Что значит пересечение в геометрии
Пересечение прямых. Точка пересечения двух прямых
Если точка M, является точкой пересечения двух прямых, то она должна принадлежать этим прямым, а ее координаты удовлетворять уравнения этих прямых.
Точка пересечения двух прямых на плоскости
Если система уравнений:
Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:
Вычтем из первого уравнения второе
Из первого уравнения найдем значение x
Подставим значение x во второе уравнение и найдем значение y
Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:
В первое уравнение подставим значения x и y из второго и третьего уравнений.
Подставим значение t во второе и третье уравнение
Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:
Из второго уравнения выразим y через x
Подставим y в первое уравнение
Решение: Обе прямые заданы уравнениями с угловым коэффициентом. Так как k 1 = k 2 = 2, то прямые параллельны. Так как эти прямые не совпадают то точек пересечения нет.
Решим также эту задачу используя систему уравнений:
Вычтем из первого уравнения второе
Ответ. Прямые не пересекаются (прямые параллельны).
Решение: Подставим координаты точки N в уравнения прямых.
Точка пересечения двух прямых в пространстве
Если система уравнений:
Решение: Составим систему уравнений
К шестому уравнению добавим пятое уравнение
Подставим значение b в четвертое и пятое уравнения
x = a + 1 y = a + 1 z = a + 1 a = 0 a = 0 b = 1 => x = 0 + 1 = 1 y = 0 + 1 = 1 z = 0 + 1 = 1 a = 0 a = 0 b = 1
Ответ. Прямые пересекаются в точке с координатами (1, 1, 1).
Решение: Составим систему уравнений заменив во втором уравнении параметр t на a
Подставим значение t из шестого уравнения в остальные уравнения
Геометрия 7 класс.
Точка, прямая и отрезок
Казалось бы, что таким простым понятиям, как «точка» или «прямая», которые мы повседневно используем в жизни, крайне просто дать определения. Но на практике оказалось, что это не так.
Существует множество определений, которые давали знаменитые математики терминам «точка» и «прямая». За многие века ученые так и не пришли к единому определению.
Мы не будем приводить все определения точки и прямой. Остановимся на объяснениях, которые, на наш взгляд, наиболее простым образом их описывают.
Точка — элементарная фигура, не имеющая частей.
Прямая состоит из множества точек и простирается бесконечно в обе стороны.
То есть выражаясь геометрическими обозначениями, информацию о расположении прямой и точек на рисунке выше можно записать так:
Как обозначить прямую
Прямую обычно обозначают одной маленькой латинской буквой.
Прямую, на которой отмечены две точки, иногда обозначают по названиям этих точек большими латинскими точками.
Задача № 1 из учебника Атанасян 7-9 класс
Решение задачи
Опишем взаимное расположение точек и прямой.
Как обозначается пересечение прямых
Хотя на чертеже не видно, но прямые a и c тоже пересекаются (это становится ясно, если мысленно продолжить вниз прямые a и с ).
Прямые e и f не имеют общей точки — т.е. они не пересекаются.
Взаимное расположение прямой и точек
Через одну точку (·)A можно провести сколько угодно прямых.
Через две точки (·)A и (·)B можно провести только одну прямую.
Сколько общих точек имеют две прямые
Две прямые либо имеют только одну общую точку, либо не имеют общих точек.
Докажем утверждение выше. Для этого рассмотрим все возможные случаи расположения двух прямых.
Первый случай расположения прямых
На рисунке выше мы видим, что у прямых f и e нет общих точек, т.к. эти прямые не пересекаются.
Второй случай расположения прямых
Третий случай расположения прямых
Вывод: две прямые либо имеют только одну общую точку, либо не имеют общих точек.
Задача № 3 из учебника Атанасян 7-9 класс
Проведите три прямые так, чтобы каждые две из них пересекались. Обозначьте все точки пересечения этих прямых. Сколько получилось точек? Рассмотрите все возможные случаи.
Решение задачи
Проведём две прямые a и b так, чтобы эти две прямые пересекались, и обозначим точку пересечения.
Как мы видим, точка пересечения только одна. Мы можем провести третью прямую так, чтобы она тоже проходила через эту точку пересечения.
Мы убедились, что возможны оба варианта. Поэтому в ответе запишем их оба.
Ответ: точек пересечения получается одна или три.
Что такое отрезок
Отрезок — часть прямой, ограниченная двумя точками.
В отличии от прямой любой отрезок можно измерить. Т.е. каждый отрезок имеет длину.
Пересекающиеся прямые
Если две прямые имеют общую точку, то говорят, что эти прямые пересекаются. Такие прямые называют пересекающимися прямыми:
Точка пересечения — это точка, общая для двух или более геометрических фигур.
Перпендикуляр и наклонная
При пересечении вертикальной и горизонтальной прямой линии образуется четыре прямых угла. Такие линии, относительно друг к другу, называются перпендикулярными линиями или просто перпендикулярами:
Даже если прямые не являются вертикальной и горизонтальной линиями, но при пересечении образуют четыре прямых угла, то они всё равно являются перпендикулярными:
Если прямая линия пересекает другую не под прямым углом, то такая линия называется наклонной к прямой, которую она пересекает. При этом образуется четыре угла: два из них будут острыми и два тупыми:
Образованные острые углы равны и относительно друг друга будут называться вертикальными углами. То же самое можно сказать и об образованных тупых углах — они равные и вертикальные.
ПЕРЕСЕЧЕНИЕ
Смотреть что такое «ПЕРЕСЕЧЕНИЕ» в других словарях:
пересечение — скрещение, перекрещивание, крест, средокрестие, преграждение, пересекание, переход Словарь русских синонимов. пересечение скрещение Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е. Александрова. 2011 … Словарь синонимов
пересечение — нефтепровода с другими коммуникациями или объектами. Примечание К объектам относятся: автотрасса, железная дорога. [РД 01.120.00 КТН 228 06] Тематики магистральный нефтепроводный транспорт … Справочник технического переводчика
ПЕРЕСЕЧЕНИЕ — ПЕРЕСЕЧЕНИЕ, пересечения, ср. (книжн.). 1. только ед. Действие по гл. пересечь во всех знач., кроме 5 и 6 пересекать и пересечься пересекаться. Точка пересечения линий. Линия пересечения плоскостей. 2. Место, где пересекается одно другим,… … Толковый словарь Ушакова
ПЕРЕСЕЧЕНИЕ — ПЕРЕСЕЧЕНИЕ, я, ср. 1. см. пересечь 1, ся. 2. Место, где пересекается что н. На пересечении дорог. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова
пересечение — sankirta statusas T sritis automatika atitikmenys: angl. crossing; crossover; crossunder vok. Kreuzung, f rus. пересечение, n pranc. croisement, m; cross over, m; passage, m … Automatikos terminų žodynas
пересечение — sankirta statusas T sritis fizika atitikmenys: angl. crossing; intersection vok. Durchschneiden, n; Kreuzung, f; Schneiden, n rus. пересечение, n pranc. croisement, m; intersection, f … Fizikos terminų žodynas
Пересечение — Означает соединение, союз противоположностей, общение, в котором точка пересечения является центром, начиная с которого могут произойти изменения … Словарь символов
Пересечение — ср. 1. процесс действия по гл. пересекать, пересечь II, пересекаться, пересечься 2. состояние по гл. пересекаться, пересечься 3. Место, где пересекается что либо чем либо. Толковый словарь Ефремовой. Т. Ф. Ефремова … Современный толковый словарь русского языка Ефремовой
пересечение — пересечение, пересечения, пересечения, пересечений, пересечению, пересечениям, пересечение, пересечения, пересечением, пересечениями, пересечении, пересечениях (Источник: «Полная акцентуированная парадигма по А. А. Зализняку») … Формы слов
Знак пересечения
Определение
Знак пересечения – это символ, указывающий на пересечение прямых, углов, лучей, отрезков, плоскостей и других фигур в геометрии, пересечение множеств в математике (алгебре) и информатике.
Как пишется этот символ пересечения?
Этот знак выглядит и пишется так – ⋂
Его достаточно легко запомнить, он похож на русскую букву «П», начальную букву слова «пересечение».
Как быстро запомнить этот знак?
Просто представьте себе и запомните, что этот символ выглядит как буква «П» и похож на подкову, перевернутую вниз ногами.
Как применяется знак ⋂?
Применяется для обозначения пересечения прямых, углов, лучей, отрезков в геометрии, пересечение множеств в математике (алгебре) и информатике.
Как выглядит знак «не пересечения» в геометрии?
Пример
А ∩ С = ∅ — 2 луча или (2 прямые, 2отрезка) А и С не пересекаются.
Что обозначает знак пересечения наоборот?
Это символ выглядит и пишется следующим образом: ∪
Обозначается термином – «объединение».