторов этой плоскости.
Теперь рассмотрим обратную задачу – задачу составления уравнения плоскости, когда известны координаты ее нормального вектора. Очевидно, что существует бесконечно много параллельных плоскостей, нормальным вектором которых является вектор . Поэтому, зададим дополнительное условие, чтобы обозначить одну конкретную плоскость. Будем считать, что точка принадлежит плоскости. Таким образом, задав нормальный вектор и точку плоскости , мы зафиксировали плоскость (смотрите раздел способы задания плоскости в пространстве). Получим общее уравнение этой плоскости.
Общее уравнение плоскости с нормальным вектором имеет вид . Так как точка лежит на плоскости, то ее координаты удовлетворяют уравнению плоскости, следовательно, справедливо равенство . Вычтем из левой и правой части равенства левую и правую части равенства соответственно. При этом получаем уравнение вида , которое является общим уравнением плоскости, проходящей через точку и имеющей направляющий вектор плоскости .
Это уравнение можно было получить и иначе.
Очевидно, что множество точек трехмерного пространства определяют требуемую плоскость тогда и только тогда, когда векторы и перпендикулярны. То есть, тогда и только тогда, когда их скалярное произведение равно нулю: .
Напишите уравнение плоскости, если в прямоугольной системе координат Oxyz в пространстве она проходит через точку , а — нормальный вектор этой плоскости.
Приведем два решения этой задачи.
Из условия имеем . Подставляем эти данные в общее уравнение плоскости, проходящей через точку :
Теперь второй вариант решения.
Пусть — текущая точка плоскости. Находим координаты вектора по координатам точек начала и конца: . Для получения требуемого общего уравнения плоскости осталось только воспользоваться необходимым и достаточным условием перпендикулярности векторов и :
Существует множество аналогичных задач на составление общего уравнения плоскости, в которых сначала требуется найти координаты нормального вектора плоскости. Самые распространенные из них это задачи на нахождение уравнения плоскости, проходящей через точку параллельно заданной плоскости и задачи на составление уравнения плоскости, проходящей через точку перпендикулярно к заданной прямой.
Неполное общее уравнение плоскости.
Рассмотрим все возможные общие неполные уравнения плоскости в прямоугольной системе координат Oxyz в трехмерном пространстве.
Разберем решения нескольких примеров на составление неполного уравнения плоскости.
Напишите общее уравнение плоскости параллельной координатной плоскости Oyz и проходящей через точку .
Приведем второй способ решения этой задачи.
Общее уравнение плоскости
В данной статье мы рассмотрим общее уравнение плоскости в пространстве. Определим понятия полного и неполного уравнения плоскости. Для построения общего уравнения плоскости пользуйтесь калькулятором уравнение плоскости онлайн.
Пусть задана произвольная декартова прямоугольная система координат Oxyz. Общим уравнением плоскости называется линейное уравнение вида:
Мы покажем, что линейное уравнение (1) в пространстве определяет плоскость и любой плоскость в пространстве можно представить линейным уравнением (1). Докажем следующую теорему.
Теорема 1. В произвольной декартовой прямоугольной системе координат в пространстве каждая плоскость α может быть задана линейным уравнением (1). Обратно, каждое линейное уравнение (1) в произвольной декартовой прямоугольной системе координат в пространстве определяет плоскость.
Доказательство. Достаточно доказать, что плоскость α определяется линейным уравнением при какой нибудь одной декартовой прямоугольной системе координат, поскольку тогда она будет определяться линейным уравнением и при любом выборе декартовой прямоугольной системы координат.
Пусть в пространстве задана плоскость α. Выберем оси Ox и Oy так, чтобы они располагались на плоскости α, а ось Oz направим перпендикулярно к этой плоскости. Тогда линейное уравнение z=0 будет уравнением плоскости, т.к. координаты любой точки, принадлежащей этой плоскости удовлетворяют уравнению z=0, а координаты любой точки, не лежащей на этой плоскости − нет. Первая часть теоремы доказана.
Таким образом, существует точка M0(x0, y0, z0), координаты которой удовлетворяют уравнению (1):
Вычитая из уравнения (1) тождество (2), получим
которая эквивалентна уравнению (1).
