Что значит отрицательное перемещение
Что значит отрицательное перемещение
Тело движется по оси Ох. По графику зависимости проекции скорости тела vx от времени t установите, какой путь прошло тело за время от t1 = 0 до t2 = 4 с. (Ответ дайте в метрах.)
Необходимо различать два понятия: путь и перемещение. Путь — величина строго положительная, это длина пройденного телом участка траектории. Под перемещением же тела понимается изменение его координаты, перемещение может быть отрицательным. Пройденный телом путь определяется зависимостью от времени модуля скорости. Чтобы из графика зависимости проекции скорости тела от времени получить график модуля скорости, необходимо зеркально отразить относительно горизонтально оси все отрицательные участки. В данной задаче это не столь принципиально, поскольку на рассматриваем интервале от до проекция скорости тела остается положительной, но в общем случае это может привести к нежелательной ошибке.
Имея график модуля скорости, пройденный телом путь можно найти, вычислив площадь под графиком (в единицах произведения величин, отложенных по осям координат). За 4 с тело прошло путь
Другой способ решения заключается в определении из графика начальной скорости и ускорения и использования стандартной кинематической формулы для пути.
Перемещение и путь при равноускоренном прямолинейном движении
теория по физике 🧲 кинематика
Геометрический смысл перемещения заключается в том, что перемещение есть площадь фигуры, заключенной между графиком скорости, осью времени и прямыми, проведенными перпендикулярно к оси времени через точки, соответствующие времени начала и конца движения.
При равноускоренном прямолинейном движении перемещение определяется площадью трапеции, основаниями которой служат проекции начальной и конечной скорости тела, а ее боковыми сторонами — ось времени и график скорости соответственно. Поэтому перемещение (путь) можно вычислить по формуле:
Пример №1. По графику определить перемещение тела в момент времени t=3 с.
Перемещение есть площадь фигуры, ограниченной графиком скорости, осью времени и перпендикулярами, проведенными к ней. Поэтому в нашем случае:
Извлекаем из графика необходимые данные:
Подставляем известные данные в формулу:
Перемещение равно 0, так как тело сначала проделало некоторый путь, а затем вернулось в исходное положение.
Варианты записи формулы перемещения
Конечная скорость движения тела часто неизвестна. Поэтому при решении задач вместо нее обычно подставляют эту формулу:
В итоге получается формула:
Если движение равнозамедленное, в формуле используется знак «–». Если движение равноускоренное, оставляется знак «+».
Если начальная скорость равна 0 (v0 = 0), эта формула принимает вид:
Если неизвестно время движения, но известно ускорение, начальная и конечная скорости, то перемещение можно вычислить по формуле:
Пример №2. Найти тормозной путь автомобиля, который начал тормозить при скорости 72 км/ч. Торможение до полной остановки заняло 3 секунды. Модуль ускорения при этом составил 2 м/с.
Перемещение при разгоне и торможении тела
Все перечисленные выше формулы работают, если направление вектора ускорения и вектора скорости совпадают ( а ↑↑ v ). Если векторы имеют противоположное направление ( а ↑↓ v ), движение следует описывать в два этапа:
Этап торможения
Время торможения равно разности полного времени движения и времени второго этапа:
Когда тело тормозит, через некоторое время t1оно останавливается. Поэтому скорость в момент времени t1 равна 0:
При торможении перемещение s1 равно:
Этап разгона
Время разгона равно разности полного времени движения и времени первого этапа:
Тело начинает разгоняться сразу после преодоления нулевого значения скорости, которую можно считать начальной. Поэтому скорость в момент времени t2 равна:
При разгоне перемещение s2 равно:
При этом модуль перемещения в течение всего времени движения равен:
Полный путь (обозначим его l), пройденный телом за оба этапа, равен:
В данном случае движение нужно разделить на два этапа, так как мальчик сначала разогнался, потом затормозил. Тормозной путь будет соответствовать второму этапу. Через него мы выразим ускорение:
Из первого этапа (разгона) можно выразить конечную скорость, которая послужит для второго этапа начальной скоростью:
Подставляем выраженные величины в формулу:
Перемещение в n-ную секунду прямолинейного равноускоренного движения
Иногда в механике встречаются задачи, когда нужно найти перемещение тела за определенный промежуток времени при условии, что тело начинало движение из состояния покоя. В таком случае перемещение определяется формулой:
За первую секунду тело переместится на расстояние, равное:
За вторую секунду тело переместится на расстояние, равное разности перемещения за 2 секунды и перемещения за 1 секунду:
За третью секунду тело переместится на расстояние, равное разности перемещения за 3 секунды и перемещения за 2 секунды:
Видно, что за каждую секунду тело проходит перемещение, кратное целому нечетному числу:
Из формул перемещений за 1, 2 и 3 секунду можно выявить закономерность: перемещение за n-ную секунду равно половине произведения модуля ускорения на (2n–1), где n — секунда, за которую мы ищем перемещение тела. Математически это записывается так:
Формула перемещения за n-ную секунду
Пример №4. Автомобиль разгоняется с ускорением 3 м/с 2. Найти его перемещение за 6 секунду.
Подставляем известные данные в формулу и получаем:
Таким же способом можно найти перемещение не за 1 секунду, а за некоторый промежуток времени: за 2, 3, 4 секунды и т. д. В этом случае используется формула:
где t — время одного промежутка, а n — порядковый номер этого промежутка.
Время от 4 до 6 секунд включительно — это 3 секунды: 4-ая, 5-ая и 6-ая. Значит, промежуток времени составляет 3 секунды. До наступления этого промежутка успело пройти еще 3 секунды. Значит, время от 4 до 6 секунд — это второй по счету временной промежуток.
Подставляем известные данные в формулу:
Проекция и график перемещения
Проекция перемещения на ось ОХ. График перемещения — это график зависимости перемещения от времени. Графиком перемещения при равноускоренном движении является ветка параболы. График перемещения при равноускоренном движении, когда вектор скорости направлен в сторону оси ОХ ( v ↑↑OX), а вектора скорости и ускорения сонаправлены ( v ↑↑ a ), принимает следующий вид:
График перемещения при равнозамедленном движении, когда вектор скорости направлен в сторону оси ОХ (v↑↑OX), а вектора скорости и ускорения противоположно ( v ↓↑ a ), принимает следующий вид:
Определение направления знака проекции ускорения по графику его перемещения:
Пример №6. Определить ускорение тела по графику его перемещения.
Перемещение тела в момент времени t=0 с соответствует нулю. Значит, ускорение можно выразить из формулы перемещения без начального ускорения. Получим:
Теперь возьмем любую точку графика. Пусть она будет соответствовать моменту времени t=2 с. Этой точке соответствует перемещение 30 м. Подставляем известные данные в формулу и получаем:
График пути
График пути от времени в случае равноускоренного движения совпадает с графиком проекции перемещения, так как s = l.
В случае с равнозамедленным движением график пути представляет собой линию, поделенную на 2 части:
Такой вид графика (возрастающий) объясняется тем, что путь не может уменьшаться — он либо не меняется (в состоянии покоя), либо растет независимо от того, в каком направлении, с какой скоростью и с каким ускорением движется тело.
Пример №7. По графику пути от времени, соответствующему равноускоренному прямолинейному движению, определить ускорение тела.
При равноускоренном прямолинейном движении графиком пути является ветвь параболы. Поэтому наш график — красный. График пути при равноускоренном прямолинейном движении также совпадает с графиком проекции его ускорения. Поэтому для вычисления ускорения мы можем использовать эту формулу:
Для расчета возьмем любую точку графика. Пусть она будет соответствовать моменту времени t=2 c. Ей соответствует путь, равный 5 м. Значит, перемещение тоже равно 5 м. Подставляем известные данные в формулу:
Тело массой 200 г движется вдоль оси Ох, при этом его координата изменяется во времени в соответствии с формулой х(t) = 10 + 5t – «>– 3t 2 (все величины выражены в СИ).
Установите соответствие между физическими величинами и формулами, выражающими их зависимости от времени в условиях данной задачи.
К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
Алгоритм решения
Решение
Из условия задачи известна только масса тела: m = 200 г = 0,2 кг.
Так как тело движется вдоль оси Ox, уравнение движения тела при прямолинейном равноускоренном движении имеет вид :
Теперь мы можем выделить кинематические характеристики движения тела:
Перемещение тела определяется формулой:
Начальная координата не учитывается, так как это расстояние было уже пройдено до начала отсчета времени. Поэтому перемещение равно:
Кинетическая энергия тела определяется формулой:
Скорость при прямолинейном равноускоренном движении равна:
v = v 0 + a t = 5 − 6 t
Поэтому кинетическая энергия тела равна:
Следовательно, правильная последовательность цифр в ответе будет: 34.
pазбирался: Алиса Никитина | обсудить разбор | оценить
На рисунке показан график зависимости координаты x тела, движущегося вдоль оси Ох, от времени t (парабола). Графики А и Б представляют собой зависимости физических величин, характеризующих движение этого тела, от времени t. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять.
К каждой позиции графика подберите соответствующую позицию утверждения и запишите в поле цифры в порядке АБ.
Алгоритм решения
Решение
График зависимости координаты тела от времени имеет вид параболы в случае, когда это тело движется равноускоренно. Так как движение тела описывается относительно оси Ох, траекторией является прямая. Равноускоренное прямолинейное движение характеризуется следующими величинами:
Перемещение и путь при равноускоренном прямолинейном движении изменяются так же, как координата тела. Поэтому графики их зависимости от времени тоже имеют вид параболы.
График зависимости скорости от времени при равноускоренном прямолинейном движении имеет вид прямой, которая не может быть параллельной оси времени.
График зависимости ускорения от времени при таком движении имеет вид прямой, перпендикулярной оси ускорения и параллельной оси времени, так как ускорение в этом случае — величина постоянная.
Исходя из этого, ответ «3» можно исключить. Остается проверить ответ «1». Кинетическая энергия равна половине произведения массы тела на квадрат его скорости. Графиком квадратичной функции является парабола. Поэтому ответ «1» тоже не подходит.
График А — прямая линия, параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости ускорения от времени (или его модуля). Поэтому первая цифра ответа — «4».
График Б — прямая линия, не параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости скорости от времени (или ее проекции). Поэтому вторая цифра ответа — «2».
pазбирался: Алиса Никитина | обсудить разбор | оценить
pазбирался: Алиса Никитина | обсудить разбор | оценить
Алгоритм решения
Решение
Весь график можно поделить на 3 участка:
По условию задачи нужно найти путь, пройденный автомобилем в интервале времени от t1 = 20 c до t2 = 50 с. Этому времени соответствуют два участка:
Записываем формулу искомой величины:
s1 — путь тела, пройденный на первом участке, s2 — путь тела, пройденный на втором участке.
s1и s2 можно выразить через формулы пути для равномерного и равноускоренного движения соответственно:
Теперь рассчитаем пути s1и s2, а затем сложим их:
pазбирался: Алиса Никитина | обсудить разбор | оценить
Научный форум dxdy
Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки
перемещение и соответствующий ему дифференциал перемещения
Заблокирован |
Может ли перемещение и соответствующий ему дифференциал перемещения быть отрицательным?
Мои рассуждения таковы:
В) Если «изменение длины» это разность двух длин, то это снова длина. А длина, учитывая (А), отрицательной быть не может.
Г) Hо может ли из предложения Б) быть отрицательным? Учитывая
(А), и в числителе, и в знаменателе стоят положительные величины. отрицательным быть не может.
Из (В) и (Г) заключаем, что «изменение длины» не может быть отрицательным коэффициентом, и не может быть отрицательной разностью длин. Значит, допущение ложное.
Я хотел бы услышать от участников, нет ли среди высказываний А,Б,В,Г и заключения ложных утверждений? И может ли перемещение и соответствующий ему дифференциал перемещения быть отрицательным? Два мнения я уже увидел:
Вопрос такой вот почему возник.
В одном из учебников, авторы из МФТИ пишут следующее, рисунок 1.3.1 тоже оттуда:
рисунок 1.3.1
Для прямой I ; , следовательно, скорость тела составляет . Здесь мне всё понятно. Но для прямой II авторы свое объяснение свели к слову «аналогично». Всё их объяснение состоит из предложения:
«Аналогичным образом для движения, изображенного на рис. 1.3.1 прямой II, найдем , .» Странно, что авторы, для совершенно загадочного (для меня) случая с появлением минуса у скорости, свое объяснение скомкали до слова «аналогично».
Заслуженный участник |
Заслуженный участник |
Простые вычисления дают . Действительно, аналогия.
Вы говорите о перемещении, как будто это изменение пройденного пути.
У них — приращение координаты (вполне естественно, что оно может быть отрицательным). Мне кажется, не вполне удачное обозначение, лучше .
Насчет утверждений. meduza начал, я продолжу:
Вообще, если отождествляете «изменение длины» в смысле В и просто длину (А), то вроде сразу следует, что первая неотрицательна.
Заблокирован |
Заслуженный участник |
Между направлением вектора и направлением, нак которое проецируете.
Заблокирован |
Да, это чисто механическая аналогия, повлекшая логическую ошибку. Если записывать медленно, и не пропускать ни одного шага, то в одном из шагов появится следующая запись: , что, очевидно, абсурд.
Да, согласен, это не верно. Но применительно к данному случаю равномерного прямолинейного движения, к данному рисунку и данной ссылке это верно.
Не вполне удачно? Это катастрофическая ошибка. Несмотря на то, что авторы из МФТИ. Это всё серьезно меняет, поскольку переход от к должен идти через модуль.
Насчет утверждений. meduza начал, я продолжу:
Вообще, если отождествляете «изменение длины» в смысле В и просто длину (А), то вроде сразу следует, что первая неотрицательна.
А в чем проблема с разностью длин? «Девять метров минус три метра будет шесть метров.» Все словосочетания «[число] метров» обозначают длины. Это высказывание истинное?
Это я знаю. Но я спрашиваю про рисунок. Ведь это так просто: указать одну точку, вторую, вот один вектор. Указали третью, четвертую точку, вот второй вектор. Ну и угол сам собой найдется. Укажите, пожалуйста.
Вот почитал учебник и нашел катастрофическую ошибку 🙁
Заблокирован |
Заблокирован |
Заблокирован |
Заслуженный участник |
Заблокирован |
Заблокирован |
Заблокирован |
Всё равно непонятно. Чтобы не менять рисунок 1.3.1, то, что Вы написали, равносильно утверждению, что в осях и вектор обозначает перемещение? А я думал, что траектории, а на траектории перемещение, отображаются в осях . Объясните, пожалуйста.
Заслуженный участник |
Заслуженный участник |
Это не ошибка, и ни какой катастрофы нет. Можно было взять какое угодно обозначение. Но прежде чем это делать лучше почитать знаменитую статью Халмоша.
И еще раз. Ошибок нигде нет, просто Ваши «понятия» в голове конфликтуют с понятиями математики. Нечего на первом этапе учения/обучения придираться ко всякой мелочи, видя в них, якобы, ошибки.
Я думаю, Вам самим надо с этим разобраться, иначе это будет похоже на хождения кругами как в Вашей теме про производные.
Кто сейчас на конференции
Сейчас этот форум просматривают: нет зарегистрированных пользователей