Что значит ограничено сверху

Числовая последовательность

Определение 1. Числовой последовательностью называется функция, аргументом которой является множество всех натуральных чисел, или множество первых n натуральных чисел.

Обозначается числовая последовательность так:

Что значит ограничено сверху
Что значит ограничено сверху

где Что значит ограничено сверхуi-ый член последовательности.

При словестном задании последовательности, описывается из каких элементов она состоит.

Последовательность нечетных чисел:

Последовательность простых чисел :

Последовательности (1) и (2) мы задали словестно.

Последовательность нечетных чисел аналитически задается формулой

Что значит ограничено сверху

Отметим, что последовательность простых чисел невозможно задать аналитически.

Пример задания рекуррентной последовательности:

Что значит ограничено сверхуЧто значит ограничено сверху

В этой последовательности

Что значит ограничено сверхуЧто значит ограничено сверху

Пример стационарной последовательности:

Что значит ограничено сверху

Возрастающие и убывающие последовательности

Определение 3. Последовательность, в которой каждый последующий член (кроме первого) больше предыдующего, называется возрастающей :

Что значит ограничено сверху

Определение 4. Последовательность, в которой каждый последующий член (кроме первого) меньше предыдующего, называется убывающей :

Что значит ограничено сверху

Пример 1. Выяснить, монотонна ли последовательность

Решение. Запишем n+1 член последовательности (подставим вместо n, n+1):

Найдем разность членов Что значит ограничено сверхуи Что значит ограничено сверху:

Что значит ограничено сверхуЧто значит ограничено сверхуЧто значит ограничено сверхуЧто значит ограничено сверху
Что значит ограничено сверхуЧто значит ограничено сверху.(3)

Так как n=1,2,3. то правая часть уравнения (3) положительна. Тогда:

Что значит ограничено сверху

Таким образом, каждый последующий член последовательности больше предыдующего. Следовательно последовательность является возрастающим (и монотонным).

Пример 2. Выяснить, при каких значениях a последовательность (bn) является возрастающей и при каких, убывающей:

Решение. Запишем n+1 член последовательности (вместо n подставим n+1):

Найдем разность членов Что значит ограничено сверхуи Что значит ограничено сверху:

Что значит ограничено сверхуЧто значит ограничено сверхуЧто значит ограничено сверхуЧто значит ограничено сверхуЧто значит ограничено сверхуЧто значит ограничено сверхуЧто значит ограничено сверху
Что значит ограничено сверхуЧто значит ограничено сверху(4)

Посмотрим на правую часть выражения (4). Если a 10, то Что значит ограничено сверху. Тогда последовательность является убывающей. При a=10 Что значит ограничено сверху. Последовательность имеет одинаковые члены:

Что значит ограничено сверхуЧто значит ограничено сверху

т.е. имеем дело с последовательностью

Очевидно, что последовательность (5) не является монотонной. Она является стационарной последовательностью.

Ограниченные и неограниченные последовательности

Определение 5. Последовательность (yn) называется ограниченной сверху, если существует такое число k, что yn Определение 6. Последовательность (yn) называется ограниченной снизу, если существует такое число k, что yn>k при любом n.

Определение 7. Последовательность (yn) называется ограниченной, если она ограничена и сверху, и снизу.

Пример 3. Показать, что последовательность (an) является монотоннной и ограниченной:

Решение. Запишем n+1 член последовательности (вместо n подставим n+1):

Найдем разность членов Что значит ограничено сверхуи Что значит ограничено сверху:

Что значит ограничено сверхуЧто значит ограничено сверхуЧто значит ограничено сверхуЧто значит ограничено сверхуЧто значит ограничено сверхуЧто значит ограничено сверху
Что значит ограничено сверхуЧто значит ограничено сверху(6)

Правая часть равенства (6) положительна при любых натуральных чисел n. Следовательно последовательно (an) возрастающая (и монотонная).

Далее, сделаем эквивалентное преобразование для проследовательности (5):

Что значит ограничено сверхуЧто значит ограничено сверху

Из выражения (7) видно, что при любых n an≤1. Т.е. хотя последовательность возрастает, то остается меньше числа 1 (ограничена сверху). Запишем несколько членов данной последовательности, задав n=1,2,3.

Так как последовательность возрастающая, то все члены последовательности не меньше Что значит ограничено сверху. Тогда последовательность ограничена также и снизу. Таким образом последовательность ограничена и всерху, и снизу, т.е. является ограниченной последовательностью.

Сходящиеся и расходящиеся последовательности

Рассмотрим две числовые последовательности:

На координатной прямой изобразим члены этих последовательностей:

Что значит ограничено сверху
Что значит ограничено сверху

Предел числовой последовательности

Точка, к которой приближаются члены последовательности при увеличении n, называется пределом последовательности. Для последовательности (10) пределом является число 0. Более строго предел последовательности определяется так:

Определение 8. Число k называют пределом последовательности (yn), если для любой заранее выбранной окресности точки k, можно выбрать такой номер n0, чтобы все члены последовательности, начиная с номера n0 содержались в указанной окрестности.

Если k является пределом последовательности (yn), то пишут Что значит ограничено сверху( Что значит ограничено сверхустремится к k или Что значит ограничено сверхусходится к k).

Обозначают это так:

Выраженние (11) читается так: предел проследовательности Что значит ограничено сверху, при стремлении n к бесконечности равен k.

Изложим некоторые пояснения к определению 8.

Пусть выполнено (11). Возьмем окрестность точки k, т.е. интервал Что значит ограничено сверху, где Что значит ограничено сверхурадиус этой окрестности ( Что значит ограничено сверху>0). По определению, существует номер n0, начиная с которого вся последовательность содержится в указанной окресности, т.е.

Что значит ограничено сверхуЧто значит ограничено сверхуЧто значит ограничено сверху.

Если же взять другую окресность Что значит ограничено сверху(пусть Что значит ограничено сверху), то найдется другой номер n1, начиная с которого, вся последовательность содержится в указанной окрестности, но этот номер будет больше n1 > n0.

Пример 4. Дана полследовательность (yn):

Доказать, что Что значит ограничено сверху.

Решение. Найдем любую окрестность точки 0. Пусть ее радиус равен r. Тогда всегда можно выбирать n0 так, чтобы Что значит ограничено сверху.

Пусть, например, r=0.001. Вычислим n‘ из уравнения

Что значит ограничено сверхуЧто значит ограничено сверхуЧто значит ограничено сверхуЧто значит ограничено сверху.

В качестве n0 берем 501. Имеем:

Что значит ограничено сверхуЧто значит ограничено сверху.

Запишем члены последовательности (12) начиная с номера 501:

Что значит ограничено сверхуЧто значит ограничено сверху.

Далее, учитывая (13), имеем:

Что значит ограничено сверхуЧто значит ограничено сверху.

Следовательно, все члены последовательности (12) начиная с номера 501 попадают в окресность Что значит ограничено сверху. А по определению 8, это означает:

Пример 5. Дана полследовательность (yn):

Доказать, что Что значит ограничено сверху.

Решение. Найдем любую окрестность точки 2. Пусть ее радиус равен r. Тогда всегда можно выбирать n0 так, чтобы

Что значит ограничено сверхуЧто значит ограничено сверхуЧто значит ограничено сверхуЧто значит ограничено сверху.
Что значит ограничено сверхуЧто значит ограничено сверхуЧто значит ограничено сверхуЧто значит ограничено сверху.

Неравенство в (17) всегда выполняется так как n0 натуральное число, а правая часть неравенства отрицательно (это означает, что Что значит ограничено сверхудля любого n0). Из неравенства (16) можно найти номер n0, начиная с которого члены последовательности попадают в окресность (2−r; 2+r). Например, пусть r=0.001, тогда Что значит ограничено сверху. Тогда нужно брать n0=2000. И тогда все члены последовательности, начиная с номера 2000 попадают в окрестность (2−r; 2+r).

Запишем члены последовательности, начиная с номера 2000:

Что значит ограничено сверхуЧто значит ограничено сверху.

Легко проверить, что Что значит ограничено сверху. Тогда, учитывая, что данная последовательность возрастающая (см. пример 1), получим:

Что значит ограничено сверхуЧто значит ограничено сверху.

Пример 6. Найти предел последовательности

Решение. Выполним некоторые преобразования выражения (18):

Тогда последовательность (18) можно переписать так:

Что значит ограничено сверхуЧто значит ограничено сверхуЧто значит ограничено сверху(19)

Как видно из (19), пройдя по членам последовательности слева направо, из числа 1 вычитается все меньшее и меньшее положительное число. Т.е. последовательность приближается к числу 1. Тогда 1 является пределом последовательности (19) и (18):

Что значит ограничено сверху

Свойства сходящихся последовательностей

Сходящиеся последовательности обладают рядом свойств.

Свойство 1. Если последовательность сходится, то только к одному пределу.

Свойство 2. Если последовательность сходится, то она ограничена.

Свойство 3. Если последовательность монотонна и ограничена, то она сходится (теорема Вейерштрасса).

Предел стационарной последовательности равен значению любого члена последовательности:Что значит ограничено сверху.

Теорема. Если Что значит ограничено сверху, то

1. Предел суммы равен сумме пределов:

2. Предел произведения равен произведению пределов:

3. Предел частного равен частному пределов:

Что значит ограничено сверху

4. Постоянный множитель можно вывести за знак предела:

Пример 7. Найти предел последовательности:

Решение. Так как Что значит ограничено сверху, то

Что значит ограничено сверхуЧто значит ограничено сверху.

Пример 8. Найти предел последовательности:

Решение. Применив правило «предел суммы» теоремы, получим

Что значит ограничено сверхуЧто значит ограничено сверхуЧто значит ограничено сверху.

Пример 9. Вычислить:

Решение. Делим числитель и знаменатель дроби на наивысшую из имеющихся степень переменного n. Далее используем правило «предел суммы» для числителя и знаменателя и правило «предел частного»:

Источник

Предел последовательности

п.1. Определение последовательности

С понятием «последовательность» мы уже познакомились, когда изучали прогрессии (см. §24 справочника для 9 класса). По определению:

Т.е., числовая последовательность – это некий набор чисел с присвоенными им порядковыми номерами. Это набор можно задать формулой, описанием или просто перечислением.

Например:
1) Формула \(y_n=\frac1n,\ n\in\mathbb\) задает бесконечную последовательность дробей:

2) Формула \(y_n=(-1)^n,\ n\in\mathbb\) задает бесконечную последовательность «прыгающих» единиц:

3) Рекуррентная формула \(y_1=1,\ y_2=1,\ y_(n+2)=y_(n+1)+y_n\) задает бесконечную последовательность чисел Фибоначчи:

4) Описание «число π точностью до \(10^<-n>\)» задает бесконечную последовательность все более «подробных» значений числа π:

Этот ряд можно также задать формулой \(y_n=\frac<[\pi\cdot 10^n]><10^n>\), где квадратные скобки обозначают целую часть от числа.

п.2. Предел последовательности

Поведение последовательности «на длинных дистанциях» может быть неочевидным. Чтобы лучше понять, возрастает или убывает заданный ряд чисел, ограничен ли он какой-либо величиной или уходит на бесконечность, проще всего построить график.

1) \(y_n=\frac1n\)
Что значит ограничено сверху
Последовательность сходится к 0
2) \(y_n=(-1)^n\)
Что значит ограничено сверху
Последовательность ни к чему не сходится
3) числа Фибоначчи \(y_1=1,\ y_2=1,\ y_=y_+y_n\)
Что значит ограничено сверху
Последовательность уходит на бесконечность
4) приближения числа π
Что значит ограничено сверху
Последовательность сходится к π

п.3. Как доказать сходимость последовательности к пределу?

\(\varepsilon\)0,10,010,0010,00010,000010,000001
\(N_<\varepsilon>\)797997999799997999997
\(\lg \varepsilon\)-1-2-3-4-5-6
\(\lg N_<\varepsilon>\)0,8451,9872,9994,0005,0006,000

И построим график (в логарифмическом масштабе):
Что значит ограничено сверху
Мы видим, что чем меньше ε, тем больше \(N_<\varepsilon>\). Но главное – мы всегда можем его указать.
Таким образом, мы доказали, что действительно \(\lim_\frac<1>=0\)
Ведь для любого сколь угодно малого \(\varepsilon\gt 0\) мы можем указать такой номер \(N_<\varepsilon>=\left[\frac1\varepsilon-4\right]+1\), начиная с которого, для всех членов последовательности с номерами \(n\geq N_<\varepsilon>\) разность \(\left|\frac<1>-0\right|\), т.е. эти члены не выйдут за переделы ε окрестности предела b=0.

Построенный график интересен еще и тем, что показывает одно из важных практических применений логарифмов: если разбросы по шкалам очень велики, отличаются на порядки, то графики удобней строить в десятичных логарифмах.
Такие графики часто можно увидеть у физиков-ядерщиков, копающих вглубь, от нанометров до планковских длин; или у астрономов, всматривающихся вдаль, от тысяч километров до гигапарсек.

п.4. Ограниченные и неограниченные последовательности

п.5. Как доказать неограниченность последовательности?

Таким образом, мы доказали, что действительно \(\lim_n^2=+\infty\)
Ведь для любого сколь угодно большого \(M\gt 0\) мы можем указать такой номер \(N_M=[\sqrt]\), начиная с которого, для всех членов последовательности с номерами \(n\geq N_M,\ y_n=n^2\gt M\), т.е. члены последовательности становятся ещё больше.

п.6. Примеры

ε0,10,010,0010,00010,000010,000001
\(N_<\varepsilon>\)151281253125031250031250003

Таким образом, для любого сколь угодно малого ε>0 найдется номер в последовательности \(N_<\varepsilon>=\left[\frac12\left(\frac<5><2\varepsilon>+3\right)\right]+1\), начиная с которого
\(\left|\frac<3-2n>+\frac12\right|\lt\varepsilon,\ n\geq N_<\varepsilon>\geq 2\).
Что и требовалось доказать.

Показанный приём с усилением неравенства часто применяется в математическом анализе. Найденное \(N_<\varepsilon>\) немного больше «точного» значения, которое следует из исходной дроби \(\frac<3(3n^2+n+1)>\), но наша задача в том, чтобы обоснованно построить любое выражение для стартового номера \(N_<\varepsilon>\) в зависимости от ε.
Если найденный номер будет немного больше исходного – не страшно; главное, чтобы он 1) был обоснован; 2) гарантировал размещение всех последующих \(y_n,\ n\geq N_<\varepsilon>\) в ε окрестности предела b.

Таким образом, для любого сколь угодно малого ε>0 найдется номер в последовательности \(N_<\varepsilon>=\left[\frac<1><3\sqrt<\varepsilon>>\right]\), начиная с которого \(\left|\frac<3n^2+n+1>-\frac13\right|\lt\varepsilon,\ n\geq N_<\varepsilon>\geq 3\).
Что и требовалось доказать.

Таким образом, для любого сколь угодно малого ε>0 найдется номер в последовательности \(N_<\varepsilon>=\left[-\log_3\varepsilon\right]\), начиная с которого \(\left|\frac<3^n+1><3^n>-1\right|\lt\varepsilon,\ n\geq N_<\varepsilon>\).
Что и требовалось доказать.

ε0,10,010,0010,00010,000010,000001
\(N_<\varepsilon>\)23623960239960024·10 84·10 10

Таким образом, для любого сколь угодно малого ε>0 найдется номер в последовательности \(N_<\varepsilon>=\left[\left(\frac<1><5\varepsilon>-1\right)^2\right]\), начиная с которого \(\left|\frac<\sqrt><5\sqrt+1>-\frac15\right|\lt\varepsilon,\ n\geq N_<\varepsilon>\).
Что и требовалось доказать.

Пример 2. Используя определения неограниченной последовательности, докажите, что:
a) \( \lim_2^n=+\infty \)
По условию: \(y_n=2^n\)
Записываем неравенство \(|y_n|\gt M\):
\begin 2^n\gt M\Rightarrow n\gt \log_2M\\ N_M=\left[\log_2M\right]+1 \end Например:

Таким образом, для любого сколь угодно большого \(M\gt 0\) мы можем указать такой номер \(N_M=\left[\log_2M\right]+1\), начиная с которого, для всех членов последовательности с номерами \(n\geq N_M,\ y_n=2^n\gt M\).
Что и требовалось доказать.

M101001 00010 000100 0001 000 000
NM10010 0001 000 00010 810 1010 12

Таким образом, для любого сколь угодно большого \(M\gt 0\) мы можем указать такой номер \(N_M=\left[M^2\right]\), начиная с которого, для всех членов последовательности с номерами \(n\geq N_M,\ y_n=\sqrt\gt M\).
Что и требовалось доказать.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *