Что значит перпендикулярные хорды

Что такое хорда окружности в геометрии, её определение и свойства

Что значит перпендикулярные хордыХорда в переводе с греческого означает «струна». Это понятие широко применяется в разных областях науки — в математике, биологии и других.

В геометрии для термина определение будет следующим: это отрезок прямой линии, который соединяет между собой две произвольные точки на одной окружности. Если такой отрезок пересекает центр кривой, она называется диаметром описываемой окружности.

Как построить геометрическую хорду

Чтобы построить этот отрезок, прежде всего необходимо начертить круг. Обозначают две произвольные точки, через которые проводят секущую линию. Отрезок прямой, который располагается между точками пересечения с окружностью, называется хордой.

Если разделить такую ось пополам и из этой точки провести перпендикулярную прямую, она будет проходить через центр окружности. Можно провести обратное действие — из центра окружности провести радиус, перпендикулярный хорде. В этом случае радиус разделит её на две идентичные половины.

Если рассматривать части кривой, которые ограничиваются двумя параллельными равными отрезками, то эти кривые тоже будут равными между собой.

Свойства

Существует ряд закономерностей, связывающих между собой хорды и центр круга:

Взаимосвязь с радиусом и диаметром

Вышеуказанные математические понятия связаны между собой следующими закономерностями:

Хорда и радиус

Между этими понятиями существуют следующие связи:

Отношения со вписанными углами

Углы, вписанные в окружность, подчиняются следующим правилам:

Взаимодействия с дугой

Если два отрезка стягивают участки кривой, одинаковые по размеру, то такие оси равны между собой. Из этого правила вытекают следующие закономерности:

Хорда, которая стягивает ровно половину окружности, является её диаметром. Если две линии на одной окружности параллельны между собой, то будут равными и дуги, которые заключены между этими отрезками. Однако не следует путать заключённые дуги и стягиваемые теми же линиями.

Источник

Отрезки и прямые, связанные с окружностью. Теорема о бабочке

Что значит перпендикулярные хордыОтрезки и прямые, связанные с окружностью
Что значит перпендикулярные хордыСвойства хорд и дуг окружности
Что значит перпендикулярные хордыТеоремы о длинах хорд, касательных и секущих
Что значит перпендикулярные хордыДоказательства теорем о длинах хорд, касательных и секущих
Что значит перпендикулярные хордыТеорема о бабочке

Что значит перпендикулярные хорды

Отрезки и прямые, связанные с окружностью

Конечная часть плоскости, ограниченная окружностью

Отрезок, соединяющий центр окружности с любой точкой окружности

Отрезок, соединяющий две любые точки окружности

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

Прямая, пересекающая окружность в двух точках

ФигураРисунокОпределение и свойства
ОкружностьЧто значит перпендикулярные хорды
Круг
Что значит перпендикулярные хорды

Конечная часть плоскости, ограниченная окружностью

Радиус
Что значит перпендикулярные хорды

Отрезок, соединяющий центр окружности с любой точкой окружности

Хорда
Что значит перпендикулярные хорды

Отрезок, соединяющий две любые точки окружности

Диаметр
Что значит перпендикулярные хорды

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

Касательная
Что значит перпендикулярные хорды

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

Секущая
Что значит перпендикулярные хорды

Прямая, пересекающая окружность в двух точках

Свойства хорд и дуг окружности

ФигураРисунокСвойство
Диаметр, перпендикулярный к хордеЧто значит перпендикулярные хордыДиаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.
Диаметр, проходящий через середину хордыДиаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.
Равные хордыЧто значит перпендикулярные хордыЕсли хорды равны, то они находятся на одном и том же расстоянии от центра окружности.
Хорды, равноудалённые от центра окружностиЕсли хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.
Две хорды разной длиныЧто значит перпендикулярные хордыБольшая из двух хорд расположена ближе к центру окружности.
Равные дугиЧто значит перпендикулярные хордыУ равных дуг равны и хорды.
Параллельные хордыЧто значит перпендикулярные хордыДуги, заключённые между параллельными хордами, равны.

Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.

Диаметр, проходящий через середину хорды
Что значит перпендикулярные хорды

Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.

Равные хорды
Что значит перпендикулярные хорды

Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.

Хорды, равноудалённые от центра окружности
Что значит перпендикулярные хорды

Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.

Две хорды разной длины
Что значит перпендикулярные хорды

Большая из двух хорд расположена ближе к центру окружности.

Равные дуги
Что значит перпендикулярные хорды

У равных дуг равны и хорды.

Параллельные хорды
Что значит перпендикулярные хорды

Дуги, заключённые между параллельными хордами, равны.

Теоремы о длинах хорд, касательных и секущих

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Что значит перпендикулярные хорды

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Что значит перпендикулярные хорды

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

Доказательства теорем о длинах хорд, касательных и секущих

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

Тогда справедливо равенство

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

откуда и вытекает требуемое утверждение.

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

Точка B – точка касания с окружностью, точка C – вторая точка пересечения прямой AD с окружностью. Тогда справедливо равенство

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

откуда и вытекает требуемое утверждение.

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

Точки C и E – вторые точки пересечения секущих с окружностью. Тогда справедливо равенство

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

Точка B – точка касания. В силу теоремы 2 справедливы равенства

Что значит перпендикулярные хорды

откуда и вытекает требуемое утверждение.

Теорема о бабочке

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

Воспользовавшись теоремой 1, получим

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

Воспользовавшись равенствами (1) и (2), получим

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

Что значит перпендикулярные хорды

откуда вытекает равенство

что и завершает доказательство теоремы о бабочке.

Источник

Хорды и дуги

Докажем ряд теорем, устанавливающих зависимость между хордами и их дугами в одной и той же окружности или в равных окружностях.

При этом будем иметь в виду дуги, меньшие полуокружности.

Теорема 1. Равные дуги стягиваются равными хордами.

Пусть дуга АВ равна дуге СК. Требуется доказать, что и хорда АВ равна хорде СК (рис. 314).

Что значит перпендикулярные хорды

Доказательство. Соединим концы хорд с центром окружности — точкой О. Полученные треугольники АОВ и КОС равны, так как имеют по две соответственно равные стороны (радиусы одной окружности) и по равному углу, заключённому между этими сторонами (эти углы равны, как центральные, соответствующие равным дугам). Следовательно, АВ = СК.

Теорема 2 (обратная). Равные хорды стягивают равные дуги.

Пусть хорда АВ равна хорде СК. Требуется доказать, что дуга АВ равна дуге СК (рис. 314).

Доказательство. Соединим концы хорд с центром окружности — точкой О. Полученные треугольники АОВ и КОС равны по трём соответственно равным сторонам. Следовательно, равны углы АОВ и СОК; но углы эти центральные, соответствующие дугам АВ и СК; из равенства этих углов следует равенство дуг: \(\breve <АВ>= \breve<СК>\).

Теорема 3. Большая дуга стягивается и большей хордой.

Пусть дуга АВ больше дуги СК (рис. 315).

Что значит перпендикулярные хорды

Требуется доказать, что хорда АВ больше хорды СК.

Рассмотрим теперь треугольники ОАD и ОАЕ. В этих треугольниках гипотенуза ОА общая, а катет ОЕ меньше катета ОD, тогда по следствию из теоремы Пифагора катет АЕ больше катета АD. Но эти катеты составляют половины хорд АВ и АС’, значит, и хорда АВ больше хорды АС’. Вследствие равенства хорд АС’ и СК получаем
АВ > СК.

Теорема 4 (обратная). Большая хорда стягивает и большую дугу.

Пусть хорда А В больше хорды СК.

Требуется доказать, что дуга АВ больше дуги СК (рис. 315). Между дугами АВ и СК может существовать только одно из трёх следующих соотношений:

Но дуга AВ не может быть меньше дуги СК, так как тогда по прямой теореме хорда АВ была бы меньше хорды СК, а это противоречит условию теоремы.

Дуга АВ не может быть равна дуге СК, так как тогда хорда АВ равнялась бы хорде СК, а это тоже противоречит условию. Следовательно, \(\breve <АВ>> \breve<СК>\).

Свойство дуг, заключенных между параллельными хордами

Теорема. Дуги, заключённые между параллельными хордами, равны.

Пусть хорда AB параллельна хорде СD (рис. 316).

Что значит перпендикулярные хорды

Требуется доказать, что \(\breve = \breve\). Проведём диаметр MN ⊥ AB. Так как CD || AB, то MN ⊥ CD.
Перегнём чертёж по диаметру MN так, чтобы правая часть совпала с левой.

Тогда точка В совпадёт с точкой А, так как они симметричны относительно оси MN (AB ⊥ MN по построению и AK = KB).

Аналогично, точка D совпадёт с точкой С. Отсюда \(\breve = \breve\).

Свойство дуг, заключённых между касательной и параллельной ей хордой

Теорема. Дуги, заключённые между касательной и параллельной ей хордой, равны.

Пусть касательная АВ и хорда СD параллельны. Точка Е — точка касания прямой АВ с окружностью О (рис. 320).

Что значит перпендикулярные хорды

Требуется доказать, что \(\breve = \breve\).

Для доказательства соединим точку касания Е с центром круга.

OE ⊥ AB, а так как СD || АВ, то OE ⊥ CD, а перпендикуляр к хорде, проведённый из центра той же окружности, делит стягиваемую ею дугу пополам.

Следовательно, \(\breve = \breve\).

Диаметр, перпендикулярный к хорде

Теорема 1. Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею дуги пополам.

Пусть диаметр AB перпендикулярен к хорде CD (черт. 312). Требуется доказать, что
$$ CE = ED, \breve = \breve, \breve = \breve $$

Что значит перпендикулярные хорды

Соединим точки С и D с центром окружности О. В равнобедренном треугольнике СОD отрезок ЕО является высотой, проведённой из вершины О на основание CD; следовательно, ОЕ является и медианой и биссектрисой, т. е. СЕ = ЕD и ∠1 = ∠2. Но ∠1 и ∠2 суть центральные углы. Отсюда равны и соответствующие им дуги, а именно
$$ \breve = \breve $$
Дуги CA и ВА также равны между собой, как дополняющие равные дуги до полуокружности.

Теорема 2 (обрaтная). Диаметр, проведённый через середину хорды, не проходящей через центр, перпендикулярен к ней и делит дуги, стягиваемые хордой, пополам.

Пусть диаметр AB делит хорду CD пополам. Требуется доказать, что AB ⊥ CD,

Что значит перпендикулярные хорды

Соединим точки С и В с центром круга. Получим равнобедренный треугольник СОD, в котором ОК является медианой, а значит, и высотой. Следовательно, AB⊥CD, а отсюда (по теореме 1) следует, что
$$ \breve = \breve; \breve = \breve $$

Теорема 3 (обратная). Диаметр, проведённый через середину дуги, делит пополам хорду, стягивающую эту дугу, и перпендикулярен к этой хорде.

Пусть диаметр AB делит дугу СВD пополам (черт. 313). Требуется доказать, что

Соединим центр круга О с точками С и D. В равнобедренном треугольнике СОD отрезок ОК является биссектрисой угла СОD, так как по условию теоремы \(\breve\) = \(\breve\), поэтому ОК будет и медианой и высотой этого треугольника. Следовательно, диаметр AB проходит через середину хорды и перпендикулярен к ней.

Источник

Хорда — это геометрическая струна

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru.

Сегодня мы подробно расскажем, что такое ХОРДА.

Слово это имеет древнегреческие корни и переводится как «струна».

Что значит перпендикулярные хорды

Это очень точно характеризует ее внешний вид, так как хорда представляет собой прямую линию.

Хорда — это.

Термин ХОРДА применяется сразу в нескольких областях:

В геометрии хорда – это часть прямой, которая проходит между двумя точками на окружности или эллипсе;

Но в рамках этой статьи мы подробно рассмотрим первый вариант значения термина ХОРДА. Тот, который применяют в геометрии, и который школьники подробно изучают в 7 классе.

Что такое хорда в геометрии

Хорда – это отрезок прямой, которая проходит через две точки на любой кривой линии. Это могут быть окружность, эллипс, гипербола или парабола.