Покажем, что (3) определяет некоторую плоскость, проходящую через точку M0(x0, y0, z0) и перпендикулярную вектору n=<A,B,C> (n≠0, так как хотя бы один из чисел A,B,C отлично от нуля).
Если точка M0(x0, y0, z0) принадлежит плоскости α, то ее координаты удовлетворяют уравнению (3), т.к. векторы n=<A,B,C> и перпендикулярны (Рис.1) и их скалярное произведение равно нулю:
. |
Если же точка M(x, y, z) не лежит на плоскости α, то векторы n=<A,B,C> и не ортогональны. Тогда их скалярное произведение не равно нулю, т.е. координаты точки M(x, y, z) не удовлетворяют условию (3). Теорема доказана.
Одновременно с доказательством теоремы 1 мы получили следующее утверждение.
Утверждение 1. В декартовой прямоугольной системе координат вектор с компонентами (A,B,C) перпендикулярен плоскости Ax+By+Cz+D=0.
Утверждение 2. Если два общих уравнения плоскости
определяют одну и ту же плоскость, то найдется такое число λ, что выпонены равенства
Умножая уравнение (7) на λ и вычитая из него уравнение (8) получим:
Так как выполнены первые три равенства из выражений (6), то D1λ−D2=0. Т.е. D2=D1λ. Утверждение доказано.
Неполные уравнения плоскости
Рассмотрим все возможные варианты неполных уравнений плоскости:
При D=0, имеем уравнение плоскости Ax+By+Cz=0, проходящей через начало координат (Рис.2). Действительно, точка O(0,0,0) удовлетворяет этой системы линейных уравнений.
При A=0, имеем уравнение плоскости By+Cz+D=0, которая параллельна оси Ox (Рис.3). В этом случае нормальный вектор плоскости n=<0,B,C> лежит на координатной плоскости Oyz.
При B=0, имеем уравнение плоскости Ax+Cz+D=0, которая параллельна оси Oy (Рис.4).
При C=0, имеем уравнение плоскости Ax+By+D=0, которая параллельна оси Oz (Рис.5).
При A=0,B=0 имеем уравнение плоскости Cz+D=0, которая параллельна координатной плоскости Oxy (Рис.6).
При B=0,C=0 имеем уравнение плоскости Ax+D=0, которая параллельна координатной плоскости Oyz (Рис.7).
При A=0,C=0 имеем уравнение плоскости By+D=0, которая параллельна координатной плоскости Oxz (Рис.8).
При A=0,B=0,D=0 имеем уравнение плоскости Cz=0, которая совпадает с координатной плоскостью Oxy (Рис.9).
При B=0,C=0,D=0 имеем уравнение плоскости Ax=0, которая совпадает с координатной плоскостью Oyz (Рис.10).
При A=0,C=0,D=0 имеем уравнение плоскости By=0, которая совпадает с координатной плоскостью Oxz (Рис.11).
Рассмотрим примеры построения общего уравнения плоскости.
Пример 1. Построить общее уравнение плоскости, проходящей через точку M(4,−1,2) параллельной координатной плоскости Oxy.
Решение. Общее уравнение плоскости, проходящей через некоторую точку M(x0,y0,z0) имеет вид (3). Подставляя координаты точки M в (3), получим:
Так как плоскость параллельна координатной плоскости Oxy, то направляющий вектор имеет следующий вид n=<A,B,C>=<0,0,1>, т.е. A=0, B=0, C=1.
Подставляя коэффициенты A,B,C в (9), получим:
Пример 2. Построить общее уравнение плоскости, проходящей через начало координат и имеющий нормальный вектор n==<2,3,1>.
Решение. Начало координат имеет коэффициенты (0,0,0). Общее уравнение плоскости, проходящей через некоторую точку M(x0,y0,z0) имеет вид (3). Подставляя коэффициенты начальной точки в (3), получим:
Так как плоскость имеет нормальный вектор n=<A,B,C>=<2,3,1>, т.е. A=2, B=3, C=1, подставляя коэффициенты A,B,C в (10), получим:
Онлайн калькулятор для построения общего уравнения плоскости находится здесь. Там же вы найдете примеры построения общего уравнения плоскости, если известны три точки этой плоскости или если известна одна точка и нормальный вектор этой плоскости.