Что значит перевернутая дуга в алгебре
Что значит перевернутая дуга в алгебре
Дуга. Разнообразные технические символы.
Символ «Дуга» был утвержден как часть Юникода версии 1.1 в 1993 г.
Свойства
Версия | 1.1 |
Блок | Разнообразные технические символы |
Тип парной зеркальной скобки (bidi) | Нет |
Композиционное исключение | Нет |
Изменение регистра | 2312 |
Простое изменение регистра | 2312 |
Кодировка
Кодировка | hex | dec (bytes) | dec | binary |
---|---|---|---|---|
UTF-8 | E2 8C 92 | 226 140 146 | 14847122 | 11100010 10001100 10010010 |
UTF-16BE | 23 12 | 35 18 | 8978 | 00100011 00010010 |
UTF-16LE | 12 23 | 18 35 | 4643 | 00010010 00100011 |
UTF-32BE | 00 00 23 12 | 0 0 35 18 | 8978 | 00000000 00000000 00100011 00010010 |
UTF-32LE | 12 23 00 00 | 18 35 0 0 | 304283648 | 00010010 00100011 00000000 00000000 |
Наборы с этим символом:
© Таблица символов Юникода, 2012–2021.
Юникод® — это зарегистрированная торговая марка консорциума Юникод в США и других странах. Этот сайт никак не связан с консорциумом Юникод. Официальный сайт Юникода располагается по адресу www.unicode.org.
Мы используем 🍪cookie, чтобы сделать сайт максимально удобным для вас. Подробнее
Геометрия. Урок 5. Окружность
Смотрите бесплатные видео-уроки на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
Определение окружности
Окружность – геометрическое место точек, равноудаленных от данной точки.
Отрезки в окружности
Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.
Хорда a – отрезок, соединяющий две точки на окружности.
Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).
O A – радиус, D E – хорда, B C – диаметр.
Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.
Касательная к окружности – прямая, имеющая с окружностью одну общую точку.
Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.
Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).
Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.
Дуга в окружности
Теорема 4:
Равные хорды стягивают равные дуги.
Углы в окружности
В окружности существует два типа углов: центральные и вписанные.
Центральный угол – угол, вершина которого лежит в центре окружности.
∠ A O B – центральный.
Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.
Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.
∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2
∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °
Длина окружности, длина дуги
Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.
Длина окружности находится по формуле:
Площадь круга и его частей
Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.
Круг – часть пространства, которая находится внутри окружности.
Иными словами, окружность – это граница, а круг – это то, что внутри.
Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.
Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.
Площадь круга находится по формуле: S = π R 2
Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.
Примеры сектора в реальной жизни: кусок пиццы, веер.
Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α
Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.
Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.
Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.
S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α
Теорема синусов
Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:
a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.
Примеры решений заданий из ОГЭ
Модуль геометрия: задания, связанные с окружностями.
Дуга окружности
Дуга — одно из двух подмножеств окружности, на которые её разбивают любые две различные принадлежащие ей точки. Любые две точки A и B окружности разбивают ее на две части; каждая из этих частей называется дугой. Если A и B – концы диаметра (т.е. центральный угол AOB развернутый), то они определяют две равные дуги, называемые полуокружностями. Если угол AOB не развернутый, то одна из двух дуг AB – это часть окружности, лежащая внутри угла AOB; говорят, что она меньше полуокружности, и что вторая дуга больше полуокружности. Их называют дополнительными. Дуги можно измерять в угловых единицах.
Свойства
Полезное
Смотреть что такое «Дуга окружности» в других словарях:
дуга окружности — apskritimo lankas statusas T sritis fizika atitikmenys: angl. circular arc vok. Kreisbogen, m rus. дуга окружности, f pranc. arc de cercle, m … Fizikos terminų žodynas
Дуга — Дуга: В математике Дуга (геометрия) участок кривой между двумя её точками. Дуга окружности кривая линия, лежащая на окружности и ограниченная двумя точками. Дуга (теория графов) Другое Дуга (география) Дуга (анатомия) Дуга (физика) Дуга… … Википедия
ДУГА — жен. согнутая линия, черта или вещь, образующая кривизну, погиб; часть окружности круга или другой кривой черты, и пр. элипса, параболы. | ·стар. и сев. радуга. | В оглобельной упряжи, деревянная, согнутая крутым лучком тугая распорка между… … Толковый словарь Даля
ДУГА НАБЛЮДЕНИЯ — наименьшее расстояние от Солнца, на котором планета видима, когда Солнце находится под горизонтом. Дневная дуга дуга, которую Солнце проходит от Восхода до Заката. В Равноденствие она составляет 180 градусов или 12 часов правого восхождения. С… … Астрологическая энциклопедия
дуга — и; мн. дуги; ж. 1. Часть окружности или какой л. другой кривой линии в виде полукруга. Ракета описала в небе дугу. Соединить дугой. // О том, что имеет форму кривой, изогнутой линии. Д. лука. Тёмные дуги бровей. Радуга дуга. На повороте река… … Энциклопедический словарь
ДУГА — ДУГА, дуги, мн. дуги, дугам, жен. 1. Принадлежность упряжи из круто изогнутого ствола тонкого дерева, концы которого вдеваются в гужи для скрепления оглобель с хомутом. «Дуги гнут с терпеньем и не вдруг.» Крылов. 2. Часть окружности круга или… … Толковый словарь Ушакова
Дуга — I ж. 1. Изогнутая часть какого либо предмета. 2. Часть окружности или какой либо изогнутой линии. отт. устар. Название линии меридиана или параллели. 3. Часть конской упряжи из тонкого, круто изогнутого ствола дерева, служащая для прикрепления… … Современный толковый словарь русского языка Ефремовой
ДУГА БОЛЬШОГО КРУГА — часть окружности, получаемой при сечении шара плоскостью, проходящей через его центр. Под термином прямое направление жел. дор. линии понимают направление по Д. б. к. между конечными или промежуточными опорными точками жел. дор. линии. Для целей… … Технический железнодорожный словарь
Дуга (геометрия) — Дуга связное подмножество окружности.Свойства*Длина дуги L радиуса R с центральным углом alpha, измеренным в радианах, вычисляется по формуле: L=Ralpha … Википедия
дуга — ДУГА, и, мн дуги, ж Линия в виде полукруга, часть кривой, изогнутой линии или окружности, заключенная между двумя ее точками. Ракета описала в небе дугу … Толковый словарь русских существительных