Что значит окружности касаются в одной точке

Окружность. Относительное взаимоположение окружностей.

Если две окружности имеют только одну общую точку, то говорят, что они касаются.

Если же две окружности имеют две общие точки, то говорят, что они пересекаются.

Трех общих точек две не сливающиеся окружности иметь не могут, потому, что в противном случае через три точки можно было бы провести две различные окружности, что невозможно.

Будем называть линией центров прямую, проходящую через центры двух окружностей (например, прямую OO1).

Теорема.

Если две окружности имеют общую точку по одну сторону от линии центров, то они имеют общую точку и по другую сторону от этой линии, т.е. такие окружности пересекаются.

Пусть окружности O и O1 имеют общую точку A, лежащую вне линии центров OO1. Требуется доказать, что эти окружности имеют еще общую точку по другую сторону от прямой OO1.

Опустим из A на прямую OO1 перпендикуляр AB и продолжим его на расстояние BA1, равное AB. Докажем теперь, что точка A1 принадлежит обеим окружностям. Из построения видно, что точки O и O1 лежат на перпендикуляре, проведенном к отрезку AA1 через его середину. Из этого следует, что точка O одинаково удалена от A и A1. То же можно сказать и о точке O1. Значит обе окружности, при продолжении их, пройдут через A1.Таким образом, окружности имеют две общие точки : A (по условию) и A1 (по доказанному). Следовательно, они пересекаются.

Следствие.

Общая хорда (AA1) двух пересекающихся окружностей перпендикулярна к линии центров и делится ею пополам.

Теоремы.

1. Если две окружности имеют общую точку на линии их центров или на ее продолжении, то они касаются.

2. Обратно: если две окружности касаются, то общая их точка лежит на линии центров или на ее продолжении.

Признаки различных случаев относительного положения окружностей.

Пусть имеем две окружности с центрами O и O1, радиусами R и R1 и расстоянием между центрами d.

Эти окружности могут находиться в следующих 5-ти относительных положениях:

Что значит окружности касаются в одной точке

2. Окружности имеют внешнее касание. Тогда d = R + R1, так как точка касания лежит на линии центров O O1.

3. Окружности пересекаются. Тогда d R + R1, потому что в треугольнике OAO1 сторона OO1 меньше суммы, но больше разности двух других сторон.

5. Одна окружность лежит внутри другой, не касаясь. Тогда, очевидно,

d R + R1, то окружности расположены одна вне другой, не касаясь.

2. Если d = R + R1, то окружности касаются извне.

5. Если d R Е R1. Значит, все эти случаи исключаются. Остается один возможный, именно тот, который требовалось доказать. Таким образом, перечисленные признаки различных случаев относительно положения двух окружностей не только необходимы, но и достаточны.

Источник

Касательные к окружности

В обычной жизни ты очень хорошо представляешь себе, что значит слово «коснуться».

И вот представь себе, в математике тоже существует такое понятие.

В этой теме мы разберёмся с выражениями «прямая касается окружности» и «две окружности касаются».

Касательные к окружности. Коротко о главном

Касательная – прямая, которая имеет с окружностью только одну общую точку.

Касательная окружности перпендикулярна радиусу, проведённому в точку касания.

Что значит окружности касаются в одной точке

Угол между касательной и хордой равен половине градусной меры дуги, которая находится внутри угла: \( \displaystyle \angle CAB=\frac<1><2>\angle AOB\), где:

Что значит окружности касаются в одной точке

Что значит окружности касаются в одной точке

Что значит окружности касаются в одной точке

Касание окружностей: если две окружности касаются, то точка касания лежит на прямой, соединяющей их центры. Кроме того, эта прямая перпендикулярна касательной, проведённой в точку касания окружностей:

Внешнее касание

Что значит окружности касаются в одной точке

Внутреннее касание

Что значит окружности касаются в одной точке

Для двух окружностей с центрами \( \displaystyle <>\) и \( \displaystyle <_<1>>\), и радиусами \( \displaystyle R=OA\) и \( \displaystyle r=<_<1>>A\):

Касательные к окружности. Определения и основная теорема

Прямая касается окружности, если имеет с ней ровно одну общую точку.

Что значит окружности касаются в одной точке

Такая прямая называется касательной к данной окружности.

Посмотри-ка внимательно: очень похоже на жизнь, не правда ли? Прямая на картинке лишь чуть-чуть дотрагивается до окружности, касается ее.

Ну вот, и точно так же:

Две окружности касаются, если имеют ровно одну общую точку.

Что значит окружности касаются в одной точке

Что же тебе нужно знать о касательных и касающихся окружности?

Самая важная теорема гласит, что:

Радиус, проведённый в точку касания, перпендикулярен касательной.

Что значит окружности касаются в одной точке

Запомни это прямо как таблицу умножения! Все остальные факты о касательных и касающихся окружностях основаны именно на этой теореме.

Доказывать её мы здесь не будем, а вот как эта самая важная теорема работает, увидим сейчас несколько раз.

Угол между касательной и хордой

Угол между касательной и хордой равен половине градусной меры дуги, которая находится внутри угла.

Что значит окружности касаются в одной точке

Прежде всего: как это понимать? Подробнее о том, что такое «градусная мера дуги», написано в теме «Окружность. Вписанный угол».

Здесь напомним только, что в дуге столько же градусов, сколько в центральном угле, заключающем эту дугу.

То есть «градусная мера дуги» – это «сколько градусов в центральном угле» – и всё!

Что значит окружности касаются в одной точке

Ну вот, как говорит Карлсон, продолжаем разговор. Рисуем ещё раз теорему об угле между касательной и хордой.

Смотри, хорда \( \displaystyle AB\) разбила окружность на две дуги. Одна дуга находится ВНУТРИ угла \( \displaystyle BAC\), а другая дуга – внутри угла \( \displaystyle BAD\).

Что значит окружности касаются в одной точке

И теорема об угле между касательной и хордой говорит, что \( \displaystyle \angle CAB\) равен ПОЛОВИНЕ угла \( \displaystyle AOB\), \( \displaystyle \angle DAB\) равен ПОЛОВИНЕ большего (на рисунке — зеленого) угла \( \displaystyle AOB\).

При чем же тут тот факт, что радиус, проведенный в точку касания, перпендикулярен касательной?

Сейчас и увидим. \( \displaystyle OA\) – радиус, \( \displaystyle AC\) – касательная.

Значит, \( \displaystyle \angle OAC=90<>^\circ \).

Что значит окружности касаются в одной точке

И осталось вспомнить, что сумма углов треугольника \( \displaystyle AOB\) равна \( \displaystyle 180<>^\circ \).

Что значит окружности касаются в одной точке

Что значит окружности касаются в одной точке

Здорово, правда? И самым главным оказалось то, что \( \displaystyle \angle OAC=90<>^\circ \).

Равенство отрезков касательных

Задумывался ли ты над вопросом «а сколько касательных можно провести из одной точки к одной окружности»? Вот, представь себе, ровно две! Вот так:

Что значит окружности касаются в одной точке

А ещё более удивительный факт состоит в том, что:

Отрезки касательных, проведённых из одной точки к одной окружности, равны.

То есть, на нашем рисунке, \( \displaystyle AB=AC\).

И для этого факта тоже самым главным является то, что радиус, проведённый в точку касания, перпендикулярен касательной.

Проведём радиусы \( \displaystyle OB\) и \( \displaystyle OC\) и соединим \( \displaystyle O\) и \( \displaystyle A\).

\( \displaystyle OB\) – радиус.

\( \displaystyle AB\) – касательная, значит, \( \displaystyle OB\bot AB\).
Ну, и так же \( \displaystyle OC\bot AC\).

Что значит окружности касаются в одной точке

Получилось два прямоугольных треугольника \( \displaystyle AOB\) и \( \displaystyle AOC\), у которых:

(заглядываем в тему «Прямоугольный треугольник«, если не помним, когда бывают равны прямоугольные треугольники).

Но раз \( \displaystyle \Delta AOB=\Delta AOC,\) то\( \displaystyle AB=AC\). УРА!

Что значит окружности касаются в одной точке

И ещё раз повторим – этот факт тоже очень важный:

Отрезки касательных, проведённых из одной точки, – равны.

И есть ещё один факт, который мы здесь не будем доказывать, но он может оказаться тебе полезен при решении задач.

Для любой прямой \( \displaystyle AD\), пересекающей окружность,\( \displaystyle AD\cdot AC=A<^<2>>\), где \( \displaystyle AB\) – отрезок касательной.

Что значит окружности касаются в одной точке

Хитроумными словами об этом говорят так:

«Квадрат длины отрезка касательной равен произведению секущей на её внешнюю часть».

Страшно? Не бойся, помни только, что в буквах это:

Что значит окружности касаются в одной точке

Общая касательная к двум окружностям

Прямая, которая касается двух окружностей, называется их общей касательной.

Что значит окружности касаются в одной точке

Общие касательные бывают внешние и внутренние. Смотри на картинки.

Две внутренние общие касательные:

Что значит окружности касаются в одной точке

Две внешние общие касательные:

Что значит окружности касаются в одной точке

А всего – четыре! Не больше, но может быть меньше.

Есть только две внешние общие касательные.

Что значит окружности касаются в одной точке

Или так: одна внутренняя и две внешних.

Что значит окружности касаются в одной точке

А может быть вообще так:

Только одна общая касательная.

Что значит окружности касаются в одной точке

И снова факты:

Длины отрезков двух внутренних общих касательных равны

Длины отрезков двух внешних общих касательных равны.

НО! При этом: внешние и внутренние касательные – разные! (а некоторых, может, и вообще нет…)

Касающиеся окружности

Касание окружностей бывает внешним и внутренним.

Вот такая картинка называется «окружности касаются внешним образом»:

Что значит окружности касаются в одной точке

А вот такая картинка называется «окружности касаются внутренним образом»:

Что значит окружности касаются в одной точке

Что же самое главное нужно знать?

Если две окружности касаются, то точка касания лежит на прямой, соединяющей центры. Кроме того, эта прямая перпендикулярна касательной, проведённой в точку касания окружностей.

Что значит окружности касаются в одной точке

Если тебе показалось слишком длинно – посмотри картинку. Может быть ещё так:

Что значит окружности касаются в одной точке

Ура, теперь ты полностью вооружён на борьбу с касательными – дерзай! 🙂

Источник

Касание двух окружностей

Две окружности, имеющие общую точку, касаются в этой точке, если они имеют в ней общую касательную.

Общая точка двух окружностей называется точкой касания окружностей.

Касание окружностей может быть внешним и внутренним.

Что значит окружности касаются в одной точке

Внешнее касание окружностей — это касание, при котором центры окружностей лежат по разные стороны от общей касательной.

Что значит окружности касаются в одной точке

Внутреннее касание окружностей — касание, при котором центры окружностей лежат по одну сторону от общей касательной.

Касающиеся окружности имеют только одну общую точку — точку касания.

Центры касающихся окружностей и их общая точка касания лежат на одной прямой.

При любом виде касания по свойству касательной касательная перпендикулярна радиусам, проведённым в точку касания:

Что значит окружности касаются в одной точке

По теореме о существовании и единственности прямой, перпендикулярной данной,через точку A можно провести только одну прямую, перпендикулярную данной прямой k.

Следовательно, все три точки: центры окружностей O1, O2 и A лежат на одной прямой.

При внешнем касании расстояние между центрами окружностей равно сумме их радиусов:

Что значит окружности касаются в одной точке

При внутреннем касании расстояние между центрами окружностей равно разности радиусов:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *