Что значит перпендикулярно в физике
Значение слова «перпендикулярно»
ПЕРПЕНДИКУЛЯ́РНО. Нареч. к перпендикулярный (во 2 знач.). Когда большая стрелка [часов] станет прямо вверх, а маленькая почти перпендикулярно к ней вправо, то тогда надо ему сменяться. Куприн, Ночная смена.
Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека
перпендикулярно
1. геометр. составляя прямой угол с какой-либо прямой или плоскостью ◆ У большинства планет, включая Землю, ось вращения расположена почти вертикально, то есть перпендикулярно к плоскости орбиты планеты. Георгий Бурба, «Открытый дважды», 15 июня 2004 г. // «Вокруг света» (цитата из НКРЯ)
Делаем Карту слов лучше вместе
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я стал чуточку лучше понимать мир эмоций.
Вопрос: даваться — это что-то нейтральное, положительное или отрицательное?
Ассоциации к слову «перпендикулярно»
Синонимы к слову «перпендикулярно»
Предложения со словом «перпендикулярно»
Цитаты из русской классики со словом «перпендикулярно»
Понятия, связанные со словом «перпендикулярно»
Говорят, что два и более объектов концентричны или коаксиальны, если они имеют один и тот же центр или ось. Окружности, правильные многоугольники, правильные многогранники и сферы могут быть концентричны друг другу (имея одну и ту же центральную точку), как могут быть концентричными и цилиндры (имея общую коаксиальную ось).
Значение слова «перпендикулярный»
1. Мат. Являющийся перпендикуляром. Перпендикулярная линия.
2. Расположенный, направленный под прямым углом к чему-л. [Игнат] свернул на другую дорогу, перпендикулярную той, на какой их обогнали вражеские танки. Б. Полевой, Золото.
Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека
Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека
перпендикуля́рный
1. геометр. являющийся перпендикуляром ◆ Прямая бывает перпендикулярна к основанию, когда соединяет вершину равнобедренного треугольника с серединой основания. Н. И. Лобачевский, «Новые начала Геометрии с полной теорией параллельных», 1835–1838 г. (цитата из НКРЯ)
2. расположенный под прямым углом к чему-либо ◆ Ежели середи магнита положишь иглу так, чтобы она с его осью, то есть с линеею, от одного полюса до другого проведенною, была перпендикулярна, тогда повернётся она концами к полюсам и станет с осью параллельно, равно таким же образом, как палка по реке вдоль простирается. М. В. Ломоносов, «Волфианская экспериментальная физика, с немецкого подлинника на латинском языке сокращенная», 1745 г. (цитата из НКРЯ) ◆ Верстах в двух от оврага дорогу перерезывал, почти в перпендикулярном направлении, довольно значительной высоты холм. Е. Саранчов, «Хивинская экспедиция 1873 года», 1874 г. (цитата из НКРЯ)
Делаем Карту слов лучше вместе
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я стал чуточку лучше понимать мир эмоций.
Вопрос: переменяться — это что-то нейтральное, положительное или отрицательное?
Что значит «перпендикулярно»? Происхождение и значение термина
Слово «перпендикулярно» часто встречается в учебниках геометрии. А вот каково происхождение этого понятия? Что значит «перпендикулярно», откуда появилось это слово? Об этом и рассказывается в данной статье.
Происхождение слова
Наречие «перпендикулярно» происходит от существительного «перпендикуляр». Это слово пришло в русский язык из латыни. Там per и pendere означало «перед» и «висеть», а сочетание этих двух слов можно перевести как «отвес». Словосочетание показалось очень удобным, и его стали применять в геометрии.
Перпендикуляром можно назвать прямую. Но не каждую, а лишь ту, которая находится под прямым углом. Поэтому ответ на вопрос о том, что значит перпендикулярно, обязательно должен содержать упоминание прямого угла. Прямая может быть перпендикулярна другой прямой, лучу, вектору, стороне геометрической фигуры и даже плоскости.
Свойства перпендикулярности
Несколько свойств делают перпендикулярность довольно интересным геометрическим явлением. По умолчанию, если первая линия расположена под углом 90° ко второй, то и вторая перпендикулярна первой. Поэтому в условии задачи нет смысла обсуждать, какая из линий перпендикулярна другой.
При изучении высшей математики объяснить, что значит перпендикулярно, будет сложнее. Для математика перпендикулярность – всего лишь частный случай общей математической концепции ортогональности. В понятие перпендикулярности также входит описание многомерных геометрических объектов и их свойств.
Обозначение
На вопрос о том, что значит перпендикулярно, можно ответить и графически. Все математики мира придерживаются определенный условных обозначений, понятных даже тем, кто не знает иностранных языков.
Обозначение перпендикуляра впервые появилось на свет в 1634 году. Оно было опубликовано в работах французского астронома и математика Пьера Эригона. В своем многотомном труде он обобщил все математические знания, известные в то время, и изложил их на французском и латинском языках. Его труды не утратили своего значения много лет спустя – так, Эригона цитировали в своих работах Лейбниц и Паскаль. Он был автором нескольких математических обозначений, наиболее долгоживущим из них оказался знак перпендикулярности. На языке математики «перпендикулярно» выглядит вот так:
Как видно, ничего сложного в обозначении перпендикуляра нет. Просто нужно дорисовать маленький квадратик в углу пересекающихся линий. Иногда перпендикуляр рисуют в виде угла с обозначением в 90°.
Теперь вы тоже знаете о том, что значит слово «перпендикулярно» и кто придумал такое удачное обозначение геометрического понятия.
Что значит перпендикулярно в физике
Углы бывают острые, прямые и тупые.
Угол с градусной мерой 90° называется прямым. Если угол меньше 90°, его называют острым, а если больше 90° — тупым. Угол, равный 180° (то есть образующий прямую линию), называют развёрнутым.
Два угла с одной общей стороной называются смежными.
На рисунке луч ОС делит развёрнутый ∡AOB =180° на две части, образуя тупой ∡1 и острый ∡2.
Поэтому если один из смежных углов прямой, то второй также оказывается прямым: 180° – 90° = 90°
При пересечении двух прямых образуются четыре угла:
Обе стороны ∡1 также являются сторонами ∡3, а стороны ∡2 продолжают стороны ∡4. Такие углы называют вертикальными.
∡1 и ∡2 — смежные, как и ∡1 и ∡4. Следовательно:
∡1 + ∡2 = 180°
∡1 + ∡4 = 180°
∡2 = ∡4
То же справедливо и для ∡1 и ∡3.
Прямые, пересекающиеся под прямым углом, называются перпендикулярными.
∡1 равен 90°, остальные углы оказываются для него либо смежными, либо вертикальными, а значит, тоже равными 90°.
Перпендикулярность прямых принято обозначать так: a⟂b
Изучайте математику вместе с преподавателями домашней онлайн-школы «Фоксфорда»! По промокоду GEOM72021 вы получите неделю бесплатного доступа к курсу геометрии 7 класса, в котором изучаются перпендикулярные прямые!
Теорема о перпендикулярных прямых
Через каждую точку прямой можно провести перпендикулярную ей прямую, притом только одну.
Построим доказательство теоремы о перпендикулярных прямых «от противного», то есть для начала предположим, что утверждение неверно.
Возьмём прямую a, отметим на ней точки О и B. От луча OB отложим ∡BOA = 90°. Таким образом, отрезок OA будет находиться на прямой, перпендикулярной а.
Теперь предположим, что в той же полуплоскости существует другой перпендикуляр к а, проходящий через О. Назовём его OK. ∡BOK и ∡BOA, равны 90° и лежат в одной полуплоскости относительно луча OB. Но от луча OB в данной полуплоскости можно отложить только один прямой угол. Поэтому другой прямой, проходящей через О и перпендикулярной a, не существует. Теорема доказана.
Свойство перпендикулярных прямых
Две прямые, перпендикулярные третьей, не пересекаются.
Пусть a⟂b и a⟂c. b и с не пересекаются, ведь если бы существовала точка их пересечения, значит, через неё проходили бы две прямые, перпендикулярные a, что невозможно согласно теореме о перпендикулярных прямых. Следовательно, b||с.
У нас вы сможете учиться в удобном темпе, делать упор на любимые предметы и общаться со сверстниками по всему миру.
Попробовать бесплатно
Интересное по рубрике
Найдите необходимую статью по тегам
Подпишитесь на нашу рассылку
Мы в инстаграм
Домашняя онлайн-школа
Помогаем ученикам 5–11 классов получать качественные знания в любой точке мира, совмещать учёбу со спортом и творчеством
Посмотреть
Рекомендуем прочитать
Реальный опыт семейного обучения
Звонок по России бесплатный
Посмотреть на карте
Если вы не нашли ответ на свой вопрос на нашем сайте, включая раздел «Вопросы и ответы», закажите обратный звонок. Мы скоро свяжемся с вами.
Перпендикулярность
Содержание
На плоскости
Перпендикулярные прямые
Две прямые на плоскости называются перпендикулярными, если при пересечении образуют 4 прямых угла.
В аналитическом выражении прямые, заданные линейными функциями и будут перпендикулярны, если выполнено условие . Эти же прямые будут перпендикулярны, если . (Здесь — углы наклона прямой к горизонтали)
Для обозначения перпендикулярности имеется общепринятый символ: , предложенный в 1634 году французским математиком Пьером Эригоном.
Построение перпендикуляра
Шаг 1: (красный) С помощью циркуля проведём полуокружность с центром в точке P, получив точки А’ и В’.
Шаг 2: (зелёный) Не меняя радиуса, построим две полуокружности с центром в точках A’ и В’ соответственно, проходящими через точку Р. Кроме точки Р есть ещё одна точка пересечения этих полуокружностей, назовём её Q.
Шаг 3: (синий) Соединяем точки Р и Q. PQ и есть перпендикуляр к прямой АВ.
Координаты точки основания перпендикуляра к прямой
A(xa,ya) и B(xb,yb) — прямая, O(xo,yo) — основание перпендикуляра, опущенного из точки P(xp,yp).
Если xa = xb (вертикаль), то xo = xa и yo = yp. Если ya = yb (горизонталь), то xo = xp и yo = ya.
Во всех остальных случаях
xo = (xa*(yb-ya)^2 + xp*(xb-xa)^2 + (xb-xa) * (yb-ya) * (yp-ya)) / ((yb-ya)^2+(xb-xa)^2); yo = (yb-ya)*(xo-xa)/(xb-xa)+ya.
В трёхмерном пространстве
Перпендикулярные прямые
Две прямые в пространстве перпендикулярны друг другу, если они соответственно параллельны некоторым двум другим прямым, лежащим в одной плоскости и перпендикулярным в ней.
Перпендикулярность прямой и плоскости
Определение: Прямая называется перпендикулярной плоскости, если она перпендикулярна всем прямым лежащим в этой плоскости.
Признак: Если прямая перпендикулярна каждой из двух пересекающихся прямых плоскости, то она перпендикулярна этой плоскости.
Плоскость, перпендикулярная одной из двух параллельных прямых, перпендикулярна и другой. Через любую точку пространства проходит прямая, перпендикулярная к данной плоскости, и притом только одна.
Перпендикулярные плоскости
Две плоскости называются перпендикулярными, если двугранный угол между ними равен 90°.
В многомерных пространствах
Перпендикулярность плоскостей в 4-мерном пространстве
Перпендикулярность плоскостей в четырёхмерном пространстве имеет два смысла: плоскости могут быть перпендикулярны в 3-мерном смысле, если они пересекаются по прямой (а следовательно, лежат в одной гиперплоскости), и двугранный угол между ними равен 90°.
Плоскости могут быть также перпендикулярны в 4-мерном смысле, если они пересекаются в точке (а следовательно, не лежат в одной гиперплоскости), и любые 2 прямые, проведённые в этих плоскостях через точку их пересечения (каждая прямая в своей плоскости), перпендикулярны.
В 4-мерном пространстве через данную точку можно провести ровно 2 взаимно перпендикулярные плоскости в 4-мерном смысле (поэтому 4-мерное евклидово пространство можно представить как декартово произведение двух плоскостей). Если же объединить оба вида перпендикулярности, то через данную точку можно провести 6 взаимно перпендикулярных плоскостей (перпендикулярных в любом из двух вышеупомянутых значений).
Существование шести взаимно перпендикулярных плоскостей можно пояснить таким примером. Пусть дана система декартовых координат x y z t. Для каждой пары координатных прямых существует плоскость, включающая эти две прямые. Количество таких пар равно : xy, xz, xt, yz, yt, zt, и им соответствуют 6 плоскостей. Те из этих плоскостей, которые включают одноимённую ось, перпендикулярны в 3-мерном смысле и пересекаются по прямой (например, xy и xz, yz и zt), а те, которые не включают одноимённых осей, перпендикулярны в 4-мерном смысле и пересекаются в точке (например, xy и zt, yz и xt).
Перпендикулярность прямой и гиперплоскости
Пусть задано n-мерное евклидово пространство (n>2) и ассоциированное с ним векторное пространство , а прямая l с направляющим векторным пространством и гиперплоскость с направляющим векторным пространством (где , ) принадлежат пространству .
Прямая l называется перпендикулярной гиперплоскости , если подпространство ортогонально подпространству , то есть