Что значит первая космическая скорость
Космические скорости
Любой предмет, будучи подброшенным вверх, рано или поздно оказывается на земной поверхности, будь то камень, лист бумаги или простое перышко. В то же время, спутник, запущенный в космос полвека назад, космическая станция или Луна продолжают вращаться по своим орбитам, словно на них вовсе не действует сила притяжения нашей планеты. Почему так происходит?
На нашей Земле всемирное тяготение воздействует на любое материальное тело. Тогда логично будет предположить, что есть некая сила, нейтрализующая действие гравитации. Эту силу принято называть центробежной.
Центробежную силу легко ощутить привязав на один конец нитки небольшой груз и раскрутив его по окружности. При этом чем больше скорость вращения тем сильнее натяжение нити, а чем медленнее вращаем мы груз тем больше вероятность, что он упадет вниз.
Траектория полета космических кораблей
Таким образом мы вплотную приблизились к понятию «космическая скорость». Простыми словами — это скорость, позволяющая любому объекту преодолеть тяготение небесного тела и их системы. Космические скорости используются для характеристики типа движения космического аппарата в сфере действия небесных тел: Солнца, Земли и Луны, других планет и их естественных спутников, а также астероидов и комет.
Это также значит, что космическая скорость есть у каждого объекта, который движется по орбите. Размер и форма орбиты космического объекта зависят от величины и направления скорости, которую данный объект получил на момент выключения двигателей, и высоты, на которой произошло данное событие.
Космическая скорость (первая v1, вторая v2, третья v3 и четвёртая v4) — это минимальная скорость, при которой какое-либо тело в свободном движении сможет:
Космические скорости могут быть рассчитаны для любого удаления от центра Земли. Однако в космонавтике часто используются величины, рассчитанные конкретно для поверхности шаровой однородной модели Земли радиусом 6371 км.
Первая космическая скорость
Первая космическая скорость или Круговая скорость V1 — скорость, которую необходимо придать объекту без двигателя, пренебрегая сопротивлением атмосферы и вращением планеты, чтобы вывести его на круговую орбиту с радиусом, равным радиусу планеты.
Иными словами, первая космическая скорость — это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.
Формула
где G — гравитационная постоянная (6,67259·10−11 м³·кг−1·с−2), — первая космическая скорость. Подставляя численные значения (для Земли M = 5,97·1024 кг, R = 6 378 км), найдем
7,9 км/с
Первую космическую скорость можно определить через ускорение свободного падения —
Вторая космическая скорость
Вторая космическая скорость (параболическая скорость, скорость убегания) — наименьшая скорость, которую необходимо придать объекту (например, космическому аппарату), масса которого пренебрежимо мала относительно массы небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела.
Предполагается, что после приобретения телом этой скорости оно не получает негравитационного ускорения (двигатель выключен, атмосфера отсутствует).
Вторая космическая скорость определяется радиусом и массой небесного тела, поэтому она своя для каждого небесного тела (для каждой планеты) и является его характеристикой:
Параболической вторая космическая скорость называется потому, что тела, имеющие вторую космическую скорость, движутся по параболе.
Формула
Третья космическая скорость
Третья космическая скорость — минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение Солнца и в результате уйти за пределы Солнечной системы.
Только на космических кораблях, которым доступны такие скорости, принципиально могут быть осуществлены пилотируемые межзвёздные перелёты к планетным системам других звёзд.
Взлетая с поверхности Земли и наилучшим образом используя орбитальное движение планеты космический аппарат может достичь третей космической скорости уже при 16,6 км/с относительно Земли, а при старте с Земли в самом неблагоприятном направлении его необходимо разогнать до 72,8 км/с.
Здесь для расчёта предполагается, что космический аппарат приобретает эту скорость сразу на поверхности Земли и после этого не получает негравитационного ускорения (двигатели выключены и сопротивление атмосферы отсутствует). Если к тому же учесть притяжение других планет, которое может как ускорить, так и притормозить аппарат, то диапазон возможных значений 3-й космической скорости станет еще больше.
При наиболее энергетически выгодном старте скорость объекта должна быть сонаправлена скорости орбитального движения Земли вокруг Солнца. Орбита такого аппарата в Солнечной системе представляет собой параболу.
Четвёртая и пятая космическая скорости
Четвёртая космическая скорость — минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение галактики Млечный Путь. Она используется довольно редко.
Четвёртая космическая скорость не постоянна для всех точек Галактики, а зависит от расстояния до центральной массы.
Для нашей галактики таковой является объект Стрелец A*, сверхмассивная чёрная дыра.
По грубым предварительным расчётам в районе нашего Солнца четвёртая космическая скорость составляет около 550 км/с. Значение сильно зависит не только (и не столько) от расстояния до центра галактики, а от распределения масс вещества по Галактике, о которых пока нет точных данных, ввиду того что видимая материя составляет лишь малую часть общей гравитирующей массы, а все остальное — скрытая масса.
Ещё реже в некоторых источниках встречается понятие «пятая космическая скорость». Это скорость, позволяющая добраться до иной планеты звездной системы вне зависимости от разности плоскостей эклиптики планет. Например, для Солнечной системы и, конкретно, для Земли, чтобы орбита межпланетного перелета была перпендикулярной к земной орбите, нужна скорость запуска 43,6 километра в секунду.
Космические скорости
Если прилагать больше сил при бросании, то он упадет дальше. Отсюда следует, что при отсутствии сопротивления воздуха и при наличии большой скорости тело может даже не приземляться на поверхность. Это говорит о его дальнейшем описывании круговых траекторий, не изменяя высоты относительно земной поверхности.
Первая космическая скорость
Вторая космическая скорость
Для ее нахождения следует произвести вычисление работы, потраченную против сил земного притяжения для соударения с поверхности Земли на бесконечность. При удалении такого тела получаем:
Существует связь между первой и второй скоростями
Квадрат скорости убегания равняется ньютоновскому потенциалу в заданной точке, то есть:
Нужная величина скорости не зависит от направления движения тела. На это влияет вид траектории, по которой происходит удаление от земной поверхности.
Чтобы тело смогло стартовать с поверхности планеты, оно должно обладать второй космической скоростью при малом значении h и большом значении гравитационной силы. Как только ракета начнет удаляться от Земли, гравитационная постоянная будет уменьшаться вместе со значением, необходимым для убегания кинетической энергии.
Третья космическая скорость
Еще в СССР были достигнуты космические скорости.
Дано:
Решение
Значение g принимает ускорение свободного падения на Юпитере.
Значение m определено как масса спутника, а М – масса самой планеты.
Получаем, что из уравнения ( 2 ) найдем ускорение свободного падения для планеты из
Первая космическая скорость
Первая космическая скорость – это скорость, с которой спутник движется вокруг планеты по круговой орбите, не удаляясь от планеты и не падая на нее.
То есть, для первой космической скорости орбита — это окружность. Расстояние от центра планеты до спутника равно \( R = \left( r + h \right) \). Это представлено на рисунке 1.
Формула для вычисления первой космической скорости
Первую космическую скорость можно посчитать по формуле:
\( v \left( \frac<\text<м>><\text
\( M \left( \text <кг>\right) \) (килограммы) — масса планеты, вокруг которой движется спутник
\( r \left( \text <м>\right) \) (метры) – радиус планеты
\( h \left( \text <м>\right) \) (метры) — расстояние от поверхности планеты до спутника
\(G \ = 6<,>67 \cdot 10^ <-11>\left( \text <Н>\cdot \frac<\text<м>^2><\text<кг>^2> \right)\) — гравитационная постоянная
Первая космическая скорость в цифрах для некоторых небесных тел
первая космическая скорость у поверхности Земли \( v = 8000 \left( \frac<\text<м>><\text
первая космическая скорость у поверхности Солнца \( v = 437000 \left( \frac<\text<м>><\text
первая космическая скорость у поверхности Луны \( v = 1680 \left( \frac<\text<м>><\text
первая космическая скорость у поверхности Марса \( v = 3530 \left( \frac<\text<м>><\text
Как выводится формула первой космической скорости
Рассмотрим движение спутника вокруг Земли.
Земля и спутник притягиваются, запишем закон притяжения между планетой и спутником
При круговом движении на спутник действует центростремительная сила (как и на любое тело при таком движении).
Мы можем записать эти уравнения в виде системы.
\[ \begin
Земля и спутник притягиваются, благодаря этому спутник движется вокруг Земли по круговой орбите. Значит, притяжение между спутником и Землей – это центростремительная сила. Именно она заставляет спутник двигаться вокруг планеты по окружности. На языке математики это запишется так:
А если равны левые части уравнений, то будут равны и правые:
Масса \( m \) спутника и расстояние \( R \) между телами встречается в обеих частях уравнения. Поделим обе части уравнения на массу спутника.
Теперь умножим обе части уравнения на расстояние \(\left( r + h \right) \). Получим:
Извлечем корень квадратный из обеих частей уравнения, чтобы получить скорость:
Вам будет интересно почитать:
Движение по окружности, центростремительная сила и центростремительное ускорение
Что такое первая и вторая космические скорости?
Мы – земляне – привыкли, что твердо стоим на земле и никуда не улетаем, а если подкинем какой-нибудь предмет в воздух, то он обязательно упадет на поверхность. Всему виной создаваемое нашей планетой гравитационное поле, которое искривляет пространство-время и заставляет брошенное в сторону, например, яблоко лететь по искривленной траектории и пересечься с Землей.
Гравитационное поле создает вокруг себя любой объект, и у Земли, обладающей внушительной массой, это поле довольно сильно. Именно поэтому строятся мощные многоступенчатые космические ракеты, способные разгонять космические корабли до больших скоростей, которые нужны для преодоления гравитации планеты. Значение этих скоростей и получили названия первая и вторая космические скорости.
Понятие первой космической скорости очень простое – это скорость, которую необходимо придать физическому объекту, чтобы он, двигаясь параллельно космическому телу, не смог на него упасть, но в то же время оставался бы на постоянной орбите.
Формула нахождения первой космической скорости не отличается сложностью:где V – первая космическая скорость; G – гравитационная постоянная; M – масса объекта; R – радиус объекта;
Попробуйте подставить в формулу необходимые значения (G – гравитационная постоянная всегда равна 6,67; масса Земли равна 5,97·10 24 кг, а её радиус 6371 км) и найти первую космическую скорость нашей планеты.
В результате мы получим скорость, равную 7,9 км/с. Но почему, двигаясь именно с такой скоростью, космический аппарат не будет падать на Землю или улетать в космическое пространство? Улетать в космос он не будет из-за того, что данная скорость пока еще слишком мала, чтобы преодолеть гравитационное поле, а вот на Землю он как раз и будет падать. Но только из-за высокой скорости он все время будет «уходить» от столкновения с Землей, продолжая в то же время свое «падение» по круговой орбите, вызванной искривлением пространства.
Спутник, двигаясь вокруг Земли с первой космической скорость, остается на стабильной орбите
Это интересно: по такому же принципу «работает» и Международная Космическая Станция. Находящиеся на ней космонавты все время проводят в постоянном и непрекращающемся падении, которое не заканчивается трагически вследствие высокой скорости самой станции, из-за чего та стабильно «промахивается» мимо Земли. Значение скорости рассчитывается исходя из высоты орбиты, на которой летает станция.
Но что делать, если мы захотим, чтобы космический аппарат покинул пределы нашей планеты и не был зависим от ее гравитационного поля? Разогнать его до второй космической скорости! Итак, вторая космическая скорость – это минимальная скорость, которую необходимо придать физическому объекту, чтобы он преодолел гравитационное притяжение небесного тела и покинул его замкнутую орбиту.
Значение второй космической скорости тоже, зависит от массы и радиуса небесного тела, поэтому для каждого объекта она будет своей. Например, чтобы преодолеть гравитационное притяжение Земли, космическому аппарату необходимо набрать минимальную скорость 11.2 км/с, Юпитера — 61 км/с, Солнца — 617,7 км/с.
Космический аппарат, разогнанный до второй космической скорости, преодолевает гравитационное поле и покидает замкнутую орбиту тела
Вторую космическую скорость(V2) можно рассчитать, используя следующую формулу:
где V – первая космическая скорость; G – гравитационная постоянная; M – масса объекта; R – радиус объекта;
Но если известна первая космическая скорость исследуемого объекта (V1), то задача облегчается в разы, и вторая космическая скорость (V2) быстро находится по формуле:
Это интересно: вторая космическая формула черной дыры больше 299 792 км/c, то есть больше скорости света. Именно поэтому ничто, даже свет не может вырваться за ее пределы.
Помимо первой и второй комических скоростей существуют третья и четвертая, достичь которых нужно для того, чтобы выйти за пределы нашей Солнечной системы и галактики соответственно.
Иллюстрация: bigstockphoto | 3DSculptor
Первая космическая скорость
Пе́рвая косми́ческая ско́рость (кругова́я ско́рость) — скорость, которую необходимо придать объекту, который после этого не будет использовать реактивное движение, чтобы вывести его на круговую орбиту (пренебрегая сопротивлением атмосферы и вращением планеты). Иными словами, первая космическая скорость — это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.
Содержание
Вычисление
В инерциальной системе отсчёта на объект, движущийся по круговой орбите вокруг Земли будет действовать только одна сила — сила тяготения Земли. При этом движение объекта не будет ни равномерным, ни равноускоренным. Происходит это потому, что скорость и ускорение (величины не скалярные, а векторные) в данном случае не удовлетворяют условиям равномерности/равноускоренности движения — то есть движения с постоянной (по величине и направлению) скоростью/ускорением. Действительно — вектор скорости будет постоянно направлен по касательной к поверхности Земли, а вектор ускорения — перпендикулярно ему к центру Земли, при этом по мере движения по орбите эти векторы постоянно будут менять свое направление. Поэтому в инерциальной системе отсчета такое движение часто называют «движение по круговой орбите с постоянной по модулю скоростью».
Часто для удобства вычисления первой космической скорости переходят к рассмотрению этого движения в неинерциальной системе отсчета — относительно Земли. В этом случае объект на орбите будет находиться в состоянии покоя, так как на него будут действовать уже две силы: центробежная сила и сила тяготения. Соответственно, для вычисления первой космической скорости необходимо рассмотреть равенство этих сил.
где m — масса объекта, M — масса планеты, G — гравитационная постоянная (6,67259·10 −11 м³·кг −1 ·с −2 ), — первая космическая скорость, R — радиус планеты. Подставляя численные значения (для Земли M = 5,97·10 24 кг, R = 6 371 км), найдем
7,9 км/с
Первую космическую скорость можно определить через ускорение свободного падения — так как g = GM/R², то
.
Космические скорости могут быть вычислены и для поверхности других космических тел. Например на Луне v1 = 1,68 км/с, v2 = 2,375 км/с