Выглядит хорда вот так:

Что значит перпендикулярные хорды

На этом рисунке изображены сразу две хорды – AB и CD. А есть еще частный случай, когда хорда проходит через центр окружности.

Что значит перпендикулярные хорды

Такая хорда, на данном рисунке это отрезок AB, будет являться диаметром окружности. И как нетрудно догадаться, это самая длинная хорда, которая может быть для данного примера.

Свойства хорды

Если сравнивать хорду с другими частями окружности, то можно вывести целый ряд закономерностей.

Например, хорда и радиус:

Хорда и диаметр:

Хорда и центр окружности:

И еще одно свойство хорд в окружности. Если взять уже знакомый нам рисунок расположенный сразу под определением, то при пересечении хорд получается вот такая зависимость – произведение частей одной хорды равна произведению частей другой:

Как рассчитать длину хорды

Длина хорды – это расстояние от одной точки пересечения с окружностью до другой. Чаще всего она обозначается латинской буквой «L».

Что значит перпендикулярные хорды

Чтобы рассчитать длину хорды, надо знать значение радиуса и центрального угла. Формула выглядит так:

Что значит перпендикулярные хорды

Вот и все, что мы хотели рассказать о ХОРДЕ.

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Эта статья относится к рубрикам:

Комментарии и отзывы (1)

Не знаю, что делать школьникам с этими знаниями, вот мне эти хорды нигде не пригодились, далеко не всю геометрию можно направить в практическое русло.

Источник

Что значит перпендикулярные хорды

Хорда в геометрии

Каждая хорда имеет свою длину. Ее можно определить с помощью теоремы синусов. То есть длина хорды окружности зависит от радиуса и вписанного угла, опирающегося на данный отрезок. Формула для определения длины выглядит следующим образом: B*A = R*2 * sin α, где R — радиус, AB — это хорда, α — вписанный угол. Также длину можно вычислить через другую формулу, которая выводится из теоремы Пифагора: B*A = R*2 * sin α/2 , где AB — это хорда, α — центральный угол, который опирается на данный отрезок, R — радиус.

Что значит перпендикулярные хорды

Если рассматривать хорды в совокупности с дугами, то получаются новые объекты. Например, в кругу можно дополнительно выделить две области: сектор и сегмент. Сектор образуется с помощью двух радиусов и дуги. Для сектора можно вычислить площадь, а если он является частью конуса, то еще и высоту. Сегмент, в свою очередь, это область, состоящая из отрезка и дуги.

Для того чтобы проверить правильность своего решения в нахождении длины, можно обратиться к онлайн-калькуляторам в интернете. Они представлены в виде таблицы, в которую нужно вписать только известные параметры, а программа сама выполнит необходимые вычисления.

Это очень полезная функция, так как не приходится вспоминать различные уравнения и производить сложные расчеты.

Свойства отрезка окружности

Для решения геометрических задач необходимо знать свойства хорды окружности. Для нее характерны такие показатели:

Что значит перпендикулярные хорды

Помимо основных свойств отрезка круга, нужно выделить еще одно важное свойство. Оно отражено в теореме о пересекающихся хордах.

Ключевая теорема

Что значит перпендикулярные хорды

Имеется круг с центром в точке O и радиусом R. Для теоремы нужно в круг вписать две прямые, пускай это будут хорды BA и CD, которые пересекаются в точке E. Перед тем как перейти к доказательству, нужно сформулировать определение теоремы. Оно звучит следующим образом: если хорды пересекаются в некоторой точке, которая делит их на отрезки, то произведения длин отрезков первой хорды равно произведению длин отрезков второй хорды. Для наглядности можно записать эту формулу: AE*BE= EC*ED. Теперь можно перейти к доказательству.

Что значит перпендикулярные хорды

Проведем отрезки CB и AD. Рассмотрим треугольники CEB и DEA. Известно, что углы CEB и DEA равны как вертикальные углы, DCB и BAD равны за следствием с теоремы про вписанные углы, которые опираются на одну и ту же дугу. Треугольники CEB и DEA подобны (первый признак подобия треугольников). Тогда выходит пропорциональное соотношение BE/ED = EC/EA. Отсюда AE*BE= EC*ED.

Помимо взаимодействия с внутренними элементами окружности, для хорды еще существуют свойства при пересечении с секущейся и касательными прямыми. Для этого необходимо рассмотреть понятия касательная и секущая и определить главные закономерности.

Касательная — это прямая, которая соприкасается с кругом только в одной точке. И если к ней провести радиус круга, то они будут перпендикулярны. В свою очередь, секущая — это прямая, которая проходит через две точки круга. При взаимодействии этих прямых можно заметить некоторые закономерности.

Касательная и секущая

Существует теорема о двух касательных, которые проведены с одной точки. В ней говорится о том, что если есть две прямые OK и ON, которые проведены с точки O, будут равны между собой. Перейдем к доказательству теоремы.

Что значит перпендикулярные хорды

Рассмотрим два прямоугольных треугольника AFD и AED. Поскольку катеты DF и DE будут равны как радиусы круга, а AD — общая гипотенуза, то между собой данные треугольники будут равны за признаком равенства треугольников, с чего выходит, что AF = AE.

Если возникает ситуация, когда пересекаются касательная и секущая, то в этом случае также можно вывести закономерность. Рассмотрим теорему и докажем, что AB 2 = AD*AC.

Что значит перпендикулярные хорды

Предположим у нас есть касательная AB и секущая AD, которые берут начало с одной точки A. Обратим внимание на угол ABC, он спирается на дугу BC, значит, за свойством значение его угла будет равно половине градусной меры дуги, на которую он опирается. За свойством вписанного угла, величина угла BDC также будет равно половине дуги BC. Таким образом, треугольники ABD и ABC будут подобны за признаком подобия треугольников, так как угол A — общий, а угол ABC равен углу BDC. Опираясь на теорию, получаем соотношение: AB/CA = DA/AB, переписав это соотношение в правильную форму, получаем равенство AB 2 = AD*AC, что и требовалось доказать.

Как есть теорема про две касательные, так есть и теорема про две секущие. Она так же просто формулируется, как и остальные теоремы. Поэтому рассмотрим доказательство и убедимся, что AB*AC = AE*AD.

Что значит перпендикулярные хорды

Проведем две прямые через точку A, получим две секущие AC и AE. Дорисуем две хорды, соединяя точки C и B, B и D. Получим два треугольника ABD И CEA. Обратим внимание на вписанный четырехугольник BDCE. За свойством вписанных четырехугольников узнаем, что значения углов BDE и ECB в сумме будут давать 180 градусов. И сумма значений углов BDA и BDE также равна 180, за свойством смежных углов.

Отсюда можно получить два уравнения, из которых будет выведено, что углы ECB и BDA будут равны: BDA + BDE = 180; BDE + ECB = 180. Все это записываем в систему уравнений, отнимаем первое от второго, получаем результат, что ECB = BDA.

Если вернутся к треугольникам ABD И CEA, то теперь можно сказать, что они подобны, так как угол А — общий, а углы ECA и BDA — равны. Теперь можно записать соотношение сторон: AB/AE = AD/AC. В итоге получим, что AB*AC = AE*AD.

Решение задач

При решении задач, связанных с окружностью, хорда часто выступает главным элементом, опираясь на который можно найти остальные неизвестные элементы. В каждой второй задаче задаются два параметра, чтобы найти третий неизвестный. В задачах, которые, связанные с кругом, хорда — это обязательный элемент:

Что значит перпендикулярные хорды

Для решения задач с отрезком в окружности удобно использовать схематические рисунки. Их рисуют с помощью линейки и циркуля, и принцип решения задач становится более наглядным.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

ФигураРисунокТеорема
Пересекающиеся хордыЧто значит перпендикулярные хорды
Касательные, проведённые к окружности из одной точкиЧто значит перпендикулярные хорды
Касательная и секущая, проведённые к окружности из одной точкиЧто значит перпендикулярные хорды
Секущие, проведённые из одной точки вне кругаЧто значит перпендикулярные хорды
Касательные, проведённые к окружности из одной точки
Что значит перпендикулярные хорды
Касательная и секущая, проведённые к окружности из одной точки
Что значит перпендикулярные хорды
Секущие, проведённые из одной точки вне круга
Что значит перпендикулярные хорды