Что значит основность кислоты
Кислотность и основность разбавленных растворов кислот и оснований
Мерой силы кислоты или основания, согласно теории Брёнстеда – Лоури является константа кислотности или основности соответственно. Поскольку наиболее распространенным растворителем является вода, измерения проводят обычно в воде. Кислота в воде отдает ей свой протон:
НХ + Н2 O ↔ Н3 O + + X –
Применяя закон действующих масс, получим:
В разбавленных растворах [Н2 O ] = const (=55,5 моль/л), поэтому можно записать
Применяя аналогичный вывод для основания, получим:
Величина Кв называется константой основности и является мерой основности относительно стандарта (в данном случае Н2O ). Аналогично величине pH константы кислотности и основности можно выразить в логарифмической форме:
Константы кислотности и основности связаны соотношением:
где Kw — константа автопротолиза растворителя (для воды — ионное произведение). Принимая во внимание ( 75 ), получаем уравнение ( 76 ) в виде:
pKw=pKa +pKв ( 77)
рКа = 14 – рКв (78)
Константы кислотности слабых кислот, нерастворимых в воде, определяют в других растворителях относительно друг друга, выстраивая таким образом единую шкалу кислотности. Полученные значения рКа носят приблизительный характер и могут быть использованы только для качественных оценок, например, данные таблицы 6-4 по константам кислотности относительно воды некоторых кислот Бренстеда.
Согласно табл. 6-4, в воде кислотами являются HCIO4, СН3СООН, основаниями — С2Н5ОН, С2Н2, NH3, С2Н4, С2Н6; в аммиаке кислоты — HCIO4, СН3СООН, С2Н5ОН, С2Н2, основания — С2Н4 и С2Н6.
Основность кислот
Смотреть что такое «Основность кислот» в других словарях:
Основность — Основность способность вещества проявлять основные свойства, то есть в простейшем случае реагировать с кислотами. Определяется для оксидов, гидроксидов, а также оснований Льюиса (пример аммиак). Основность в металлургии отношение (в… … Википедия
Теории кислот и оснований — совокупность фундаментальных физико химических представлений, описывающих природу и свойства кислот и оснований. Все они вводят определения кислот и оснований двух классов веществ, реагирующих между собой. Задача теории предсказание продуктов… … Википедия
Эфиры сложные — (хим.) представляют собой сочетания спиртов с кислотами, происходящие путем выделения воды за счет водных остатков этих соединений. Названия [В немецкой химической литературе сложные Э. весьма целесообразно названы, по предложению Гмелина, особым … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Спирты — Отличительная особенность спиртов гидроксильная группа при насыщенном атоме углерода на рисунке выделена красным (кислород) и серым цветом (водород). Спирты (от лат. … Википедия
Молочная кислота — (ас. lactique, lactic ас., Milchsäure, хим.), иначе α оксипропионовая или этилиденмолочная кислота С3Н6О3 = СН3 СН(ОН) СООН (ср. Гидракриловая кислота); известны три кислоты, отвечающие этой формуле, а именно: оптически недеятельная (М. кислота… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Кислоты — (хим.) К. называется группа соединений с известной, довольно определенной химической функцией, которая резко выражена в таких типичных представителях этой группы, как серная К. H2SO4, азотная К. HNO3, соляная К. HCl и проч. Сделать характеристику … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Неорганические кислоты — Основная статья: Кислота Неорганические (минеральные) кислоты неорганические вещества, обладающие комплексом физико химических свойств, которые присущи кислотам. Вещества кислотной природы известны для большинства химических элементов за… … Википедия
Кислоты — (хим.). К. называется группа соединений с известной,довольно определенной химической функцией, которая резко выражена втаких типичных представителях этой группы, как серная К. H2SO4 азотнаяК. HNO3, соляная К. НСl и пр. Сделать характеристику их в … Энциклопедия Брокгауза и Ефрона
Химическое строение — Настоящая статья имеет задачей изложение истории возникновения теории X. строения органических соединений и ее связи с предыдущими теориями. В значительной мере это уже выяснено в статьях Замещение, Унитарная система, Химических типов теория и… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Томсен Ганс Петер Йорген Юлиус — (Hans Peter Jörgen Julius Thomsen) датский химик. Род. в 1826 г. Получил степень доктора философии в Упсале и степень доктора медицины в Копенгагене; был профессором Копенгагенского унив. и (1883 г.) председателем королевского ученого общества; Т … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Характерные химические свойства кислот
Содержание:
Кислоты – это химические соединения, содержащие в себе положительный атом водорода (катион H+) и кислотный остаток (анион A-). Является сложным веществом.
Общая характеристика
В первую очередь кислоты различают по растворимости. Есть нерастворимые, растворимые и полурастворимые кислоты. Эти различия прописаны в таблице растворимости, так что наизусть запоминать не требуется.
Классификация:
Бескислородные кислоты – это растворы галогеноводородов, атомы которых в растворе связаны полярной ковалентной связью. Название кислоты складывается из названия кислотного остатка в первую очередь, а дальше называется катион (водород). Так с хлором и водородом образуется хлороводородная кислота, а с серой – сероводородная.
Кислородосодержащие кислоты, или оксокислоты называют за счёт наличия в них кислорода. Общего принципа построения названия этих кислот нет, так что их названия необходимо запоминать на память.
Физические свойства
Кислоты, в зависимости от условий, могут быть в трёх агрегатных состояниях: в жидком, твёрдом и газообразном состоянии. Кислоты могут обладать цветом и запахом.
Химические свойства
Изменение цвета индикаторов
Кислота в водной среде способна изменить цвет разных индикаторов. Кислоты окрашивают в красных цвет лакмус, метилоранж и универсальный индикатор. Фенолфталеин не окрашивается.
Взаимодействие кислот с металлами
Кислота способна реагировать только с металлами, находящимися левее водорода в ряду активности металлов.
Из приведенного выше химического уравнения нужно отметить, что при взаимодействии кислоты и металла происходит реакция замещения, образуется соль и выделяется H2.
Взаимодействие кислот с основными и амфотерными оксидами
При взаимодействии кислоты с основным или амфотерным оксидами происходит реакция обмена в результате которой образуются соль и H2O.
В качестве примера приведены следующие реакции:
Из приведённого выше химического уравнения нужно отметить, что в реакциях основного оксида калия и амфотерного оксида алюминия (III) с кислотами, образуется соль и H2O.
Взаимодействие кислот с основными и амфотерными гидроксидами
Из приведённой выше химического уравнения нужно отметить, что при реакции основного гидроксида калия и амфотерного гидроксида алюминия (III) с кислотами образуются соль и H2O.
Взаимодействие кислот с солями
Реакция кислоты с солью является реакцией обмена, так же ее называют реакцией нейтрализации. Она возможно только в случае выпадения соли в осадок, выделения газа, слабые электролиты или вода. Рассмотрим все случаи более подробно.
Из приведённого выше химического уравнения можно увидеть, что при взаимодействии кислоты и соли образуются новые кислота и нерастворимая соль, которые выпадают в осадок. Осадок может иметь различную окраску, плотность и консистенцию.
Из приведённых выше химических уравнений нужно отметить, что при реакции соли с кислотой образуется новая соль и выделяется газ. Разберём одну из реакций: при взаимодействии твёрдого хлорида натрия с концентрированной хлороводородной кислотой образовалась натриевая соль серной кислоты и выделился летучий газ хлороводород.
Такие реакции возможны только при условии, когда одним из реагентов сильный электролит. Для того, чтобы убедиться, что реакция будет протекать используют вытеснительный ряд:
В этом ряду кислоты расположены так, что в растворах кислот и их солей могут в результате реакции вытесняют из раствора те, что стоят левее в ряду. Азотная и фосфорная кислоты находятся на одном месте в ряду, т.к. имеют одинаковые вытеснительные способности.
Из приведённого выше химического уравнения нужно отметить, что хлороводородная кислота, которая находится в данном ряду левее, способна вытеснять кислотный остаток карбоновой кислоты, стоящей в ряду правее. Нужно учитывать, что карбоновая кислота слабая и при стандартных условиях она распадется на углекислый газ и воду. Углекислый газ выделяется из раствора, а вода остаётся.
Разложение кислородсодержащих кислот
В результате реакции разложения кислородсодержащих кислот всегда образуется вода и оксид.
Из приведённых выше реакций можно увидеть, что карбоновая легко разлагается при обычных условиях, так как является одной из самых слабой кислотой. Для разложения сернистой и кремниевой кислоты их растворы необходимо нагреть. Во всех трёх реакция в результате образуется вода и оксиды кислотных остатков.
Кислотность и основность
Эти два слова выражают одни из самых главных понятий, без которых немыслимо почти никакое рассуждение в органической химии. И вроде бы это так просто, что все понимают, что это такое. Увы, это совсем не так. Дело здесь в том, что раньше почти всегда мы имели дело с кислотами и основаниями в водных растворах, даже если явно об этом не говорили. Все таблицы констант диссоциации кислот и оснований, все рассуждения и расчеты, сами слова “кислый”, “подкислить”, “щелочной”, “подщелочить”, понятие о реакции среды и pH и пр. – все это относится к водным растворам. Мы так привыкли к этому, что об этом не думаем ни секунды. Зря! В органической химии этот подход работает очень плохо, настолько плохо, что если от него не избавиться, органическая химия избавится от вас. В органической химии сильная кислота больше не является таким козырем, который бьёт все основания, и то же самое справедливо для сильного основания. На любую сильную кислоту в органической химии найдётся ещё более сильная кислота, и на любое сильное основание найдётся ещё более сильное основание. И кислоты и основания всегда выступают сопряжёнными парами, и любое кислотно-основное равновесие читается как слева направо, так и справа налево, а кислота и основание меняются местами. Шкалы кислотности и основности всегда относительны, и более того, они зависят от конкретного растворителя. Попробуем разобраться почему, и что нам делать, если по-старому уже нельзя.
В разделе материал расположен блоками,которые раскрываются при кликании заголовка или стрелочек справа.
Кислотность и основность в водных растворах
Вода – это действительно уникальный растворитель, в ней все просто и элегантно, ионы в ней свободны, и все, что написано на бумаге, так и происходит в реальности, и все равны перед константой ее диссоциации. И самое главное – в водном растворе у каждой кислоты и каждого основания есть своя, одна и вполне определенная константа кислотности или основности, и они сведены в обширные и общедоступные таблицы. Все наперед известно, и любое равновесие можно взять и рассчитать.
Да, там все же есть проблема – все это хорошо только в разбавленных растворах, а в растворах с большой концентрацией наступают всякие сложности, и чем крепче раствор, тем круче сложности. В концентрированных растворах перестают соблюдаться простые законы, pH теряет смысл, и вообще начинает казаться, что кто-то подменил растворитель, и воды больше нет. На самом деле это действительно так, ведь если вы покопаетесь в памяти, то вспомните, что в корректных формулах всяких равновесий вместо концентраций присутствует какая-то загадочная термодинамическая активность, на которую все плюют, потому что в разбавленных растворах она практически не отличается от концентрации. А в концентрированных – отличается и совершенно драматически. Настолько драматически, что большинство нормальных людей предпочитает держаться подальше от концентрированных растворов. И мы так поступим. Поэтому в рассуждениях о кислотности и основности в водных растворах почти всегда избегают больших концентраций.
В этом месте кто-нибудь обязательно возмутится и спросит – а как это, что любой растворитель задает ноль энергии Гиббса и имеет единичную активность? Но растворы ведь такие разные, это невозможно. В этом непонимание и самой химической термодинамики и вообще экспериментальной основы химии как науки. Химия изучает и описывает реальные процессы. И плевать хотела на нереальные, то есть такие, которые выходят за пределы химии. Мы ведь и для химических элементов считаем нулями стандартное состояние основного аллотропа элемента. И не паримся, что и водород, и графит, и металлическая платина – все нули. Мы не можем превратить водород в уголь, а уголь в платину. В этом месте обязательно найдется знаток космогонии, который скажет, как же не можем, а откуда тогда все взялось? Мы же знаем, что сначала был один водород (и гелий, но черт с ним, в химии гелия нет), а потом звезды сварили из водорода все остальные элементы, весьма драматическим образом. Значит можно сравнивать разные элементы по энергиям! Можно, но это не забота химии. Нам, химикам, плевать на это. Мы не звёзды, звёзды не мы. Не в этом смысле, по крайней мере, а в другом-то звёзды, конечно. В наших колбах никогда не загорится плазма, достаточная для термоядерного синтеза. Надеюсь, по крайней мере. Если кто-нибудь не уронит кузькину мать на наши лаборатории. Вот и с растворами ьакая же история, только не такая драматическая. Мы никогда не имеем дело с процессами, в которых один раствор в одном чистом расторителе в равновесном процессе преврщается в другой раствор в другом растворителе. Здесь очень важно слово “равновесном”. Попробуйте придумать такой процесс, если не верите. А пока не придумали, и не верифицировали вашу идею, придется смириться с тем, что химику совершенно до лампочки то, что в самых разных растворах в разны растворителях получаются одинаковые точки отсчета энергий Гиббса. Вообще-то это даже очень удобно. Основоположники химической термодинамики ох и неглупые были люди, прямо изумление берет какие неглупые!
Но в органической химии проблем гораздо больше. В органической химии очень редко используют воду как растворитель, особенно как единственный растворитель (довольно часто можно встретить смеси воды с другими растворителями, но почти никогда – чистую воду).
Первая и очень важная проблема – в воде почти не растворимо подавляющее большинство органических веществ, а реакции все же принято вести в растворах. Кто-нибудь обязательно возразит – в реальной химии полно гетерогенных реакций. Да просто если обратить внимание на то, что мы делаем в практикуме, нельзя не заметить, что в каждой второй реакционной смеси что-нибудь валяется на дне или плавает, или два слоя в жидкости – ну явно это все не кристально прозрачные настоящие растворы! Но, уверяю вас, реакции идут только тогда, когда реагирующие молекулы могут встретиться, а встретиться молекулам проще всего, если они находятся в одной фазе, сохраняя при этом подвижность. Идеальный тип фазы для этого – жидкость. В газовой фазе молекулы тоже носятся как угорелые, но их там мало и у них много проблем с тем, что в газовой фазе неоткуда взять необходимую энергию, а еще чаще некуда девать лишнюю энергию, поэтому мы не будем рассматривать реакции в газовой фазе. А в твердой фазе молекулы фактически неподвижны. Поэтому реакции в подавляющем большинстве случаев (с нашей точки зрения это означает всегда) идут в жидком растворе, и газообразные или твердые вещества вначале обязательно растворяются. Очень часто растворение происходит не полностью (поэтому реагенты в химии часто берут в избытке), или происходит постепенно по мере расходования в реакции, поэтому мы и видим гетерогенные реакционные смеси. Но какая-то растворимость быть должна, и не очень малая, так как в этом случае реакция будет очень медленной. Вот в воде растворимость очень многих органических соединений настолько мала, что реакции идут, если идут, очень медленно.
Но это не все проблемы воды. Вода еще и весьма реакционноспособное соединение, и многие вещества, используемые в органике – сильные основания, гидриды, щелочные металлы, соединения, склонные к гидролизу – с водой реагируют, и мы получим не ту реакцию, которую хотели сделать. И в придачу иногда получим большие проблемы.
Вода жестко ограничивает диапазон основности и кислотности – многие органические реакции требуют более сильных кислот и оснований, чем те, которые достижимы в водных растворах.
Поэтому вместо воды приходится использовать органические жидкости, такие как эфир, ацетон, этанол, уксусную кислоту, бензол, хлороформ, и прочая, и прочая – многие десятки наименований. Это решает проблему растворимости, но создает новую проблему там, где в реакциях ожидается образование ионов. Органические жидкости малополярны и плохо сольватируют ионы. Поэтому ионы в них несвободны, они не могут отойти друг от друга: написать их на бумаге можно, но в реальности их нет, вместо них всякие ионные пары или ионные агломераты, с которыми нельзя обращаться так же, как со свободными ионами. Кроме того, если вы возьмете то, что в обычном смысле точно является кислотой, например, серную кислоту, и растворите ее в хлороформе, серной кислоте некому будет отдать протон, хлороформу он с приплатой не нужен. А если растворите в этаноле, будет еще хуже, так как пойдут всякие неожиданные реакции, явно более сложные, чем перемещение протона. И так почти везде. Что же, серная кислота уже и не кислота?!
Кислоты и основания по Бренстеду-Лоури
Еще раз зададим этот странный вопрос: серная кислота – это кислота? Ответ будет не менее странным, чем вопрос: это заранее неизвестно. Или даже еще точнее – этот вопрос не имеет смысла по отношению к конкретному веществу, даже если в его названии зазывно звучит слово “кислота” (или “основание”). Кислотно-основные свойства выясняются всегда в парах веществ, тогда одно может стать кислотой, а другое основанием. А в другой паре роли вполне могут измениться на противоположные. Можно даже сказать уже совсем злобно – каждая кислота однажды станет основанием. А каждое основание кислотой. К этому парадоксу стоит отнестись с осторожностью, но первая половина его (“каждая кислота…”) почти безусловно верна, хотя вторая (“каждое основание…”) имеет огромное количество исключений, поэтому точнее можно было бы сказать: “некоторые основания могут быть и кислотами”.
Не будем авансом расстраиваться. Серная кислота почти всегда, безусловно, кислота. И это очень легко установить. Добавьте (мысленно!) в тот же раствор какое-нибудь известное основание, например, метиламин. И вы увидите, как протон от кислоты переместится к метиламину. И это произойдет в любом растворителе (даже в воде, но в воде это происходит не прямо, а через посредничество воды).
В этом состоит фундаментальная концепция кислот и оснований Бренстеда-Лоури, или, как говорят и пишут гораздо чаще, просто Бренстеда (точнее, Брёнстеда), что несправедливо, но так уж устроена наука – вторых всегда забывают, и если у вас фамилия не на А или Б, или хотя бы Ц, бросайте химию и вообще науку сразу, у вас нет шансов остаться в памяти потомков.
Взаимодействие кислоты и основания – это всегда равновесие – равновесие переноса протона. Не забывайте писать знак равновесия, когда записываете реакцию между кислотой и основанием. Это – важный элемент культуры (может ли кто-нибудь признаться в желании быть диким химиком? – но если вы не пишете знак равновесия в переносе протона, то фактически признаетесь именно в этом, поздравляю), дань корректности, и элемент самодисциплины – не забывая об этом никогда, вы перестанете делать глупые ошибки, связанные с неверной оценкой относительной кислотности и основности. Почему это так важно? Да потому, что если мы ставим простую стрелку или знак равенства, то мы фактически подразумеваем, что любое взаимодействие кислоты и основания приводит к количественному переносу протона. Но это не так – перенос протона всегда равновесен, и для того, чтобы понять, насколько хорошо и насколько полно нам удалось оторвать протон от какой-то кислоты, нам нужно иметь представление об относительной кислотности и основности, и искать количественные характеристики кислот и оснований. Знак равновесия все время напоминает нам не забывать об этом.
Никогда не путайте основания Бренстеда и основания Льюиса несмотря на то, что основания Бренстеда почти всегда являются основаниями Льюиса. Но эти два свойства проявляются в совершенно разных реакциях, а название должно соответствовать ситуации. Кислоты Бренстеда и кислоты Льюиса и так никто не путает.
Константы кислотности и основности в воде
Как только мы переходим к теории Бренстеда-Лоури (а другой в неводных растворах нет, про кислоты и основания Льюиса поговорим отдельно, но кислотность по Льюису никогда не используется для количественных оценок) эта определенность исчезает. Константы кислотности и основности по Бренстеду-Лоури всегда относительны, и шкалы кислотности и основности в неводных средах фактически являются плавающими, не привязанными к какой-то системе координат с определенным началом (в водных растворах шкалы привязаны к константе кислотности воды).
И вот почему. Напишем реакцию между кислотой и основанием сначала в воде. В воде кислота имеет константу кислотности, которая записывается очевидным образом. Основание имеет константу основности, которая также записывается вполне определенным, хотя и чуть более сложным способом, так как нужно учесть образование гидроксид иона из воды. Если перемножить константу кислотности кислоты на константу основности основания получим константу равновесия реакции кислоты и основания, но помноженную на константу кислотности воды (которую обычно называют ионным произведением, величину которого знают все). Это просто, но не удобно. Поэтому очень часто вместо константы основности основания используют константу кислотности протонированного основания (сопряженной кислоты основания).
Фактически получаем просто сравнение двух кислот, и равновесие будет сдвинуто в сторону более слабой кислоты. Ровно так и должно быть “из общих соображений”, и это славно. Это легко понять и запомнить. Гораздо сложнее было бы сравнивать константу кислотности и константу основности – как понять из этих величин, куда пойдет протон? Придется в уме или на бумажке производить вычисление, домножая еще и на ионное произведение воды. Да, это нехитрое вычисление, но ум нам дан не для того, чтобы забивать его всякой дрянью.
Кислотность и основность в неводной среде
Сразу возникает вопрос, почему бы не использовать константы кислотности и основности из таблиц для водных растворов. Ответ простой – этого нельзя делать ни к коем случае! Растворитель очень сильно влияет на кислотность и основность. Константы кислотности из таблиц для воды совершенно не годятся. Почему бы тогда не найти таблицы кислотности и основности для других растворителей. Ответ многих должен просто шокировать. Во-первых, потому что таких таблиц для большинства (подавляющего большинства = почти всех) растворителей просто нет в природе. Чем же, черт возьми, занимаются чертовы химики, если такой простой вещи до сих пор не сделали! Чем занимаются, тем и занимаются, и если вам кажется, что не тем, займитесь этим сами. И вещь эта совсем не такая простая. Чертовски сложная это вещь на самом деле.
Попробуем прикинуть то, что мы делали для водных растворов, для произвольного растворителя. И сразу поймем, в чем одна из проблем. В водном растворе сама вода выполняет роль переносчика протона: молекула воды забирает протон у кислот и передает его основанию. Основание отнимает протон у молекулы воды, и образующийся гидроксид ион отнимает протон у кислоты. Кроме того мы знаем, что вводном растворе все ионы свободны, могут перемещаться туда, куда хотят, и единственное ограничение, которое на все это накладывается, это сохранение общей электронейтральности любого конечного объема раствора.
В других растворителях это не так. Да,есть растворители, сильно похожие на воду, например, спирты. Молекула спирта тоже может служить переносчиком протона, передавая его от кислоты к основанию почти так же, как вода. Но ионы в спиртах несвободны, катионы и анионы не могут плавать сами по себе, но обычно держатся рядом друг с другом (это называется “ионная пара”). Немного позже мы поговорим подробнее о свойствах растворителей, и попробуем разобраться, почему так происходит. Сейчас просто поймем, что это так. Почему это важно? Легко понять. Вот возьмем, например, гидроксид натрия и гидроксид калия. В воде это одно и то же основание – гидроксид-ион, а катион металла нам интересен только тогда, когда мы считаем концентрацию раствора и берем навеску реактива. Раствор 40 грамм NaOH в литре воды это с точки зрения основности точно то же самое, что раствор 56 грамм KOH в том же литре. И если представить себе ситуацию, что от вас потребовался литр одномолярной щелочи, а по недосмотру едкого натра осталось в банке на донышке всего 20 грамм, то смело растворяйте их и бросайте туда же еще 28 грамм едкого кали – никто не заметит, что это два реактива в растворе, а не один!
Но почти в любом другом растворителе, включая спирты, это – два разных основания! И если в методике написано растворить KOH в этаноле, а у вас нет едкого кали, и рука тянется за едким натром, остановите ее (руку) и идите искать калийную щелочь. Иначе с хорошей долей вероятности запорете синтез и получите плохой выход, а то и вообще не то, что ожидали. Потому что в неводных растворах катионы металлов не уходят от гидроксид-иона, взаимодействуют с ним, мешают ему реагировать с кислотой, отрывая от нее протон. Более мелкий катион натрия взаимодействует сильнее и мешает сильнее, чем более крупный катион калия (надеюсь, понятно почему – это простое следствие закона Кулона – сила притяжения зарядов очень быстро уменьшается с увеличением расстояния между центрами заряженных, в данном случае, шариков). На это все еще и наложится разная растворимость ионных веществ в разных растворителях. Не одна беда, а много разных бед! Учесть все это задача настолько сложная, что о количественных измерениях проще забыть сразу. Потом когда-нибудь разберемся. Химии ведь всего около 200 лет, пройдет еще хотя бы столько же, разберутся. А нам-то что делать? Просто не забывать, что это так, и пока поедем дальше. Еще не все проблемы выявлены.
Протон в неводных средах
Но, и это нужно запомнить как важнейшую и строжайшую заповедь
– не пиши протона в неводных средах твоих –
Константы кислотности и основности в неводных средах
Представьте себе, что у вас две кислоты и одно основание. И вы измеряете константу равновесия реакции первой кислоты с основанием, и второй кислоты с основанием. И находите, что вторая константа равновесия, например, в десять раз больше первой. Значит ли это, что вторая кислота в десять раз сильнее первой? Да, значит, и это легко проверить. Находим второе основание и измеряем константы равновесия с обеими кислотами. И, да – вторая константа опять будет в 10 раз больше первой (с учетом точности эксперимента). И теперь у нас 4 константы, и мы можем сравнить уже первую кислоту с первым и вторым основанием и убедиться, что отношение будет таким же, как у второй кислоты с первым и вторым основанием – мы определили разницу в основности (или кислотности сопряженной кислоты) оснований. А это возможно только, если в неводной среде, как и в водной, есть вполне определенные константы кислотности и основности. Но – мы по-прежнему их не знаем, знаем только их отношения.
Шкалы констант кислотности и основности в неводных средах
Но вообще-то это именно то, что реально нужно – ведь нам требуется только предсказывать константы равновесий между кислотами и основаниями. И если мы можем расположить все интересующие нас кислоты и основания, и мы можем все это хозяйство расположить в виде множества относительных кислотностей, то деля одно на другое для любой пары из этого множества, мы сможем получать вполне корректные константы равновесий. И чисел у нас для примерного множества из 10+10 будет не сто, и даже не 20, как в воде, а всего 19. И одно произвольное число, которое можно без ущерба для математики принять за единицу (если непонятно, откуда это, сведите множество к минимуму – к двум кислотам, и пусть, например, одна кислота в 10 раз сильнее другой – тогда для характеристики этих двух кислот пойдут числа 1 и 10, или 2 и 20, или 1000 и 10000, или 3.14 и 31.4 и т.п.). Это типичная проблема для экспериментальных естественных наук – это называется или выбор единицы измерения или калибровка.
Вот мы приехали к очень странному результату. В неводной среде можно получить набор чисел, которые в расчетах констант равновесий реакций кислота-основание играют роль констант кислотности, но сами величины эти могут быть вполне произвольны, если сохраняются их отношения. Раз числа произвольны, это не настоящие константы кислотности, а относительные. Но поскольку мы все равно не можем понять, что такое настоящие константы кислотности в неводной среде и как нужно корректно записать закон действия масс (уравнение равновесия) для одной кислоты или основания в неводном растворе, то придется смириться с такой несправедливостью. И еще придется смириться с тем, что в разных растворителях шкалы будут разными (это еще не самая плохая новость – настоящий кошмар впереди).
То, что шкалы в разных растворителях окажутся разными для практических целей не имеет большого значения, но с эстетической точки зрения страшно раздражает. Значения это не имеет, потому что числа из разных шкал никогда не встретятся в одном расчете – невозможно перенести протон не только от кислоты к основанию, но параллельно еще из одного растворителя в другой. Мысленно такой эксперимент возможен, но реально нет. Но вполне возможно изучить реакции кислот и оснований в смеси растворителей. И тогда мы либо должны будем еще и перемерить все шкалы в различных смесях, что уже совсем похоже на сизифов труд, причем сам Сизиф, если бы ему предложили альтернативу катать камень или измерять константы, почти наверняка предпочел бы продолжать свою античную забаву. Либо мы должны как-то интерполировать между двумя шкалами в чистых растворителях, а тогда все же желательно их как-то разумно заякорить (откалибровать, задать масштаб) и не давать им свободно елозить по числовой оси.
Обычно все же вместо того, чтобы мириться, пытаются сделать одну немного неточную, но полезную вещь. Для того, чтобы ее сделать, задают вопрос, а почему константы в разных растворителях разные. Видимо, виновата сольватация, взаимодействие кислот и оснований из равновесий с растворителем. А можно ли ее, энергию сольватации, найти (измерить, рассчитать, предсказать на основании исследования внутренностей жертвенных животных, и т.п.)? Ответ: попробовать можно, и многие пробовали и до сих пор пробуют, но это сложно и ненадежно, если делать это для каждой молекулы или иона, задействованных в равновесиях.
Тогда можно сделать проще – найти такие кислоты или основания, у которых сольватация относительно слаба и сводится только к самым простым свойствам сред. Здесь уже все проще, потому что хорошо известно, что сольватируется сильно, а что слабо. Сильно сольватируются любые частицы с концентрированным зарядом и с хорошими возможностями для химического взаимодействия (наличие неподеленных пар, пустых орбиталей, доноров или акцепторов водородной связи и т.п.). Если всего этого нет, или хотя бы мало, то можно считать, что растворитель относительно слабо взаимодействует с такими молекулами и ионами, и можно или совсем этим пренебречь, или ввести небольшую поправку, например, на полярность среды.
Стоит нам найти хотя бы одну такую кислоту или основание, как мы можем сказать, что ее константа кислотности приблизительно одинакова в разных средах, а тогда почему и не в воде, и если так, то почему бы нам не выбрать такую кислоту или основание за якорь всей системы констант. Взять ее за точку отсчета шкалы, но вместо единицы использовать значение константы кислотности в воде. Тогда мы получим нечто очень привлекательное: табличку чисел, принимаемых нами за константы кислотности в каком-то неводном растворителе, причем некоторые из этих чисел будут очень близки к числам из другой таблицы, таблицы констант кислотности в воде, а некоторые будут сильно, а иногда и очень сильно, на многие порядки, различаться. И мы узнаем, что кислотность или основность в неводном растворителе для некоторых кислот и оснований может быть намного – в разы, на порядки – больше чем в воде. Это очень важное знание и мы будем часто им пользоваться.
Можно ли в органическом растворителе использовать индикаторные бумажки?
Не будем дивить людей и пихать индикаторные бумажки в неводные растворы, даже если нас к этому толкает какая-нибудь непродуманная методика.
Почему мы так любим использовать pK, когда речь идет о константах кислотности и основности
Но есть и другая и существенно более важная причина, чем удобство (хотя что может быть важнее, чем удобство!). Логарифм от константы равновесия имеет размерность энергии, и действительно это ни что иное как свободная энергия, точнее ее изменение, связанное с реакцией, изображающей равновесие. Взяв эту величину с обратным знаком, мы просто и получаем оценку изменения свободной энергии ΔG для прямой реакции в равновесии. Напомню, что положительная величина ΔG это плохо, это значит, что реакция вперед идти не хочет, и чем больше эта величина, тем больше не хочет. Если в равновесии прямая реакция идти не хочет, это непосредственно значит, что хочет обратная (для нее ΔG имеет ту же величину, но обратный знак). Когда мы сравниваем pK двух кислот или двух оснований, мы просто непосредственно получаем ответ на то, кто у кого может оторвать протон, и насколько легко пойдет этот процесс. Только нужно не запутаться в том, что из чего нужно вычитать. Займемся этим чуть позже.
В каких единицах энергии получаются величины, полученные из pK? Строго говоря, это не важно, потому что мы всегда имеем дело не с самими величинами, а с их сравнением – больше-меньше. Но при желании можно и строго на этот вопрос ответить, потому что это просто – нужно просто помножить на RT, а эта величина при комнатной температуре приблизительно равна 0.6 ккал/моль. То есть разница pK в 10 единиц приблизительно соответствует разнице свободных энергий в 6 ккал/моль. Если вы привыкли к другим единицам энергии, просто найдите значение RT в этих единицах и пользуйтесь им.
«Плохие» и «хороший» растворители
Причина такой скромности очень простая и она связана не с трудоемкостью – будьте уверены, что нашлись бы желающие измерить хоть тысячу растворителей, – а в скудности того набора растворителей, который существует и доступен для использования. И большинство из существующих растворителей вообще непригодны для корректных измерений равновесий с участием заряженных частиц. Большинство органических растворителей малополярны (что это точно означает, рассмотрим немного позже), и в таких растворителях ионы очень сильно взаимодействуют друг с другом, образуя агрегаты переменного состава. Равновесия с участием таких сложных частиц накладываются на собственно кислотно-основное равновесие, и непредсказуемо изменяют измеряемые константы равновесий. Получаются очень сложные зависимости от концентраций, из которых сложно или даже вообще невозможно извлечь константы кислотности и основности.
Когда мы обсуждали константы кислотности в неводных растворителях, проделывали мысленный эксперимент с двумя кислотами и двумя основаниями, и утверждали, что если в реакциях с первым основанием одна кислота оказалась в столько-то раз сильнее второй, то и по отношению к второму основанию отношение будет тем же, приблизительно. Именно из этого мы вывели возможность измерения шкалы кислотности и использовании ее для оценки констант равновесий в реакциях кислот и оснований. Но это возможно только, если катион и анион взаимодействуют относительно слабо, и тогда мы можем разделить кислотную и основную пары. В воде именно так – там катионы и анионы разделены и свободны. А в малополярной органике это не так, и каждая пара анион-катион взаимодействует сильно и фактически непредсказуемо. В том мысленном эксперименте отношение кислотностей в реакциях с разными основаниями будет разным – и сильно. И какое выбрать?
Поэтому и нет у нас под рукой шкал кислотности в толуоле, этаноле, эфире, ацетоне и т.п. Даже в ТГФ нет хорошей шкалы, а ведь это очень скверно, потому что ТГФ очень часто используют для кислотно-основных реакций с так называемыми CH-кислотами, а это просто одна из самых важных реакций в органике.
В этом смысле мы можем назвать большинство органических растворителей “плохими”. Это не значит, что в них не идут реакции кислот и оснований. Но это значит, что мы не сможем даже грубо оценить константы равновесий таких реакций. А нам это может понадобиться? Это сложный вопрос и мы к нему еще вернемся. Пока скромно заметим, что мы бы не отказались, если бы это было возможно. Это упростило бы многие проблемы.
Но органика все же не безнадежна. Среди органических жидкостей есть полярные среды, в которых ионы чувствуют себя более-менее свободно. Не совсем так, как в воде, но неплохо. Самая знаменитая из таких жидкостей называется диметилсульфоксид (ДМСО). Эта жидкость обладает высокой полярностью, сравнимой с полярность воды (пока без подробностей, но это так), она очень слабо взаимодействует с анионами, и довольно сильно – с катионами, особенно такими, которые имеют валентные возможности для взаимодействия (катионами металлов, небольшими протонированными частицами). В этом растворителе получается хорошо воспроизводимая шкала кислотностей (или основностей, выраженных как кислотность сопряженных кислот).
Очень большое количество таких данных измерил и собрал из других работ канадский ученый Ф.Бордвелл. Таблицы доступны в сети. ДМСО в этом смысле – хороший растворитель.
Как же это получается – плохих много, а хороший один? Не будем драматизировать – растворителей, похожих на ДМСО довольно много, но они похожи друг на друга, и шкала кислотностей в любом таком растворителе будет очень похожа на шкалу в ДМСО, поэтому большого смысла измерять и публиковать ее нет.
Что такое «сильная кислота»?
В воде “сильной кислотой” мы называем кислоту, которая полностью диссоциирована в разбавленных растворах. Следовательно у сильных кислот нет констант кислотности, просто потому что в знаменателе стоит концентрация недиссоциированной формы, а она равна нулю, и константа кислотности стремится к бесконечности, а значит не имеет смысла. Если вспомнить, что в воде кислота передает протон воде, то становится понятно, что сильной кислотой в воде является кислота, способная количественно протонировать воду (сколько положили кислоты, столько и будет ионов гидроксония).
Из всего этого следует один чрезвычайно важный вывод:
в воде все сильные кислоты одинаковы
и отличаются только молярной массой. Если кислота сильная, то это все, что про нее можно сказать. Не может быть более сильной сильной кислоты и менее сильной сильной кислоты. В воде нет разницы между серной, хлорной, фторсульфоновой, тетрафторборной, толуолсульфоновой и т.п. кислотами, но нелишне помнить, что с случае многоосновных кислот типа серной, только первая ступень диссоциации соответствует высокому званию “сильной кислоты”. Раствор сильной кислоты легко характеризовать pH раствора, который очень легко прикинуть. Корректности ради не забудем, что речь идет о разбавленных растворах. В концентрированных растворах сильные кислоты ведут себя так, как будто мы имеем дело с неводной средой.
Как же узнать, какая кислота сильнее. Да очень просто – мы же уже разобрались, что в неводных средах кислота передает протон основанию, и степень переноса протона можно узнать, если знать константы кислотности (pK). А если не знать, то можно поступить совсем просто. Представьте себе, что у вас есть набор оснований (в прямом смысле – коробочка такая, в которой лежат пузыречки с основаниями), и все эти основания кто-то заботливо расположил по убыванию основности: слева лежат более сильные основания, справа – более слабые. И еще мы для каждого основания можем легко определить, запротонировалось ли оно, и насколько – имеем какой-нибудь удобный спектроскопический метод, который позволяет быстро различить основание и его сопряженную кислоту, и измерить их относительные концентрации. Готовый набор из 17 оснований, перекрывающий огромный диапазон основности, предложил еще в 1932 году основоположник теории органической химии Луис Гаммет, и этот набор, уже готовый, можно прямо купить в магазине (номер по каталогу Сигма-Олдрич-Мерк 14,383-9). А можно и самостоятельно составить, порывшись в лаборатории на полках, но придется по литературе разузнать константы основности и характеристики основной и кислотной форм. Такие наборы принято называть наборами индикаторов, и вполне удачно, так как они выполняют ту же роль, что и наборы красителей, изменяющих цвет для определения pH в водном растворе.
Итак, берем первую кислоту и добавляем одинаковое количество в отсортированный по убыванию основности ряд пузырьков с растворами индикаторов. Замечаем, что в пузырьках слева происходит протонирование, а пузырьках справа нет. Где-то в середине будет ряд растворов с частичным протонированием, и мы можем определить степень протонирования и увидеть что она падает слева направо. Берем вторую кислоту и проделываем с ней то же самое. Если увидим, что она протонирует больше индикаторов и заезжает дальше направо, то скажем, что эта кислота сильнее первой. А если наоборот – меньше индикаторов и останавливается ближе к левому концу ряда пробирок с растворами индикаторв – то слабее. И так далее со всеми кислотами, которые у нас есть. Если повезет, то найдем такие кислоты, которые протонируют почти все индикаторы – и такие кислоты будут самыми сильными из тех, что нам удалось найти. Почти наверняка нам не удастся найти кислот, которые протонируют все индикаторы, особенно если у нас есть готовый набор Гаммета – с правой стороны там такие слабые основания, что они не протонируются в растворе концентрированной серной кислоты. Но есть на свете кислоты, которые и их протонируют – это суперкислоты. Мы еще к этому вернемся, поэтому здесь без подробностей – только общая идея, как определить относительную силу сильных кислот.
Оценку кислотности кислот по набору индикаторов можно сделать в любом растворителе. Но есть одна важная характеристика растворителя, определяющая, какую максимальную кислотность можно в нем получить. Да, растворители ограничивают диапазон возможной кислотности сверху, и то что было сказано раньше – в неводных растворителях все кислоты разные, вообще говоря, неверно. Многие растворители являются основаниями (строго говоря, почти все растворители являются основаниями, а еще строже – если найдете растворитель, который не является основанием, сообщите мне, и чур, жидкие гелий, неон, аргон, криптон и ксенон не предлагать). И у каждого растворителя есть собственная основность, у одних большая, у других меньшая. И тогда может получится, а точнее обязательно получится так, что некоторые из индикаторов будут иметь меньшую основность чем молекулы растворителя, и протонироваться будет не индикатор, а растворитель (не забывайте еще, что концентрация растворителя в растворе всегда больше, сем концентрация растворенного вещества, поэтому даже при сравнимой основности растворителя и индикатора протонироваться будет в основном растворитель). Понятно, что все еще более сильные кислоты протонировать будут только растворитель, и мы потеряем возможность судить о том, что они в этом растворителе сильнее. Собственная основность растворителя устанавливает потолок достижимой кислотности. Мы ведь именно это уже видели в воде – собственная основность воды довольно велика. А если мы возьмем в качестве растворителя, например, эфир или ТГФ, которые обладают даже большей основностью чем вода, получим почти то же самое, что в воде – мы не сможем различить кислот, более сильных чем, условно, HCl. А если возьмем в качестве растворителя такое неслабое основание как триэтиламин, то не сможем различить уксусную кислоту от серной. И наоборот, если взять более слабое основание, например, ацетон, то диапазон кислотности вырастет, хотя и не очень сильно.
Теперь мы, наверное, легко поймем, что с суперкислотами в реальности проблем очень много – их нельзя различить в подавляющем большинстве растворителей, потому что они их протонируют, и протон не доходит до индикаторов со слабоосновного конца набора. И для того чтобы искать самую сильную кислоту – Волшебную кислоту – Джорджу Оле пришлось сначала придумать очень экзотический и чрезвычайно слабоосновный растворитель, потому что во всех обычных растворителях разницу в кислотности суперкислот установить невозможно.
Что такое «сильное основание»?
В воде ситуация очень похожа. Начиная с некоторого уровня основности мы теряем возможность различать основания по силе. Вода – слабая кислота, и любое сильное основание количественно ее депротонирует, возвращая в раствор одно и то же – гидроксид-ион. Поэтому самое сильное основание в воде – это и есть сам гидроксид, который можно просто взять в виде гидроксида щелочного металла, или просто щелочи.
Сильное основание в воде – это щелочь, только щелочь, и ничего кроме щелочи.
Совершенно бессмысленно в водных растворах использовать более сильные основания, например, алкоксиды или гидриды – получите эквивалентное количество щелочи, которая заведомо дешевле и доступнее.
В неводных растворителях диапазон основностей гораздо шире. Так как мы договорились характеризовать основность через кислотность сопряженной кислоты, получим. что задача расположения оснований по силе ничем не отличается от задачи расположения сопряженных кислот по кислотности. Чем слабее сопряженная кислота, тем сильнее основание. И наоборот. Как измеряют pKa для очень сильных оснований обсудим как-нибудь отдельно. В принципе, это неважно.
Важно понимать, что растворитель так же ограничивает силу основания, как и силу кислоты. Растворитель может оказаться кислотой, и тогда все основания, превосходящие по силе сопряженное основание растворителя, будут его депротонировать, и единственным основанием в таких растворах и окажется сопряженное основание растворителя. Но картина здесь намного более приятная, чем в случае силы сильных кислот. Найти растворитель, который бы не являлся основанием, почти невозможно, но далеко не все растворители являются кислотами. Чтобы быть кислотой растворитель должен иметь протоны, которые можно оторвать достаточно сильным основанием. Понятно, что наличие OH, NH, SH в составе молекул растворителя заведомо делает их кислотами, но и многие связи CH также уязвимы.
Поэтому, например, в растворе метанола самым сильным основанием является метоксид, и бесполезно растворять метаноле трет-бутилат калия или амид натрия – будет тот же метоксид, заведомо более слабое основание чем любое из взятых.
Такие вещи стоит иметь в виду. Иногда ситуация в том или ином растворителе совсем не очевидна. Тогда нужно искать pKa и оценивать основность. Вот, например, уже знакомый нам диметилсульфоксид (ДМСО) – почему бы не растворить в нем амид натрия. Но оказывается, ДМСО это слабая кислота с pKa = 35, а основность амид-аниона, выражаемая через кислотность аммиака – pKa = 38! Амид – более сильное основание, чем сопряженное основание ДМСО (его иногда называют димсил-анионом), и это значит, что растворяя амид натрия в ДМСО, мы больше не имеем амид, а имеем немного более слабое основание. Во многих случаях это непринципиально, но иногда лишние 3 единицы pK очень важны. А вот трет-бутилат калия в ДМСО растворить очень даже рекомендуется – получите раствор очень сильного основания (pKa трет-бутанола в ДМСО около 31).
Обратите внимание, что ограничение, накладываемое собственно кислотностью растворителя, не означает, что в таком растворителе не может быть оснований с pK большим, чем у растворителя. Не забывайте, что в константы равновесия входят еще и концентрации, а современные методы анализа позволяют определять очень малые концентрации. Если вы посмотрите на таблицу pKa в ДМСО, то найдете там основания с величинами больше 35. Это совсем другая проблема – как измерить или оценить такое pKa в таком растворителе. Это возможно, хотя чем больше разница, тем меньше надежность такой оценки и меньше точность. Для практических целей в этом мало смысла, потому что какое бы ни было pKa, реальная основность, достижимая в растворе, ограничена свойствами растворителя. Мы еще вернемся к этой важной теме, когда будем, например, выяснять, каким образом заведомо более слабые основания умудряются участвовать в реакциях, требующих депротонирования очень слабых кислот и образования более сильных сопряженных оснований.