Что значит пластический обмен веществ

Пластический и энергетический обмен

Обмен веществ (метаболизм) – это совокупность всех химических реакций, которые происходят в организме. Все эти реакции делятся на 2 группы

1. Пластический обмен (ассимиляция, анаболизм, биосинтез) – это когда из простых веществ с затратой энергии образуются (синтезируются) более сложные. Пример:

2. Энергетический обмен (диссимиляция, катаболизм, дыхание) – это когда сложные вещества распадаются (окисляются) до более простых, и при этом выделяется энергия, необходимая для жизнедеятельности. Пример:

Взаимосвязь пластического и энергетического обмена

АТФ – универсальное энергетическое вещество клетки (универсальный аккумулятор энергии). Образуется в процессе энергетического обмена (окисления органических веществ).

Еще можно почитать

Задания части 1

Выберите один, наиболее правильный вариант. В процессе пластического обмена
1) более сложные углеводы синтезируются из менее сложных
2) жиры превращаются в глицерин и жирные кислоты
3) белки окисляются с образованием углекислого газа, воды, азотсодержащих веществ
4) происходит освобождение энергии и синтез АТФ

Выберите один, наиболее правильный вариант. В процессе пластического обмена в клетках синтезируются молекулы
1) белков
2) воды
3) АТФ
4) неорганических веществ

Выберите один, наиболее правильный вариант. Азотистое основание аденин, рибоза и три остатка фосфорной кислоты входят в состав
1) ДНК
2) РНК
3) АТФ
4) белка

Выберите один, наиболее правильный вариант. В чем проявляется взаимосвязь пластического и энергетического обмена
1) пластический обмен поставляет органические вещества для энергетического
2) энергетический обмен поставляет кислород для пластического
3) пластический обмен поставляет минеральные вещества для энергетического
4) пластический обмен поставляет молекулы АТФ для энергетического

Выберите один, наиболее правильный вариант. В процессе энергетического обмена, в отличие от пластического, происходит
1) расходование энергии, заключенной в молекулах АТФ
2) запасание энергии в макроэргических связях молекул АТФ
3) обеспечение клеток белками и липидами
4) обеспечение клеток углеводами и нуклеиновыми кислотами

Выберите один, наиболее правильный вариант. Энергия, необходимая для мышечного сокращения, освобождается при
1) расщеплении органических веществ в органах пищеварения
2) раздражении мышцы нервными импульсами
3) окислении органических веществ в мышцах
4) синтезе АТФ

Выберите один, наиболее правильный вариант. Значение пластического обмена – снабжение организма
1) минеральными солями
2) кислородом
3) биополимерами
4) энергией

Выберите один, наиболее правильный вариант. Окисление органических веществ в организме человека происходит в
1) легочных пузырьках при дыхании
2) клетках тела в процессе пластического обмена
3) процессе переваривания пищи в пищеварительном тракте
4) клетках тела в процессе энергетического обмена

ПЛАСТИЧЕСКИЙ КРОМЕ
1. Все приведенные ниже термины, кроме двух, используются для описания пластического обмена. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.

1) репликация
2) дупликация
3) трансляция
4) транслокация
5) транскрипция

2. Все перечисленные ниже понятия, кроме двух, используют для описания пластического обмена веществ в клетке. Определите два понятия, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) ассимиляция
2) диссимиляция
3) гликолиз
4) транскрипция
5) трансляция

3. Перечисленные ниже термины, кроме двух, используются для характеристики пластического обмена. Определите два термина, выпадающих из общего списка, и запишите цифры, под которыми они указаны.
1) расщепление
2) окисление
3) репликация
4) транскрипция
5) хемосинтез

ЭНЕРГЕТИЧЕСКИЙ
Выберите три процесса, относящихся к энергетическому обмену веществ.

1) выделение кислорода в атмосферу
2) образование углекислого газа, воды, мочевины
3) окислительное фосфорилирование
4) синтез глюкозы
5) гликолиз
6) фотолиз воды

ЭНЕРГЕТИЧЕСКИЙ КРОМЕ
1. Все приведённые ниже признаки, кроме двух, можно использовать для характеристики энергетического обмена в клетке. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.

1) идёт с поглощением энергии
2) завершается в митохондриях
3) завершается в рибосомах
4) сопровождается синтезом молекул АТФ
5) завершается образованием углекислого газа

2. Все перечисленные ниже процессы, кроме двух, относятся к энергетическому обмену. Определите два процесса, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) дыхание
2) фотосинтез
3) синтез белка
4) гликолиз
5) брожение

3. Все перечисленные ниже признаки, кроме трех, используются для описания процессов энергетического обмена. Определите три признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.
1) гликолиз
2) репликация
3) синтез молекул АТФ
4) фиксация углекислого газа
5) окислительное фосфорилирование
6) синтез глюкозы

2. Установите соответствие между характеристикой обмена веществ в клетке и его видом: 1) энергетический, 2) пластический. Запишите цифры 1 и 2 в порядке, соответствующим буквам.
А) происходит бескислородное расщепление глюкозы
Б) происходит на рибосомах, в хлоропластах
В) конечные продукты обмена – углекислый газ и вода
Г) органические вещества синтезируются
Д) используется энергия, заключенная в молекулах АТФ
Е) освобождается энергия и запасается в молекулах АТФ

3. Установите соответствие между признаками обмена веществ у человека и его видами: 1) пластический обмен, 2) энергетический обмен. Запишите цифры 1 и 2 в правильном порядке.
А) вещества окисляются
Б) вещества синтезируются
В) энергия запасается в молекулах АТФ
Г) энергия расходуется
Д) в процессе участвуют рибосомы
Е) в процессе участвуют митохондрии

4. Установите соответствие между характеристиками обмена веществ и его видом: 1) энергетический, 2) пластический. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) репликация ДНК
Б) биосинтез белка
В) окисление органических веществ
Г) транскрипция
Д) синтез АТФ
Е) хемосинтез

5. Установите соответствие между характеристиками и видами обмена: 1) пластический, 2) энергетический. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) запасается энергия в молекулах АТФ
Б) синтезируются биополимеры
В) образуются углекислый газ и вода
Г) происходит окислительное фосфорилирование
Д) происходит репликация ДНК

6. Установите соответствие между характеристикой и видом обмена веществ: 1) пластический, 2) энергетический. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) расщепление жиров в тонком кишечнике
Б) синтез гликогена из глюкозы в печени
В) потребление АТФ в процессе синтеза полимеров
Г) окисление органических веществ с выделением углекислого газа
Д) образование в мышцах молочной кислоты

СОБИРАЕМ 7:
А) из жирных кислот и глицерина образуются жиры
Б) из аминокислот синтезируются белки
В) энергия выделяется
Г) из глюкозы образуется гликоген

А) белок расщепляется до аминокислот

2. Установите соответствие между характеристиками и процессами обмена веществ: 1) ассимиляция (анаболизм), 2) диссимиляция (катаболизм). Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) синтез органических веществ организма
Б) включает подготовительный этап, гликолиз и окислительное фосфорилирование
В) освобожденная энергия запасается в АТФ
Г) образуются вода и углекислый газ
Д) требует энергетических затрат
Е) происходит в хлоропластах и на рибосомах

МЕТАБОЛИЗМ
Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Обмен веществ – одно из основных свойств живых систем, он характеризуется тем, что происходит

1) избирательное реагирование на внешние воздействия окружающей среды
2) изменение интенсивности физиологических процессов и функций с различными периодами колебаний
3) передача из поколения в поколение признаков и свойств
4) поглощение необходимых веществ и выделение продуктов жизнедеятельности
5) поддержание относительно-постоянного физико-химического состава внутренней среды

АТФ
1. Все перечисленные ниже признаки, кроме двух, можно использовать для описания молекулы АТФ. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.

1) вещество нестойкое, средняя продолжительность жизни одной молекулы менее одной минуты
2) в состав молекулы входит азотистое основание урацил
3) молекула является мономером нуклеиновых кислот
4) по структуре молекула является нуклеотидом
5) фосфатные группы, входящие в состав молекулы, соединены между собой макроэргическими связями

Что значит пластический обмен веществ

2. Все перечисленные ниже характеристики, кроме двух, используют для описания изображенной на рисунке молекулы органического вещества клетки. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) мононуклеотид
2) цитозин
3) рибоза
4) тимин
5) макроэргические связи

3. Установите соответствие между характеристиками и веществами: 1) АТФ, 2) ДНК. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) содержит макроэргические связи
Б) имеет в составе рибозу
В) является полимером
Г) хранит и передаёт наследственную информацию
Д) аккумулирует энергию в клетке
Е) состоит из двух цепей

4. Установите соответствие между характеристиками и видами молекул: 1) РНК, 2) АТФ. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) содержит один вид азотистых оснований
Б) обеспечивает энергией реакции синтеза
В) входит в состав рибосом
Г) содержит макроэргические связи
Д) содержит четыре вида азотистых оснований
Е) служит матрицей при трансляции

Источник

Основные закономерности метаболических процессов в организме человека. Часть 1.

Что значит пластический обмен веществ

Что значит пластический обмен веществ

Что значит пластический обмен веществ

Что значит пластический обмен веществ

Метаболизм – обмен веществ и энергии представляет собой по классическим определениям, с одной стороны, обмен веществами и энергией между организмом и окружающей средой, а, с другой стороны, совокупность процессов превращения веществ и трансформации энергии, происходящих непосредственно в самих живых организмах. Как известно, обмен веществ и энергии является основой жизнедеятельности организмов и принадлежит к числу важнейших специфических признаков живой материи. В обмене веществ, контролируемом многоуровневыми регуляторными системами, участвует множество ферментных каскадов, обеспечивающих совокупность химических реакций, упорядоченных во времени и пространстве. Данные биохимические реакции, детерминированные генетически, протекают последовательно в строго определенных участках клеток, что, в свою очередь обеспечивается принципом компартментации клетки. В конечном итоге в процессе обмена поступившие в организм вещества превращаются в собственные специфические вещества тканей и в конечные продукты, выводящиеся из организма. В процессе любых биохимических трансформаций освобождается и поглощается энергия.

Клеточный метаболизм выполняет четыре основные специфические функции, а именно: извлечение энергии из окружающей среды и преобразование ее в энергию макроэргических (высокоэнергетических) химических соединений в количестве, достаточном для обеспечения всех энергетических потребностей клетки; образование из экзогенных веществ промежуточных соединений, являющихся предшественниками высокомолекулярных компонентов клетки; синтез из этих предшественников белков, нуклеиновых кислот, углеводов, липидов и других клеточных компонентов; синтез и разрушение специальных биомолекул, образование и распад которых связаны с выполнением специфических функций данной клетки.

Поскольку первоначальные представления об обмене веществ возникли в связи с изучением процессов обмена между организмом и внешней средой и лишь впоследствии эти представления расширились до понимания путей трансформации веществ и энергии внутри организма, до настоящего времени принято выделять соответственно внешний, или общий, обмен веществ и внутренний или промежуточный, обмен веществ. В свою очередь как во внутреннем, так и во внешнем обмене веществ различают структурный (пластический) и энергетический обмен. Под структурным обменом понимают взаимные превращения различных высоко- и низкомолекулярных соединений в организме, а также их перенос (транспорт) внутри организма и между организмом и внешней средой. Под энергетическим обменом понимают высвобождение энергии химических связей молекул, образующейся в ходе реакций и ее превращение в тепло (большая часть), а также использование энергии на синтез новых молекул, активный транспорт, мышечную работу (меньшая часть). В процессе обмена веществ часть конечных продуктов химических реакций выводится во внешнюю среду, другая часть используется организмом. В этом случае конечные продукты органического обмена накапливаются или расходуются в зависимости от условий существования организма, называясь запасными или резервными веществами.

Как указывалось выше совокупность химических превращений веществ, которые происходят непосредственно в организме, начиная с момента их поступления в кровь и до момента выделения конечных продуктов обмена из организма, называют промежуточным обменом (промежуточным метаболизмом). Промежуточный обмен может быть разделен на два процесса: катаболизм (диссимиляция) и анаболизм (ассимиляция). Катаболизмом называют ферментативное расщепление крупных органических молекул, осуществляемое у всех высших организмов, как правило, окислительным путем. Катаболизм сопровождается освобождением энергии, заключенной в химических связях органических молекул, и резервированием ее в форме энергии фосфатных связей молекулы аденозинтрифосфорной кислоты (АТФ). Анаболизм, напротив, представляет собой ферментативный синтез крупномолекулярных клеточных компонентов, таких, как полисахариды, нуклеиновые кислоты, белки, липиды, а также некоторых их биосинтетических предшественников из более простых соединений. Анаболические процессы происходят с потреблением энергии. Процессы катаболизма и анаболизма происходят в клетках одновременно, неразрывно связаны друг с другом и являются обязательными компонентами одного общего процесса — метаболизма, в котором превращения веществ теснейшим образом переплетены с превращениями энергии. Катаболические и анаболические реакции различаются, как правило, локализацией в клетке. Например, окисление жирных кислот до углекислого газа и воды осуществляется с помощью набора митохондриальных ферментов, тогда как синтез жирных кислот катализирует другая система ферментов, находящихся в цитозоле. Именно благодаря разной локализации катаболические и анаболические процессы в клетке могут протекать одновременно. При этом все превращения органических веществ, процессы синтеза и распада взаимосвязаны, координированы и регулируются нейрогормональными механизмами, придающими химическим процессам нужное направление. В организме человека не существует самостоятельного обмена белков, жиров, углеводов и нуклеиновых кислот. Все превращения объединены в целостный процесс метаболизма, допускающий также взаимопревращения между отдельными классами органических веществ. Подобные взаимопревращения диктуются физиологическими потребностями организма, а также целесообразностью замены одних классов органических веществ другими в условиях блокирования какого-либо процесса при патологии.

На второй стадии катаболизма продуктами химических реакций становятся еще более простые молекулы, унифицированные для углеводного, белкового и липидного обмена. по своему типу (гликолиз, катаболизм аминокислот, β-окисление жирных кислот соответственно). Принципиальным является то, что на второй стадии катаболизма образуются продукты, которые являются общими для обмена исходно разных групп веществ. Эти продукты представляют собой ключевые химические соединения, соединяющие разные пути метаболизма. К таким соединениям относятся, например, пируват (пировиноградная кислота), образующийся при распаде углеводов, липидов и многих аминокислот, ацетил-КоА, объединяющий катаболизм жирных кислот, углеводов и аминокислот, a-кетоглутаровая кислота, оксалоацетат (щавелевоуксусная кислота), фумарат (фумаровая кислота) и сукцинат (янтарная кислота), образующиеся при трансформации аминокислот. Продукты, полученные на второй стадии катаболизма, вступают в третью стадию, которая известна как цикл трикарбоновых кислот (терминальное окисление, цикл лимонной кислоты, цикл Кребса). На третьем этапе ацетил-КоА и некоторые другие метаболиты, например α-кетоглутарат, оксалоацетат, подвергаются окислению в цикле ди- и трикарбоновых кислот Кребса. Окисление сопровождается образованием восстановленных форм НАДН + Н+ и ФАДН2. Именно в ходе второй и третьей стадий катаболизма освобождается и аккумулируется в виде АТФ практически вся энергия химических связей подвергнутых диссимиляции веществ. При этом осуществляется перенос электронов от восстановленных нуклеотидов на кислород через дыхательную цепь, сопровождающийся образованием конечного продукта – молекулы воды. Транспорт электронов в дыхательной цепи сопряжен с синтезом АТФ в процессе окислительного фосфорилирования.

В процессе обмена веществ постоянно происходит превращение энергии: потенциальная энергия сложных органических соединений, поступивших с пищей, превращается в тепловую, механическую и электрическую. Энергия расходуется не только на поддержание температуры тела и выполнение работы, но и на воссоздание структурных элементов клеток, обеспечение их жизнедеятельности, роста и развития организма. Тем не менее, только часть получаемой при окислении белков, жиров и углеводов энергии используется для синтеза АТФ, другая, значительно большая, превращается в теплоту. Так, при окислении углеводов 22, 7% энергии химических связей глюкозы в процессе окисления используется на синтез АТФ, а 77, 3% в виде тепла рассеивается в тканях. Аккумулированная в АТФ энергия используемая в дальнейшем для механической работы, химических, транспортных, электрических процессов в конечном счете тоже превращается в теплоту. Следовательно, количество тепла, образовавшегося в организме, становится мерой суммарной энергии химических связей, подвергшихся биологическому окислению. Поэтому вся энергия, образовавшаяся в организме, может быть выражена в единицах тепла — калориях или джоулях.

Общий баланс энергии организма определяют на основании калорийности вводимых пищевых веществ и количества выделенного тепла, которое может быть измерено или рассчитано. При этом надо учитывать, что величина калорийности, получаемая при лабораторной калориметрии, может отличаться от величины физиологической калорической ценности, поскольку некоторые вещества в организме не сгорают полностью, а образуют конечные продукты обмена, способные к дальнейшему окислению. В первую очередь это относится к белкам, азот которых выделяется из организма главным образом в виде мочевины, сохраняющей некоторый потенциальный запас калорий. Очевидно, что калорическая ценность, дыхательный коэффициент и величина теплообразования для разных веществ различны. Физиологическая калорическая ценность (в ккал/г) составляет для углеводов — 4, 1; липидов — 9, 3; белков — 4, 1; величина теплообразования (в ккал на 1 литр потребленного кислорода) для углеводов составляет 5, 05; липидов — 4, 69; белков — 4, 49.

Процесс анаболизма по аналогии с катаболическими процессами также проходит три стадии. При этом исходными веществами для анаболических процессов служат продукты второй стадии и промежуточные соединения третьей стадии катаболизма. Таким образом вторая и третья стадии катаболизма являются в то же время первой, исходной стадией анаболизма и химические реакции, протекающие в данном месте и в данное время, выполняют по сути двойную функцию. С одной стороны, они являются основой завершающего этапа катаболизма, а с другой — служат инициацией для анаболических процессов, поставляя вещества-предшественники для последующих стадий ассимиляции. Подобным образом, например, начинается синтез белка. Исходными реакциями этого процесса можно считать образование некоторых a-кетокислот. На следующей, второй стадии в ходе реакций аминирования или трансаминирования эти кетокислоты превращаются в аминокислоты, которые на третьей стадии анаболизма объединяются в полипептидные цепи. В результате ряда последовательных реакций происходит также синтез нуклеиновых кислот, липидов и полисахаридов. Тем не менее следует подчеркнуть, что пути анаболизма не являются простым обращением процессов катаболизма. Это связано прежде всего с энергетическими особенностями химических реакций. Некоторые реакции катаболизма практически необратимы, поскольку их протеканию в обратном направлении препятствуют непреодолимые энергетические барьеры. Поэтому в ходе эволюции были выработаны другие, специфические для анаболизма реакции, где синтез олиго- и полимерных соединений сопряжен с затратой энергии макроэргических соединений, прежде всего – АТФ.

Статья добавлена 31 мая 2016 г.

Источник

Урок Бесплатно Метаболизм. Пластический обмен

Введение

Нашему организму для жизни постоянно необходимы следующие составляющие :

На уроках в школе организм школьника в ходе умственной и физической деятельности затрачивает много энергии.

Например, за 6 уроков школьник весом 45 кг тратит около 324 ккал (1356 кДж) энергии.

Для того чтобы эта энергия была, необходимы питательные вещества, которые поступают в наш организм с пищей.

Что значит пластический обмен веществ

Метаболизм (обмен веществ)

Метаболизм- это совокупность протекающих в живых организмах биохимических превращений веществ и энергии, а также обмен веществами и энергией с окружающей средой.

Одним из критериев живого как раз считается метаболизм.

Вещества, поступившие в организм в ходе процесса обмена веществ, претерпевают различные химические превращения, благодаря чему выделяется или поглощается энергия, столь нужная организму, образуются простые вещества для построения структур клетки, тканей и органов.

Можно сказать, что метаболизм складывается из двух взаимосвязанных и противоположных процессов:

Что значит пластический обмен веществ

При энергетическом обмене образуется несколько видов энергии:

Организм человека для своего существования главным образом использует химическую энергию.

В таблице приведены данные о количестве энергии, выделяемой при распаде органических веществ:

Вещество

Сколько энергии выделяется

На что расщепляются

Дополнения

При окислении 1 г белка выделяется 17,2 кДж (4,1 ккал)

Распадаются на аминокислоты

В процессе обмена веществ белки окончательно распадаются до углекислого газа, воды, азотсодержащих веществ

При распаде 1 г жира выделяется 38,9 кДж (9,3 ккал)

Распадаются на жирные кислоты и глицерин

Молекулы жиров состоят из углерода, кислорода и водорода.

При полном их окислении из них образуется вода и углекислый газ

При распаде 1 г углеводов выделяется 17,2 кДж (4,1 ккал) энергии.

Распадаются в процессе пищеварения до простого сахара глюкозы

Основная часть глюкозы окисляется в организме до углекислого газа и воды

Пластический обмен необходим для «строительства» утраченных частей, создания новых клеток, для роста и развития не только клеток, но и всего организма.

Соотношение равновесия или неравновесия анаболизма и катаболизма зависит от возраста.

У детей преобладают анаболические процессы, то есть дети активно и быстро растут, увеличивают массу тела.

У взрослых оба процесса находятся в равновесии, но их соотношение может меняться в зависимости от состояния здоровья, физической и психоэмоциональной нагрузки.

У пожилых преобладают процессы катаболизма, что приводит к частичному разрушению тканевых структур, уменьшению массы тела, требуется больше энергии для поддержания гомеостаза.

Функции обмена веществ:

Скорость обмена веществ

Стоит отметить, что обмен веществ в живом организме идет непрерывно, даже в состоянии полного покоя, хотя и интенсивность его замедляется.

Скорость обмена веществ оценивают по общему расходу энергии.

Если организм выполняет большую физическую нагрузку, то расход энергии будет большой, помимо физической работы, на скорость обмена веществ могут влиять возраст, пол и другие факторы.

Непосредственным помощником в реакциях обмена веществ служат ферменты.

Ферменты- это биологические катализаторы, которые участвуют во всех химических реакциях расщепления веществ, осуществляют превращение веществ в организме и ускоряют все процессы, направляя и регулируя тем самым обмен веществ.

Факторы, влияющие на скорость метаболизма:

Если в окружающей среде температура низкая, то для того чтобы поддержать постоянную температуру тела срабатывают защитные механизмы и обмен веществ усиливается, выделяется больше энергии для согревания организма.

У некоторых организмов, наоборот, происходит замедление обмена веществ при пониженной температуре- впадают в спячку пресмыкающиеся, некоторые млекопитающие и насекомые

Что значит пластический обмен веществ

Пройти тест и получить оценку можно после входа или регистрации

Пластический обмен. Биосинтез белка. Генетический код

Что значит пластический обмен веществ

Белковые молекулы являются неотъемлемой частью клетки, без которых она не сможет существовать, ведь белки выполняют в организме множество функций: они входят в состав мембран, гормонов, ферментов, мышечных волокон и др.

Организмы, будь то растения, животные, бактерии имеют строго определенный набор белковых молекул.

Именно белки и различия в их структуре формируют индивидуальный и неповторимый набор признаков у особи, у целых популяций и видов.

За сутки в организме человека распадается около 400 грамм различных белков, следовательно, такую же массу нужно образовывать снова, поэтому в клетке происходит постоянный процесс образования белков, что является одним из примеров пластического обмена.

Пластический обмен— совокупность реакций образования органических веществ в клетке с использованием энергии.

Биосинтез белка, фотосинтез, синтез нуклеиновых кислот- это примеры пластического обмена, во время которых образуются органические вещества.

Значение пластического обмена:

Один из самых важных процессов пластического обмена- это синтез белка.

Синтез белка

Что значит пластический обмен веществ

Вещества и структуры клетки участвующие в биосинтезе белка:

Вещества и структуры клетки

Функции в биосинтезе белка

Содержит информацию о структуре белка, служит матрицей для синтеза белка и для всех видов РНК

иРНК (информационная или матричная РНК)

Переносит информацию от ДНК к месту сборки белковой молекулы.

Содержит генетический код

Переносит кодирующие аминокислоты к месту биосинтеза на рибосоме.

Органоид, где происходит биосинтез белка

Катализируют биосинтез белка

Строительный материал для построения белковой молекулы

Вещество, обеспечивающее энергией все процессы биосинтеза белка и других процессов пластического обмена

Автотрофные организмы (растения) образуют белок из неорганических веществ.

Гетеротрофные организмы (животные) образуют белок из аминокислот.

Важно помнить, что белок состоит из аминокислот, то есть аминокислота является мономером белка (самой мельчайшей составляющей молекулы белка).

20 Аминокислот (АК) в различных комбинациях формируют огромное множество белковых молекул.

У меня есть дополнительная информация к этой части урока!

Что значит пластический обмен веществ

Человеческий организм самостоятельно может образовывать из 20 аминокислот всего 12, которые называют заменимые.

Остальные восемь аминокислот должны поступать в организм в готовом виде вместе с белками пищи, поэтому они называются незаменимыми.

Незаменимые аминокислоты:

Если в организм не попали какие-либо нужные аминокислоты, которые необходимы для срочного построения белка, то организм может предпринять меру по разрушению собственных белков, содержащих эту же аминокислоту.

Большинство животных белков содержат все восемь незаменимых аминокислот в достаточных количествах.

В растительной пище также есть белки с незаменимыми аминокислотами, например у бобовых растений очень большее их содержание.

Но не вся растительная пища так богата аминокислотами, уровень некоторых незаменимых аминокислот бывает очень низок.

Что значит пластический обмен веществ

Генетический код

Каким же образом происходит синтез такой большой и сложной белковой молекулы?

Конечно, основная роль в определении структуры белка и последовательность аминокислот в белке принадлежит молекулам ДНК.

Что значит пластический обмен веществ

ДНК- носитель всей генетической информации в клетке, но непосредственного участия в синтезе белков не принимает, хотя одна молекула ДНК содержит информацию о нескольких десятков белков.

Из предыдущих уроков мы помним, что молекула ДНК очень длинная и разные ее участки отвечают за образование определенного вида белка.

Участок ДНК, определяющий синтез одной молекулы белка называется ген.

Ген представляет собой участок двойной спирали ДНК, который содержит информацию о первичной структуре какого-то одного белка.

Информация о белке может быть записана в нуклеиновой кислоте только одним способом: в виде последовательности нуклеотидов.

В ДНК содержится информация о последовательности аминокислот всех белков организма. Именно эта информация и называется генетической (наследственной) информацией.

Генетический код- запись наследственной информации в виде последовательности нуклеотидов в нуклеиновых кислотах.

Схематично это выглядит так:

Что значит пластический обмен веществ

Реакции синтеза органического вещества на основе другой органической молекулы (матрицы) относят к реакциям матричного синтеза.

Биосинтез белка происходит на основе иРНК, являющейся матрицей в процессе его создания.

Одна аминокислота белка закодирована тремя нуклеотидами, и эта комбинация из трех нуклеотидов ДНК называется триплет, или кодон.

В настоящее время генетический код полностью расшифрован.

Ниже представлена таблица с аминокислотами, их название сокращено.

Генетический код (основания без скобок- это основания иРНК; в скобках красным цветом- это основания ДНК)

Что значит пластический обмен веществ

Как пользоваться таблицей генетического кода?

В таблице представлены три вида оснований (первое, второе и третье), обратите внимание на то, что они даются в двух вариантах: без скобок- нуклеотиды РНК, а в скобках- нуклеотиды ДНК.

Пользоваться ей не сложно.

Предположим, нам известно, что в ДНК есть участок со следующим составом нуклеотидов АЦЦ- ЦТТ- АТЦ. Таким образом мы имеем три триплета. Определим аминокислоты, которые закодированы этими триплетами.

Ищем основания, что в скобках (так как нам дана ДНК), но чаще в задачах необходимо найти аминокислоты, которые кодирует участок иРНК, поэтому ДНК обычно не ищут и на самом экзамене в задачах дается таблица с основаниями только для иРНК.

Первый триплет ДНК: А-Ц-Ц, смотрим в таблице первое основание (А), это первый горизонтальный столбец.

Далее ищем второе основание (Ц) на пересечении этих двух столбцов видим прямоугольник, в котором расположены четыре аминокислоты. Далее в крайнем правом столбце находим третье основание (Ц), это четвертая строчка, там указана аминокислота Три (триптофан).

Что значит пластический обмен веществ

Зная алгоритм действия, мы можем решать биологические задачи и расшифровывать генетический код ДНК, используя таблицу Генетического кода.

Продолжим решать нашу задачу до конца, Ц-Т-Т кодирует аминокислоту Глу (глутаминовая кислота).

АТЦ- прочерк- это стоп-кодон, он не кодирует ни одну аминокислоту и означает конец синтеза данного белка.

Таким образом мы расшифровали генетический код и перевели его в аминокислотный состав белка.

Генетический код обладает рядом свойств:

1. Код триплетный

Необходимо закодировать 20 аминокислот всего четырьмя нуклеотидами.

Если бы один нуклеотид кодировал одну аминокислоту, то возможно было закодировать только 4 аминокислоты.

Для того, чтобы закодировать 20 аминокислот, нужны комбинации из нескольких нуклеотидов.

Если взять комбинации из двух нуклеотидов, то мы получим 4 2 =16 различных комбинаций- этого недостаточно, так как у нас 20 аминокислот.

Комбинаций из трёх нуклеотидов будет уже 64 (4 3 = 64), т. е. даже больше, чем нужно, поэтому код триплетный, то есть одну аминокислоту могут кодировать три нуклеотида (триплет).

2. Код обладает свойством однозначности и вырожденности

Кажется непонятным- для чего необходимы 64 комбинации нуклеотидов, ведь аминокислот всего 20?

Оказывается, что одна аминокислота может кодироваться несколькими триплетами (до 6), что позволяет разнообразить генетический материал.

Например, один и тот же белок у бактерии кишечной палочки и вируса табачной мозаики записаны разными триплетами.

Также разные триплеты по-разному распознаются, что влияет на скорость синтеза белка рибосомами и повышается надежность кодирования информации.

Способность разных кодонов кодировать одну аминокислоту называется вырожденностью кода.

В дальнейшем было выяснено, что существуют три триплета, не кодирующие аминокислоты- это стоп-кодоны, они означают конец синтеза одного белка.

Однако, несмотря на вырожденность, в генетическом коде полностью отсутствует двусмысленность. Кодоны РНК- ГАА и ГАГ кодируют аминокислоту глутамат, но ни один из них не кодирует одновременно ещё какую-то аминокислоту, т.е. каждый триплет кодирует строго одну определённую аминокислоту- это свойство генетического кода называется однозначность.

3. Генетический код универсален

Гены всех организмов одинаковым образом кодируют информацию о белках вне зависимости от уровня организации и систематического положения этих организмов.

К примеру, белок актин есть в составе цитоскелета вирусов и мышц человека.

Аминокислоты этого белка могут кодироваться одинаковыми последовательностями нуклеотидов в цепи ДНК, что в организме вируса, что в клетке человека.

Но не нужно забывать и про свойство вырожденности кода. То есть не всегда одна аминокислота кодируется одинаковыми последовательностями нуклеотидов у разных организмов.

Это свойство имеет большое практическое значение и активно используется в генной инженерии. Благодаря универсальности генетического кода мы можем заставить гены одного организма работать в другом организме и производить функционально активные белки.

Так ген для гормона роста переносят в бактерию, чтобы она была способна производить его. Таким образом получают гормон роста для медицинских целей, который в обычном организме производится в очень небольших количествах.

Таким же генно-инженерным способом научились производить гормон инсулин.

Однако универсальность генетического кода оказалась не абсолютной.

4. Внутри гена нет «знаков препинания»- свойство компактности

Между кодонами внутри одного гена нет знаков препинания.

Иными словами, триплеты не отделены друг от друга, к примеру, одним ничего не значащим нуклеотидом.

Отсутствие в генетическом коде «знаков препинания» было доказано в экспериментах Ф.Крика и С. Бреннера.

В ходе этих экспериментов учёные при помощи мутагенных веществ (акридиновых красителей) вызывали в генах возникновение определённого типа мутаций- выпадения или вставки 1 нуклеотида.

Оказалось, что выпадение или вставка 1 или 2 нуклеотидов всегда вызывает поломку кодируемого белка, а вот выпадение или вставка 3 нуклеотидов (или числа, кратного 3) практически не сказывается на функции кодируемого белка.

5. Неперекрываемость (дискретность)

Код может быть перекрывающимся и не перекрывающимся.

У большинства организмов код не перекрывающийся, исключением являются вирусы.

Сущность не перекрывающего кода заключается в том, что нуклеотид одного триплета не может быть одновременно нуклеотидом другого триплета.

6. Полярность

Считывание информации с ДНК и с иРНК происходит только в одном направлении.

Полярность имеет важное значение для определения структур белка (первичной, вторичной и третичной).

Этапы биосинтеза белка

Процесс биосинтеза белка можно разделить на два этапа:

Для того чтобы понять этапы биосинтеза белка необходимо вспомнить основные понятия.

ДНК и РНК состоят из множества нуклеотидов.

Нуклеотид— это мономер нуклеиновых кислот.

Что значит пластический обмен веществ

Что значит пластический обмен веществ

Целый нуклеотид принято обозначать каким- либо одним азотистым основанием, например, А (аденин) или Г(гуанин).

Последовательность трех нуклеотидов называют триплетом (кодон) и он обозначается, например, АГЦ.

Первый этап биосинтеза белка- транскрипция

Что значит пластический обмен веществ

Транскрипция— это процесс переписывания информации с последовательности нуклеотидов ДНК в последовательность нуклеотидов РНК. Этот процесс происходит в ядре клетки.

При этом против каждого нуклеотида одной из цепей ДНК встает комплементарный ему нуклеотид иРНК.

Транскрипции предшествует процесс раскручивания участка ДНК.

Двойную спираль ДНК разрывает фермент ДНК- полимераза и далее начинается считывание информации с одной спирали ДНК и формирование матричной РНК (иРНК) за счет работы РНК- полимеразы.

Процесс переписывания информации идет по принципу комплементарности.

Комплементарность- это взаимное дополнение азотистых оснований в молекуле ДНК и РНК.

Комлементарность нуклеотидов ДНК к РНК:

Что значит пластический обмен веществ

Так как в одной молекуле ДНК может находиться множество генов, то очень важно, чтобы РНК-полимераза начала синтез иРНК со строго определенного места ДНК, иначе в структуре иРНК будет записана информация о белке, которого нет в природе, что может привести к повреждению синтезируемой молекулы белка.

Поэтому в начале каждого гена находится особая специфическая последовательность нуклеотидов, называемая промотором.

РНК-полимераза «узнает» промотор, взаимодействует с ним и, таким образом, начинает синтез цепочки иРНК с нужного места.

Фермент продолжает синтезировать иРНК, присоединяя к ней новые нуклеотиды, до тех пор, пока не дойдет до очередного «стоп- кодона» (терминатора) в молекуле ДНК (это последовательность нуклеотидов, указывающая на то, что синтез иРНК нужно прекратить).

После копирования, сформированная иРНК выходит из ядра клетки в цитоплазму к рибосоме и начинается второй этап биосинтеза белка.

У меня есть дополнительная информация к этой части урока!

Что значит пластический обмен веществ

Ученые «увидели» как мРНК выходят из ядра.

Создав микроскоп, способный достичь не виданного ранее разрешения, ученые из Колледжа медицины Альберта Эйнштейна впервые увидели транспорт мРНК через ядерные поры живых клеток в режиме реального времени.

Ученые увидели, что через саму пору ядра мРНК проходит всего за 5 миллисекунд, но стыковка с порой занимает 80 миллисекунд ожидания.

И еще 80 миллисекунд мРНК ждет на другом конце поры, прежде чем перейти в цитоплазму.

10 процентов молекул мРНК остаются у ядерных пор, ожидая доступа, даже в течение секунд, а не миллисекунд.

Ученые предполагают, что в этих точках ожидания мРНК подвергаются проверке на качество.

Это открытие поможет понять, как лечить некоторые болезни, к примеру болезнь миотоническая дистрофия. В клетках таких больных молекулы мРНК не могут выйти из ядра и попасть в цитоплазму

Что значит пластический обмен веществ

Прежде чем переходить к рассмотрению второго этапа биосинтеза белка давайте поймем принцип комплементарности и попробуем решить задачи.

Задача

Фрагмент цепи ДНК имеет последовательность нуклеотидов:

Постройте мРНК по принципу комплементарности.

Решение:

Мы знаем принцип комплементарности

Что значит пластический обмен веществ

Если на ДНК нуклеотид А, то ему по принципу комплементарности соответствует нуклеотид У на мРНК.

Если на ДНК нуклеотид Г, то на мРНК это нуклеотид Ц и так далее.

Таким образом дописываем цепь мРНК, используя принцип комплементарности:

цепь ДНК: А-Г-Ц-Т-А-Ц-Г-А-Т

цепь иРНК: У-Ц-Г-А-У-Г-Ц-У-А

Второй этап биосинтеза белка- трансляция

Трансляция— перевод последовательности нуклеотидов в последовательность аминокислот белка.

Что значит пластический обмен веществ

Триплет нуклеотидов на верхушке тРНК называется антикодон.

Кодон- это триплет нуклеотидов на иРНК.

У эукариотических организмов иРНК синтезируется в ядре, потом она переносится через ядерную мембрану в цитоплазму к месту синтеза белка- рибосомам.

В цитоплазме обязательно должен иметься полный набор аминокислот, необходимых для синтеза белков.

Эти аминокислоты образуются в результате расщепления белков, получаемых организмом с пищей.

Аминокислоты должны попасть на рибосому, а переносит их к рибосоме транспортная РНК (тРНК).

К одной транспортной РНК прикрепляется одна аминокислота, для каждой аминокислоты существует своя тРНК.

На одном конце транспортной РНК имеется структура «черешок», к которой прочно прилепляется аминокислота.

На верхушке тРНК находится триплет нуклеотидов (антикодон), который соответствует по коду данной аминокислоте.

Триплет нуклеотидов на верхушке т-РНК называется антикодон.

Что значит пластический обмен веществ

В основном все белки (за исключением некоторых случаев) начинаются с аминокислоты метионин, закодированный кодоном АУГ, который является знаком начала трансляции.

Рибосома взаимодействует с иРНК именно с того конца, где находится код метионина АУГ.

После связывания рибосома начинает двигаться по иРНК, от 3 штрих конца к 5 штрих концу, задерживаясь на каждом ее участке, состоящим из 6 нуклеотидов (2 кодона).

Время задержки составляет всего 0,2 с.

За это время молекула тРНК, несущая аминокислоту, успевает распознать комплементарный триплет, то есть антикодон тРНК по принципу комплементарности соответствует кодону иРНК.

Далее аминокислота отделяется от «черешка» тРНК и присоединяется с образованием пептидной связи к растущей цепочке белка.

В тот же самый момент к рибосоме подходит следующая т-РНК, антикодон которой комплементарен следующему триплету в иРНК, и следующая аминокислота, принесенная этой тРНК, включается в растущую цепочку белка.

После этого рибосома сдвигается по иРНК, задерживается на следующих нуклеотидах, и все повторяется сначала.

Что значит пластический обмен веществ

Далее рибосома доходит до одного из так называемых стоп-кодонов (УАА, УАГ или УГА), которые не кодируют аминокислоту и сигнализируют о завершении синтеза данного белка.

Белковая цепочка отсоединяется от рибосомы, выходит в цитоплазму и формирует определенную структуру (первичную, вторичную, третичную, четвертичную в зависимости от функции молекулы белка).

Процесс синтеза белка осуществляется за очень короткие промежутки времени.

Подсчитано, что на синтез крупной молекулы белка, состоящего из 300 аминокислотных остатков уходит всего около одной- двух минут. А, например, на синтез актина, который состоит из 376 аминокислот уйдет чуть больше минуты.

У меня есть дополнительная информация к этой части урока!

Что значит пластический обмен веществ

Молекула инсулина состоит из двух полипептидных цепей.

Одна из них содержит 21 аминокислотный остаток (цепь А), вторая- 30 аминокислотных остатков (цепь В).

В 1963 г. был синтезирован первый искусственный белок- инсулин.

Сейчас методы синтеза белков значительно усовершенствованы и их синтез не является проблемой.

Что значит пластический обмен веществ

Клетке необходима не одна, а множество молекул каждого белка, поэтому, как только рибосома, первой начавшая синтез белка на молекуле иРНК, продвигается вперед, тут же на эту иРНК нанизывается вторая рибосома, которая начинает синтезировать такой же белок.

На одну иРНК может быть нанизана и третья, и четвертая рибосома, и т. д.

Поэтому рибосомы можно назвать «заводом» по производству белков.

Все рибосомы, синтезирующие белок на одной молекуле иРНК, называются полисомой.

Когда синтез белка окончен, рибосома может связаться с другой молекулой иРНК и начать синтезировать новый белок, закодированный в этой молекуле иРНК.

Последовательность аминокислот в первичной структуре белка не зависит от рибосом, а определяется только последовательностью нуклеотидов иРНК.

Таким образом, трансляция— это перевод последовательности нуклеотидов молекулы иРНК в последовательность аминокислот молекулы белка.

Краткая схема биосинтеза белка:

Что значит пластический обмен веществ

Этапы биосинтеза белка:

Пройти тест и получить оценку можно после входа или регистрации

Регуляция биосинтеза белка в клетке и организме

Оперон и репрессор

Гены всех организмов одинаковым образом кодируют информацию о белках вне зависимости от уровня организации и систематического положения этих организмов.

В этих генах записана информация о всех белках, которые способен синтезировать любой живой организм.

То есть клетка растения, к примеру, может синтезировать любой белок, который характерен для человека и эту способность используют в генной инженерии.

Сразу хочется задать такой вопрос: почему же клетки, содержащие в своем ядре одинаковую генетическую информацию, не производят различные белки и не синтезируют сразу все белки?

Ответ лежит в изучении механизмов контроля синтеза белка в клетках, хотя природа регуляторных процессов изучена недостаточно.

Среди теорий, объясняющих природу регуляторных процессов, наибольшую популярность приобрела «теория оперона», сформулированная Ф. Жакобом и Ж. Моно на основании исследования синтеза ферментов у бактерий.

Генетической единицей механизма регуляции синтеза белков следует считать оперон.

В состав оперона прокариот входят:

1. Структурные гены

2. Регуляторные элементы

Что значит пластический обмен веществ

На работу оператора оперона влияет самостоятельный регуляторный ген, синтезирующий соответствующий регуляторный белок-репрессор или белок- активатор.

Ген-регулятор не обязательно располагается рядом с опероном.

Если на операторе белок репрессор, то РНК- полимераза не может начать синтез иРНК, так как не может связаться с промотором.

Что значит пластический обмен веществ

Если на операторе белок-активатор, то его можно сравнить с клеем, который склеивает РНК-полимеразу и оперон.

В итоге РНК-полимераза находит промотор и начинается синтез иРНК.

РНК-полимераза продвигается по структурному гену ДНК и считывает информацию, переводя ее в нуклеотиды иРНК.

После того как РНК-полимераза дошла до терминатора, синтез на иРНК заканчивается. Затем РНК-полимераза отделяется от участка ДНК и направляется снова на процесс образования иРНК.

Образовавшаяся иРНК покидает ядро и направляется в цитоплазму, где и происходит образование белка на рибосомах.

Что значит пластический обмен веществ

У эукариот регуляция синтеза белка намного сложнее и еще недостаточно изучена, но известно следующее:

Стоит отметить, что синтез белка требует от клетки больших энергетических затрат.

У меня есть дополнительная информация к этой части урока!

Что значит пластический обмен веществ

Можно было бы предположить, что часть «неработающих» генов в тех или иных клетках утрачивается и разрушается, однако целый ряд экспериментов доказал, что это не так.

Из клетки кишечника головастика при определенных условиях можно вырастить целую лягушку, что возможно только в том случае, если в ядре этой клетки сохранилась вся генетическая информация.

Следовательно, в каждой клетке многоклеточного организма используется только часть генетической информации, содержащейся в ее ДНК.

Значит, должны иметь место механизмы, «включающие» или «выключающие» работу того или иного гена в разных клетках»

Пройти тест и получить оценку можно после входа или регистрации

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *