Что значит округлить до целого в физике

Округленные числа

Онлайн калькулятор для округления чисел, до целого, разряда, десятков, сотен, тысяч. Округлить дробное число.

Если нужно округлить число, это означает, что сократится его значение до сотых, десятков или тысячных, остальные значения откидываются.

При округлении, число которое отбрасывается и будет играть главную роль. Если это чисто от 0 до 5, то округляемое число остается без изменения. Когда число от 5 до 9, округляемое число увеличивается на 1.

Что значит округлить до целого в физикеПример:
Нужно округлить число 35,948 до сотых.
Это означает, что цифра 8 будет откинута. При этом предыдущая цифра, а это 4 в данном случае будет увеличена на 1.
Имеем: 35,948 = 35,95

Пример:
Нужно округлить число 0,738 до десятых.
Значит, что нужно откинуть две последние цифры – 38, обращаем внимание на следующую после той, которая остается – это 3. В данном случае оно меньше 5, поэтому изменения не проводятся.
Если цифра, которая отбрасывается равна 5, то к оставшейся добавляется 1.
Когда нужно округлить, например число 0,795 до сотых, отбрасывается 5, значит к предыдущей цифре добавляется 1. Так как у нас это 9, получится 10, соответственно 7 превратится в 8: 0,795 = 0,80.

Источник

Округление чисел

Приближённые значения

Иногда в вычисления нет необходимости использовать точные числовые значения. Для ускорения или упрощения расчётов очень часто достаточно получения приближенного результата. Для этого производят округления чисел, которые участвуют в расчетах а также и конечный результат вычислений. Приближённые значения используют тогда, когда точное значение чего-либо найти невозможно, или же это значение не важно для исследуемого предмета.

Например можно сказать, что дорога до дома занимает полчаса. Это прибличительное значение, поскольку точно сказать сколько времени займет путь до дома или слишком сложно или в большинстве случаев не так важно. Главное обозначить порядок чисел и этого бывает вполне достаточно.

В математике приближенные значения указываются с помощью специального знака.

Чтобы указать приблизительное значение чего-либо, используют округление чисел.

Округление чисел

Суть округления заключается в том, чтобы найти ближайшее значение от исходного. При этом, число может быть округлено до определённого разряда — до разряда десятков, разряда сотен, разряда тысяч.

Первое правило округления:

Второе правило округления:

Третье правило округления:

Как округлить число до целого

Правило округления числа до целого

Чтобы округлить число до целого (или округлить число до единиц), надо отбросить запятую и все числа, стоящие после запятой.

Примеры округления числа до целого:

\[ 86,\underline 2 4 \approx 86 \]
Чтобы округлить число до целого, отбрасываем запятую и все стоящие после нее числа. Так как первая отброшенная цифра 2, предыдущую цифру не изменяем. Читают: «восемьдесят шесть целых двадцать четыре сотых приближенно равно восьмидесяти шести целым».

\[ 274,\underline 8 39 \approx 275 \]
Округляя число до целого, отбрасываем запятую и все следующие за ней цифры. Так как первая из отброшенных цифр равна 8, предыдущую увеличиваем на единицу. Читают: «Двести семьдесят четыре целых восемьсот тридцать девять тысячных приближенно равно двести семидесяти пяти целым».

\[ 0,\underline 5 2 \approx 1 \]
При округлении числа до целого запятую и все стоящие за ней цифры отбрасываем. Поскольку первая из отброшенных цифр — 5, предыдущую увеличиваем на единицу. Читают: «Нуль целых пятьдесят две сотых приближенно равно одной целой».

\[ 0,\underline 3 97 \approx 0 \]
Запятую и все стоящие после нее цифры отбрасываем. Первая из отброшенных цифр — 3, поэтому предыдущую цифру не изменяем. Читают: «Нуль целых триста девяносто семь тысячных приближенно равно нуль целых».

\[ 39,\underline 7 04 \approx 40 \]
Первая из отброшенных цифр — 7, значит, стоящую перед ней цифру увеличиваем на единицу. Читают: «Тридцать девять целых семьсот четыре тысячных приближенно равно сорока целым». И еще пара примеров на округление числа до целых:

Как округлить до десятых

Правило округления числа до десятых.

Чтобы округлить десятичную дробь до десятых, надо оставить после запятой только одну цифру, а все остальные следующие за ней цифры отбросить.

Примеры округления до десятых числа:

\[ 23,7\underline 5 \approx 23,8 \]
Чтобы округлить число до десятых, оставляем после запятой первую цифру, а остальное отбрасываем. Так как первая отброшенная цифра 5, то предыдущую цифру увеличиваем на единицу. Читают: «Двадцать три целых семьдесят пять сотых приближенно равно двадцать три целых восемь десятых».

\[ 348,3\underline 1 \approx 348,3 \]
Чтобы округлить до десятых данное число, оставляем после запятой лишь первую цифру, остальное — отбрасываем. Первая отброшенная цифра 1, поэтому предыдущую цифру не изменяем. Читают: «Триста сорок восемь целых тридцать одна сотая приближенно равно триста сорок одна целая три десятых».

\[ 49,9\underline 6 2 \approx 50,0 \]
Округляя до десятых, оставляем после запятой одну цифру, а остальные — отбрасываем. Первая из отброшенных цифр — 6, значит, предыдущую увеличиваем на единицу. Читают: «Сорок девять целых, девятьсот шестьдесят две тысячных приближенно равно пятьдесят целых, нуль десятых».

\[ 7,0\underline 2 8 \approx 7,0 \]
Округляем до десятых, поэтому после запятой оставляем только первую из цифр, остальные — отбрасываем. Первая из отброшенных цифр — 4, значит предыдущую цифру оставляем без изменений. Читают: «Семь целых двадцать восемь тысячных приближенно равно семь целых нуль десятых».

\[ 56,8\underline 7 06 \approx 56,9 \]
Чтобы округлить до десятых данное число, после запятой оставляет одну цифру, а все следующие за ней — отбрасываем. Так как первая отброшенная цифра — 7, следовательно, к предыдущей прибавляем единицу. Читают: «Пятьдесят шесть целых восемь тысяч семьсот шесть десятитысячных приближенно равно пятьдесят шесть целых, девять десятых».

Как округлить число до сотых

Правило округления числа до сотых

Чтобы округлить число до сотых, надо оставить после запятой две цифры, а остальные отбросить.

Пример округления числа до сотых:

\[ 32,78\underline 6 \approx 32,79 \]
Чтобы округлить число до сотых, оставляем после запятой две цифры, а следующую за ними цифру отбрасываем. Поскольку эта цифра — 9, предыдущую цифру увеличиваем на единицу. Читают: «Тридцать две целых семьсот восемьдесят шесть тысячных приближенно равно тридцать две целых семьдесят девять сотых».

\[ 6,96\underline 1 \approx 6,96 \]
Округляя данное число до сотых, оставляем после запятой две цифры, а третью — отбрасываем. Так как отброшенная цифра — 1, предыдущую цифру оставляем без изменений. Читают: «Шесть целых девятьсот шестьдесят одна тысячная приближенно равно шесть целых девяносто шесть сотых».

\[ 17,48\underline 3 9 \approx 17,48 \]
При округлении до сотых оставляем после запятой две цифры, остальные — отбрасываем. Первая из отброшенных цифр — 3, поэтому предыдущую цифру не изменяем. Читают: «Семнадцать целых четыре тысячи тридцать девять десятитысячных приближенно равно семнадцать целых сорок восемь сотых».

\[ 0,12\underline 5 4 \approx 0,13 \]
Чтобы округлить данное число до сотых, после запятой оставим лишь две цифры, а остальные — отбросим. Первая из отброшенных цифр равна 5, поэтому предыдущую цифру увеличиваем на единицу. Читают: «Нуль целых тысяча двести пятьдесят четыре тысячных приближенно равно нуль целых тринадцать сотых».

\[ 549,30\underline 7 3 \approx 549,31 \]
При округлении числа до сотых оставляем после запятой две цифры, остальные — отбрасываем. Поскольку первая из отброшенных цифр — 7, предыдущую цифру увеличиваем на единицу. Читаем: «Пятьсот сорок девять целых, три тысячи семьдесят три десятитысячных приближенно равно пятьсот сорок девять целых, тридцать одна сотая».

Как округлить число до тысячных

Правило округления числа до тысячных

Чтобы округлить десятичную дробь до тысячных, надо оставить после запятой только три цифры, а остальные следующие за ней цифры отбросить.

Пример кругления числа до тысячных:

\[ 3,785\underline 4 \approx 3,785 \]
Чтобы округлить число до тысячных, после запятой нужно оставить лишь три цифры, а четвертую — отбросить. Поскольку отброшенная цифра — 4, предыдущую цифру оставляем без изменений. Читают: «Три целых, семь тысяч восемьсот пятьдесят четыре десятитысячных приближенно равно три целых, семьсот восемьдесят пять тысячных».

\[ 37,207\underline 6 \approx 37,208 \]
Чтобы округлить это число до тысячных, после запятой оставляем три цифры, а четвертую — отбрасываем. Отброшенная цифра — 6, значит предыдущую цифру увеличиваем на единицу. Читают: «Тридцать семь целых две тысячи семьдесят шесть десятитысячных приближенно равно тридцать семь целых двести восемь тысячных».

\[ 69,999\underline 8 1 \approx 70,000 \]
Округляя число до тысячных, оставляем после запятой три цифры, а все остальные — отбрасываем. Так как первая из отброшенных цифр — 8, к предыдущей прибавляем единицу. Читают: «Шестьдесят девять целых девяносто девять тысяч девятьсот восемьдесят одна стотысячная приближенно равно семьдесят целых нуль тысячных».

\[ 863,124\underline 2 3 \approx 863,124 \]
Округляем число до тысячных, поэтому после запятой оставляем первые три цифры, а следующие за ними — отбрасываем. Так как первая из отброшенных цифр — 2, то предыдущую цифру не меняем. Читают: «Восемьсот шестьдесят три целых двенадцать тысяч четыреста двадцать три стотысячных приближенно равно восемьсот шестьдесят три целых сто двадцать четыре тысячных».

\[ 0,003\underline 5 9 \approx 0,004 \]
Чтобы округлить данное число до тысячных, первые три цифры, стоящие после запятой, оставляем, а все остальные — отбрасываем. Первая из отброшенных цифр равна 5, а это означает, что предыдущую цифру следует увеличить на единицу. Читают: «Нуль целых триста пятьдесят девять стотысячных приближенно равно нуль целых четыре тысячных».

Как округлить число до десятков

Правило округления числа до десятков

Чтобы округлить число до десятков, нужно цифру в разряде единиц заменить нулем, а если в записи числа есть цифры после запятой, то их следует отбросить.

Примеры округления числа до десятков:

\[ 58\underline 3 \approx 580 \]
Чтобы округлить число до десятков, цифру в разряде единиц (то есть последнюю цифру в записи натурального числа) заменяем нулем. Так как эта цифра равна 3, предыдущую цифру не изменяем. Читают: «Пятьсот восемьдесят три приближенно равно пятьсот восемьдесят».

\[ 103\underline 7 \approx 1040 \]
Округляем до десятков, поэтому цифру в разряде единиц заменяем на нуль. Поскольку эта цифра — 7, предыдущую увеличиваем на единицу. Читают: «Тысяча тридцать семь приближенно равно тысяча сорок».

Как округлить число до сотен

Правило округления числа до сотен

Чтобы округлить число до сотен, надо цифры в разряде единиц и десятков заменить нулями. При округлении до сотен десятичной дроби запятую и все стоящие после нее цифры отбрасывают.

Примеры округления числа до сотен:

\[ 23\underline 1 7 \approx 2300 \]
Чтобы округлить до сотен это число, цифры в разряде единиц и десятков (то есть две последние цифры в записи) заменяем нулями. Так как первая из замененных на нуль цифр равна 1, предыдущую цифру не изменяем. Читают: «Две тысячи триста семнадцать приближенно равно две тысячи триста».

\[ 45\underline 8 1 \approx 4600 \]
Округляя данное число до сотен, две последние цифры в его записи заменяем на нули. Поскольку первая из замененных нулем цифр равна 8, предыдущую цифру увеличиваем на единицу. Читают: «Четыре тысячи пятьсот восемьдесят один приближенно равно четыре тысячи шестьсот».

\[ 785\underline 0 9 \approx 78500 \]
Округляем число до сотен, значит две последние цифры в записи числа — десятки и единицы — заменяем нулями. Первая из замененных нулем цифр равна нулю, поэтому предыдущую переписываем без изменений. Читают: «Семьдесят восемь тысяч пятьсот девять приближенно равно семьдесят восемь тысяч пятьсот».

\[ 939\underline 5 2 \approx 94000 \]
Чтобы округлить до сотен данное число, в разрядах десятков и единиц цифры заменяем на нули. Так как первая из замененных на нуль цифр — 9, предыдущую увеличиваем на единицу. Читают: «Девяносто три тысячи девятьсот пятьдесят два приближенно равно девяносто четыре тысячи».

\[ 14\underline 7 3,12 \approx 1500 \]
Чтобы округлить до сотен десятичную дробь, запятую и все стоящие после запятой цифры необходимо отбросить, а две последние цифры целой части (единицы и десятки) — заменить нулями. Первая из замененных на нуль цифр равна 7, поэтому к предыдущей цифре прибавляем единицу. Читают: «Тысяча четыреста семьдесят три целых двенадцать сотых приближенно равно тысяча пятьсот».

Как округлить число до тысяч

Правило округления числа до тысяч

Чтобы округлить число до тысяч, надо цифры в разрядах сотен, десятков и единиц заменить нулями. При округлении до тысяч десятичной дроби запятую и все стоящие после нее цифры нужно отбросить.

Примеры округления числа до тысяч :

\[ 82\underline 3 71 \approx 82000 \]
Чтобы округлить до тысяч это число, надо цифры в разрядах сотен, десятков и единиц заменить нулями (у тысяч три нуля в конце записи, столько же нулей в конце числа должно получиться и при округлении до тысяч). Так как первая из цифр, которую мы заменили на нуль, равна 3, то предыдущую цифру оставляем без изменений. Читают: «Восемьдесят две тысячи триста семьдесят один приближенно равно восемьдесят две тысячи».

\[ 40\underline 6 28 \approx 41000 \]
При округлении до тысяч три последних цифры — в разрядах сотен, десятков и единиц — заменяем на нули. Так как первая из замененных нулем цифр равна 6, предыдущую цифру увеличиваем на единицу. Читают: «Сорок тысяч шестьсот двадцать восемь приближенно равно сорок одна тысяча».

\[ 159\underline 7 32 \approx 160000 \]
Округляя до тысяч данное число, цифры в разрядах сотен, десятков и единиц заменяем нулями. Первая из замененных нулем цифр равна 7, поэтому к предыдущей цифре прибавляем единицу. Читают: «Сто пятьдесят девять тысяч семьсот тридцать два приближенно равно сто шестьдесят тысяч».

\[ 238\underline 1 97 \approx 238000 \]
Округляем число до тысяч, поэтому цифры в разрядах сотен, десятков и единиц заменяем на нули. Так как первая из цифр, которую мы заменили нулем, равна 1, то предыдущую цифру переписываем без изменений. Читают: «Двести тридцать восемь тысяч сто девяносто семь приближенно равно двести тридцать восемь тысяч».

\[ 457\underline 2 49,83 \approx 457000 \]
Чтобы округлить десятичную дробь до тысяч, запятую и все цифры после запятой отбрасываем, а цифры в разрядах сотен, десятков и единиц заменяем нулями. Так как первая из замененных нулем цифр — 2, то предыдущую цифру не изменяем. Читают: «Четыреста пятьдесят семь тысяч двести сорок девять целых, восемьдесят три сотых приближенно равно четыреста пятьдесят тысяч».

Источник

Как округлять числа в физике

Обработка результатов измерений в лабораториях проводятся на калькуляторах и ПК, и просто удивительно, как магически действует на многих студентов длинных ряд цифр после запятой. «Так точнее» – считают они. Однако легко видеть, например, что запись a = 2.8674523 ± 0.076 бессмысленна. При ошибке 0.076 последние пять цифр числа не означает ровно ничего.

Если мы допускаем ошибку в сотых долях, то тысячным, тем более десятитысячным долям веры нет. Грамотная запись результата была бы 2.87 ± 0.08. Всегда нужно производить необходимые округления, чтобы не было ложного впечатления о большей, чем это есть на самом деле, точности результатов.

Правила округления

243.871 ± 0.026 ≈ 243.87 ± 0.03;
243.871 ± 2.6 ≈ 244 ± 3;
1053 ± 47 ≈ 1050 ± 50.

Округление результата измерения достигается простым отбрасыванием цифр, если первая из отбрасываемых цифр меньше 5.
Примеры:

8.337 (округлить до десятых) ≈ 8.3;
833.438 (округлить до целых) ≈ 833;
0.27375 (округлить до сотых) ≈ 0.27.

8.3351 (округлить дл сотых) ≈ 8.34;
0.2510 (округлитьь до десятых) ≈ 0.3;
271.515 (округлить до целых) ≈ 272.

0.875 (округлить до сотых) ≈ 0.88;
0.5450 (округлить до сотых) ≈ 0.54;
275.500 (округлить до целых) ≈ 276;
276.500 (округлить до целых) ≈ 276.

Рефераты и конспекты лекций по географии, физике, химии, истории, биологии. Универсальная подготовка к ЕГЭ, ГИА, ЗНО и ДПА!

Физика – рефераты, конспекты, шпаргалки, лекции, семинары

Правила округления значений погрешностей и результатов измерения

Погрешности измерений показывают также, какие цифры в полученном результате измерения сомнительны, поэтому нет смысла в записи погрешности с большим числом знаков.

По обычаю ограничиваются одной значащей цифрой и только при особо точных измерениях погрешность записывается двумя или тремя цифрами.

Используют 3 правила округления рассчитанного значения погрешности и полученного экспериментального результата измерения:

1. Погрешность результата измерения показывается двумя значащими цифрами, если первая из них 1 или 2, и одной – если первая цифра 3 и более.

2. Результат измерения округляется до того же десятичного разряда, которым заканчивается округления значение абсолютной погрешности.

3. Округление производится только в конечной ответы, а все предварительные расчеты проводят с одним – двумя лишними знаками.

В соответствии с правилом 1 установлены и нормированные значения погрешностей 3В: в числах 1,5% или 2,5% показываются два знака, но в числах 0,5%, 4%, 6%; показывается только один знак.

При округлении результатов измерения используют еще такие правила:

1) лишние цифры в целых чисел заменяют нулями, а в дробных десятичных отвергают; н., 732 «700.

2) если первая из заменяемых нулями или откидываемых цифр 5, то последняя из оставшихся цифр увеличивается на 1;

3) если отвергаем цифра = 5 со следующими нулями, то округление производится до ближнего четного числа.

Результаты измерения можно записать некоторыми значимыми цифрами и рядом нулей, но в этом случае и нули должны полностью определенное значение и характеризуют погрешность измерения. Н., пусть результат измерения их = 9,5 B, который можно записать цифрами: 9,5; 9,50; 9,500. В этих случаях нули после последней значащей цифры определяют показатель достоверности результатов измерения. С этой точки зрения эти записи необходимо читать так: 9,45

Что значит округлить до целого в физике

Правила записи чисел по СТ СЭВ 543 – 77

1. Значащие цифры данного числа – все цифры от первой слева, не равной нулю, до последней справа. При этом нули, следующие из множителя 10, не учитывают.

а) Число 12,0 имеет три значащие цифры.

б) Число 30 имеет две значащие цифры.

д) 0,0056 имеет две значащие цифры.

3. Различают записи приближенных чисел по количеству значащих цифр.

а) Различают числа 2,4 и 2,40. Запись 2,4 означает, что верны только целые и десятые доли, истинное значение числа может быть, например, 2,43 и 2,38. Запись 2,40 означает, что верны и сотые доли: истинное значение числа может быть 2,403 и 2,398, но не 2,41 и не 2,382.

4. Число, для которого указывают допустимое отклонение, должно иметь последнюю значащую цифру того же разряда, как и последняя значащая цифра отклонения.

а) Правильно: 17,0 + 0,2. Неправильно: 17 + 0,2 или 17,00 + 0,2.

б) Правильно: 12,13 + 0,17. Неправильно: 12,13 + 0,2.

в) Правильно: 46,40 + 0,15. Неправильно: 46,4 + 0,15 или 46,402 + 0,15.

5. Числовые значения величины и её погрешности (отклонения) целесообразно записывать с указанием одной и той же единицы величины.

6. Интервалы между числовыми значениями величин целесообразно записывать:

от 60 до 100, свыше 120 до 150.

Правила округления чисел по СТ СЭВ 543 – 77

1. Округление числа представляет собой отбрасывание значащих цифр справа до определенного разряда с возможным изменением цифры этого разряда.

2. В случае, если первая из отбрасываемых цифр (считая слева направо) менее 5, то последнюю сохраняемую цифру не меняют.

Пример: Округление числа 12,23 до трех значащих цифр дает 12,2.

3. В случае, если первая из отбрасываемых цифр (считая слева направо) равна 5, то последнюю сохраняемую цифру увеличивают на единицу.

Пример: Округление числа 0,145 до двух цифр дает 0,15.

Примечание. В тех случаях, когда следует учитывать результаты предыдущих округлений, поступают следующим образом.

Если отбрасываемая цифра получена в результате округления в меньшую сторону, то последнюю оставшуюся цифру увеличивают на единицу (с переходом при необходимости в следующие разряды).

4. В случае, если первая из отбрасываемых цифр (считая слева направо) более 5, то последнюю сохраняемую цифру увеличивают на единицу.

Пример: Округление числа 0,156 до двух значащих цифр дает 0,16.

Округление выполняют сразу до желаемого количества значащих цифр, а не по этапам.

Пример: Округление числа 565,46 до трех значащих цифр дает 565.

Из книги Л.И. Любимов, И.Д. Форсилова, Е.З. Шапиро

«Поверка средств электрических измерений. Справочная книга».

Ленинград, Энергоатомиздат, Ленинградское отделение, 1987 год

Погрешность результата измерений позволяет определить те цифры результата, которые являются достоверными. Нецелесообразно удерживать в выражении для измеренного значения физической величины большое число цифр, т.к. цифры младших разрядов могут оказаться недостоверными.

Существуют определенные правила округления.

1. В выражении погрешности удерживается не более двух значащих цифр, причем последняя цифра обычно округляется до нуля или пяти. Две цифры следует обязательно удерживать в том случае, когда цифра старшего разряда менее 3.

Пример. 235,732 + 0,15 округляется до 235,73 + 0,15, но не до 235,7 + 0,15.

При промежуточных вычислениях целесообразно, чтобы используемые числа содержали на одну значащую цифру больше, чем будет в окончательном результате. Это позволяет уменьшить погрешность от округления.

3. Если первая из отбрасываемых цифр (считая слева направо) меньше пяти, то остающиеся цифры не меняются.

Пример. 442,749 + 0,4 округляется до 442,7 + 0,4.

4. Если первая из отбрасываемых цифр больше или равна пяти, то последняя сохраняемая цифра увеличивается на единицу.

Пример. 37,268 + 0,5 округляется до 37,3 + 0,5; 37,253 + 0,5 округляется до 37,3 + 0,5.

5. Округление следует выполнять сразу до желаемого числа значащих цифр, поэтапное округление может привести к ошибкам.

Пример. Поэтапное округление результата измерения 220,46 + 4 дает на первом этапе 220,5 + 4 и на втором 221 + 4, в то время как правильный результат округления 220 + 4.

Особенно внимательно нужно относиться к записи результата измерения без указания погрешности (что в общем случае крайне нежелательно). В этом случае в записываемом числе оставляются только те цифры, за достоверность которых можно ручаться, т.е. все значащие цифры записанного числа должны быть достоверными. Значащими цифрами числа считаются все цифры от первой слева, не равной нулю, до последней записанной справа цифры, при этом нули, записанные в виде множителя 10 в степени п, не учитываются. Поэтому записи 2,4 х 10 В в степени 3 и 2400 В не являются тождественными. Первая запись означает, что верны цифры тысяч и сотен вольт и истинное значение может быть, например, 2,42 или 2,38 кВ. Запись 2400 В означает, что верны и единицы вольт, истинное значение может быть 2400,2 или 2390,8 В, но не 2420 или 2380 В.

Из книги П.В. Новицкий и И.А. Зограф

«Оценка погрешностей результатов измерений»

Ленинград, Энергоатомиздат, Ленинградское отделение, 1991 год

стр. 25 1 – 4. ПРАВИЛА ОКРУГЛЕНИЯ ЗНАЧЕНИЙ ПОГРЕШНОСТИ И РЕЗУЛЬТАТА ИЗМЕРЕНИЙ

Рассчитывая значения погрешности, особенно при пользовании электронным калькулятором, значения погрешностей получают с большим числом знаков. Однако исходными данными для расчета являются нормируемые значения погрешности средств измерения, которые указываются всего с одной или двумя значащими цифрами. Вследствие этого и в окончательном значении рассчитанной погрешности должны быть оставлены только первые одна – две значащие цифры. При этом приходится учитывать следующее. Если полученное число начинается с цифр 1 или 2, то отбрасывание второго знака приводит к очень большой ошибке (до 30 – 50 %), что недопустимо. Если же полученное число начинается, например, с цифры 9, то сохранение второго знака, т. е. указание погрешности, например, 0,94 вместо 0,9, является дезинформацией, так как исходные данные не обеспечивают такой точности.

Исходя из этого на практике установилось такое правило: если полученное число начинается с цифры, равной или большей 3, то в нем сохраняется лишь один знак; если же оно начинается с цифр, меньших 3, т. е. с цифр 1 и 2, то в нем сохраняют два знака. В соответствии с этим правилом установлены и нормируемые значения погрешностей средств измерений: в числах 1,5 и 2,5 % указываются два знака, но в числах 0,5; 4; 6 % указывается

В итоге можно сформулировать три правила округления рассчитанного значения погрешности и полученного экспериментального результата измерения.

Расчет погрешности удобнее вести в следующем порядке: сперва необходимо найти абсолютную погрешность, а затем – относительную. Абсолютная погрешность / (Х) = jo X к /100; при jo = 2,5 % и Х к = 300 В это даёт / (Х) = 2,5 х 300 / 100 = 7,5 В

jo = / o x 100 / X = 7,5 x 100 / 267,5 = 2,81 %

При этом более наглядно указать пределы интервала неопределенности измеренной величины в виде Х = (260 – 276) В или 260 В X

Наряду с изложенными правилами округления значений погрешностей результатов измерения иногда предлагаются более обоснованные, но и более сложные правила. Недостаток изложенных правил состоит в том, что относительная погрешность от округления изменяется скачком при переходе, например, от числа 0,29, когда она составляет (0,30 – 0,29) / 0,30 = 3 %, к числу 0,3, когда она будет (0,4 – 0,3) / 0,3 = 30 %. Для устранения столь резкого скачка относительной погрешности округления предлагается каждую декаду возможных значений округляемой погрешности делить на три части: от 0,1 до 0,2, от 0,2 до

Из книги В.А.Кузнецова и Г.В.Ялунина » МЕТРОЛОГИЯ

теоретические, прикладные и законодательные основы «

Москва, Изд – во стандартов, 1998 г.

стр. 215 7.6 Рекомендуемые правила по округлению результатов измерений

Результаты измерений следует округлять по сложившимся правилам. В основе этих правил лежит следующее положение: числовое значение результата измерений представляется так, чтобы оно оканчивалось десятичным знаком того же разряда, какой имеет погрешность этого результата.

Правила округления результата измерений для случаев обычных измерений, не связанных с необходимостью получения высокоточных результатов:

1) погрешность результата измерений представляется с одной или двумя значащими цифрами. Две значащие цифры приводятся в случае выполнения точных измерений;

2) результат измерений округляется так, чтобы он оканчивался цифрой того же разряда, что и значение погрешности. Если числовое значение результата измерения представляется десятичной дробью, оканчивающейся нулями, то нули отбрасываются только до того разряда, который соответствует разряду числового значения погрешности;

3) если цифра старшего из отбрасываемых разрядов меньше 5, то остающиеся цифры в

4) если отбрасываемая цифра равна пяти, а следующие за ней цифры неизвестны (отсутствуют) или нули, то последнюю сохраняемую цифру числа не изменяют, если она четная, и увеличивают на единицу, если она нечетная. Число 105,5 при сохранении трех значащих цифр округляют до 106;

5) правила, изложенные в п.1. 4, применяются только при округлении окончательных результатов. Все промежуточные результаты целесообразно представлять тем числом разрядов, которые удается получить

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *