Что значит одномодовый оптический кабель
Разница между многомодовым и одномодовым волокном
Удивить кого-то в наше время оптоволокном у себя в доме, на работе или даже в квартире не так уж легко. Технологии передачи данных через волоконно-оптическую линию связи распространяется с огромной скоростью. Постоянно ведется монтаж, как и новых оптических кабелей, так и модернизация по замене существующих медных кабелей (устаревшая технология DSL), на оптические.
Часто приходится слышать вопросы на тему оптоволоконных линий связи. В этой статье хочу ответить на один из часто задаваемых вопросов о разнице между одномодовыми и многомодовыми оптическими кабелями простыми словами, понятными конечному пользователю.
Так что же такое мода и с чем ее едят? Модами называются типы электромагнитных колебаний, которые распространяются в оптоволокне. Каждая мода имеют свою фазовую и групповую скорость. Под групповой скоростью понимается скорость переноса энергии, а под фазовой скоростью – скорость перемещения фазы волны. Если будем брать пример обычных электромагнитных волн, то там и фазовая и групповая скорости равны скорости света, в оптоволоконном же кабеле скорости разнятся и зависят от частоты колебаний волн, от диаметра волокна, от материалов из которых произведен кабель. Именно из-за этих совокупностей свойств кабеля возникает рассеивание (модовая дисперсия).
Исходя из определения моды, многомодовое (MultiMode MM) оптоволокно позволяет подавать несколько световых сигналов. Одномодовое (SingleMode MM)- позволяет пропустить через себя лишь один сигнал.
Казалось бы многомодовое волокно имеет преимущество перед одномодовым, но это только на первый взгляд. У многомода есть важный недостаток высокая модовая дисперсия.
Диаметр сердечника волокна многомодового кабеля составляет 50 мкм и более. Такая ширина как раз и позволяет подавать несколько мод в одно волокно, но так же и увеличивает вероятность отражения света от внешней поверхности сердечника, что и вызывает затухание сигнала. Соответственно для подачи сигнала на дальние расстояния использование подобного кабеля возможно, только если увеличивать количество ретрансляторов, что значительно удорожает проект. Скорость передачи данных составляет 2,5 Гб/с
У одномодового кабеля, диаметр сердечника составляет 10 мкм и меньше. В волокне с таким диаметром вероятность дисперсии значительно снижается, что позволяет передавать данные на большие расстояния. Одномодовое оптоволокно позволяет передавать данные со скоростью 10 Гб/с. Но в то же время одномодовый кабель и коммутирующее оборудование к нему дороже. Так же сварные стыки у одномода более чувствительны к качеству сварки.
Где и какое волокно лучше применять? Чаще всего многомодовое оптоволокно используется для организации ЛВС (локально-вычислительной сети) и СКС (структурированной кабельной сети) небольших размеров в рамках одного здания или прилегающих строений (около 500 метров). Волоконно-оптические линии связи с одномодовыми волокнами используют для подключения удаленных зданий, например для организации системы видеонаблюдения в рамках района, города или даже магистрали (1000м и более).
Оптические волокна. Классификация.
Оптические волокно стандарт де-факто при построении магистральных сетей связи. Протяженность волоконно-оптических линий связи в России у крупных операторов связи достигает > 50 тыс.км.
Благодаря волокну мы имеем все те преимущества в связи, которых не было раньше.
Вот и попробуем рассмотреть виновника торжества — оптическое волокно.
В статье попробую написать просто о оптических волокнах, без математических выкладок и с простыми человеческими объяснениями.
Статья чисто ознакомительная, т.е. не содержит уникальных знаний, всё что будет описано может быть найдено в куче книг, однако, это не копипаст, а выжимка из «кучи» информации только лишь сути.
Классификация
Чаще всего волокна подразделяют на 2 общих типа волокон
1. Многомодовые волокна
2. Одномодовые
дадим пояснение на «бытовом» уровне что есть одномод и многомод.
Представим гипотетическую систему передачи с волокном воткнутым в нее.
Нам надо передать двоичную информацию. Импульсы электричества в волокне не распространяются, ибо диэлектрик, поэтому мы будим передавать энергию света.
Для этого нам нужен источник световой энергии. Это могут быть светодиоды и лазеры.
Теперь мы знаем что мы используем в качестве передатчика — это свет.
Подумаем как свет вводится в волокно:
1) Световое излучение имеет свой спектр, поэтому если сердцевина волокна широкая (это в многомодовом волокне), то больше спектральных составляющих света попадет в сердцевину.
Например мы передаем свет на длине волны 1300нм (к примеру), сердцевина многомода широкая, то и путей распространения у волн больше. Каждый такой путь и есть моды
2) Если же сердцевина маленькая (одномодовое волокно), то путей распространения волн соотвественно уменьшается. И так как дополнительных мод гораздо меньше, то и не будет и модовой дисперсии (о ней ниже).
Это основное отличие многомодового и одномодового волокон.
Спасибо enjoint, tegger, hazanko за замечания.
Многомодовые в свою очередь делятся на волокна со ступенчатым показателем преломления (step index multi mode fiber) и с градиентным (graded index m/mode fiber).
Одномодовые делятся на ступенчатые, стандартные (standard fiber), со смещенной дисперсией (dispersion-shifted) и ненулевой смещенной дисперсией (non-zero dispersion-shifted)
Конструкция оптического волокна
Каждое волокно состоит из сердцевины и оболочки с разными показателями преломления.
Сердцевина (которая и является основной средой передачи энергии светового сигнала) изготавливается из оптически более плотного материала, оболочка — из менее.
Так, например, запись 50/125 говорит о том, что диаметр сердцевины равен 50 мкм, оболочки — 125мкм.
Диаметры сердцевины равные 50мкм и 62,5мкм являются признаками многомодовых оптических волокон, а 8-10мкм, соответственно, одномодовым.
Оболочка же, как правило, всегда имеет диаметр размером 125мкм.
Как видно диаметр сердцевины одномодового волокна имеет намного меньший размер, нежели диаметр многомодового. Меньший диаметр сердцевины позволяет уменьшить модовую дисперсию (о которой, возможно, будет написано в отдельной статье, а также вопросы распространения света в волокне), а соответственно увеличить дальность передачи. Однако, тогда бы одномодовые волокна вытеснили многомоды, благодаря более лучшим «транспортным» характеристикам, если бы не необходимость использовать дорогие лазеры с узким спектром излучения. В многомодовых волокнах используются светодиоды с более размазанным спектром.
Поэтому для недорогих оптических решений, таких как локальные сети интернет-провайдеров применения многомода случается.
Профиль показателя преломления
Вся пляска с бубном у волокна с целью увеличения скорости передачи была вокруг профиля показателя преломления. Так как основным сдерживающим фактором увеличения скорости является модовая дисперсия.
Кратко суть в следующем:
когда излучение лазера поступает в сердцевину волокна, то сигнал передается по ней в виде отдельных мод (грубо: лучей света. А на самом деле разные спектральные составляющие вводимого сигнала)
Причем входят «лучи» под разными углами, поэтому время распространения энергии отдельно взятых мод различается. Это проиллюстрировано на рисунке ниже.
Здесь отображены 3 профиля преломления:
ступенчатый и градиентный для многомодового волокна и ступенчатый для одномодового.
Видно, что в многомодовых волокнах моды света распространяются по различным путям, но, из-за постоянного коэффициента преломления сердцевины с ОДИНАКОВОЙ скоростью. Те моды, которые вынуждены идти по ломанной линии приходят позже, чем моды, идущие по прямой. Поэтому исходный сигнал растягивается во времени.
Другое дело с градиентным профилем, те моды которые раньше шли по центру — замедляются, а моды, которые шли по ломанному пути, наоборот, ускоряются. Это произошло оттого, что коэффициент преломления сердечника теперь непостоянен. Он увеличивается параболически от краев к центру.
Это позволяет увеличить скорость передачи и получить распознаваемый сигнал на приеме.
Области применения оптических волокон
Многомодовое волокно | Одномодовое волокно | |
MMF 50(62.5)/125 Градиентное | SF 9/125 ступенчатое | SF 9/125 со смещенной дисперсией (с ненулевой смещенной дисп.) |
ЛВС(GigaEther,FDDI,ATM) | Протяженные ЛВС, магистрали SDH | Сверхпротяженные магистрали SDH |
К этому можно добавить, что магистральные кабели теперь все почти идут с ненулевой смещенной дисперсий, что позволяет использовать на этих кабелях спектральное волновое уплотнение (WDM) без нужды замены кабеля.
А при построении пассивных оптических сетей часто используют многомодовое волокно.
Спасибо тем, кто конструктивно критиковал.
PS
если будет интересно, то могут появиться статьи о
— дисперсии
— типах волоконно-оптических кабелей (не волокон)
— системах передачи, используемых для wdm/dwdm уплотнения.
— процедура сварки оптических волокон. и типы сколов.
Одномодовое и многомодовое волокно: в чём разница?
Worton
Купить FS оптические патч-корды
Растущий спрос на увеличинную ширину полосы частот и быстрые сетевые соединения значительно увеличивает рост рынка волокна, особенно одномодовое волокно (SMF) и многомодовое волокно (MMF). Несмотря на то, что эти 2 типа кабелей оптического волокна широко применяются в различных областях, часто бывает сложно выбрать нужное волокно, так как разница между одномодовым и многомодовым волокном не всегда ясна. Сегодня мы решили рассмотреть строение волокна, различия в расстоянии передачи данных, цене и цвете волокна. Все это поможет нам сравнить одномодовое волокно и многомодовое волокно и понять разницу и сходство между ними.
Одномодовое и многомодовое волокно: определение
Исходя из определения моды, многомод (MultiMode MM) позволяет подавать несколько световых сигналов. Одномод (SingleMode MM)- позволяет пропустить через себя лишь один сигнал.
Одномодовое и многомодовое волокно: диаметр-сердечника
Одномодовое и многомодовое волокно: длина волны & источник света
Из-за большого размера сердечника многомодового волокна, в нем чаще всего используются недорогие источники света, такие как светодиоды (светоизлучающие диоды) и VCSEL (поверхностно-излучающий лазер свертикальным резонатором), которые работают на длине волны 850 нм и 1310 нм. В то время как в одномодовом оптоволокне часто используются лазеры или лазерные диоды для производства света, впрыскиваемого в кабель. Наиболее часто встречающаяся длина волны одномодового волокна составляет 1310 нм и 1550 нм.
Одномодовое и многомодовое волокно: пропускная способность
Ширина полосы пропускания многомодового волокна ограничена его световым режимом, а максимальная ширина полосы в настоящее время составляет 28000 МГц * км волокна OM5. В то время как полоса пропускания одномодового волокна теоретически неограничена, поэтому такое волокно может пропускать один световой режима за один раз.
Кроме того, существуют также некоторые различия между одномодовым и многомодовым оптоволоконным цветовым кодом. Больше узнать об этом вы можете, прочитав статью: “Как определить цветовой код оптоволоконного кабеля?”
Одномодовое и многомодовое волокно: расстояние
Как известно, одномодовое волокно подходит для работы на большие расстояния, а многомодовое оптическое волокно предназначено для работы на коротких дистанциях. Давайте определим количественные различия расстояния между одномодовым и многомодовым волокном.
Из таблицы видно, что расстояние между кабелями одномодового волокна намного длиннее, чем у многомодового волокна со скоростью передачи данных от 1G до 10G, но многомодовое волокно типа OM3/OM4/OM5 поддерживает более высокую скорость передачи данных. Чаще всего многомодовое оптоволокно используется для организации ЛВС (локально-вычислительной сети) и СКС (структурированной кабельной сети) небольших размеров в рамках одного здания или прилегающих строений (около 500 метров). Волоконно-оптические линии связи с одномодовыми волокнами используют для подключения удаленных зданий, например для организации системы видеонаблюдения в рамках района, города или даже магистрали (1000м и более).
Одномодовое и многомодовое волокно: стоимость разводки кабелей
Стоимость одномодового и многомодового волокна – одна из самых часто обсуждаемых тем на форумах. Для многих людей выбор зависит стоимости оптического модуля, стоимости системы и стоимости установки.
Стоимость оптического модуля
По сравнению с одномодовыми модулями стоимость многомодовых модулей почти в два-три раза ниже. В таблице ниже приведены примеры одномодовых и многомодовых модулей FS.COM, совместимых с оборудованием Cisco.
Из таблицы видно, что разница в ценах сильно возрастает с увеличением скорости передачи данных.
Стоимость системы
Одномодовое волокно, как правило, ориентировано на работу на большие расстояния, что требует использования модулей с лазерами, которые работают на более длинных волнах с более узкой спектральной шириной. Эти характеристики трансивера в сочетании с необходимостью более точного выравнивания и более прочных разъемов для меньших диаметров сердечника приводят к значительно более высокой стомости модулей и общим более высоким затратам на одноканальные волоконно-оптические соединения.
Способы изготовления модулей в на базе VCSEL, которые оптимизированы для использования с многомодовыми волокнами, легче встраиваются в массивные устройства и являются более дешевыми по сравнению с эквивалентными одномодовыми трансиверами. Несмотря на использование нескольких волоконно-оптических линий и массивов с несколькими трансиверами, существует значительная экономия по сравнению с одномодовыми технологиями, использующими одно- или многоканальную работу по симплекс-дуплексному подключению.
Стоимость установки
Одномодовое волокно часто стоит меньше, чем многомодовое волокно. При построении волоконно-оптической сети 1G, которую вы хотите модернизировать до 10G или быстрее, в конечном итоге экономия на стоимости волокна для одномодового режима позволяет сэкономить половину цены. В то время как многомодовые волокна OM3 или OM4 увеличивают стомость на 35% для SFP модулей. Одномодовое волокно более дорогое, но затраты на замену многомодового волокна значительно выше, особенно если они следуют в порядке: OM1-OM2-OM3-OM4. Для разницы между OM3 и OM4, пожалуйста, прочтите: OM3 патч-корд vs OM4 патч-корд: какой выбрать?
На сегодняшний день цена на использования одномодового режима снижается. Но если вам необходимо 10G соединение, до сих пор возможно использовать многомодовый режим работы.
Одномодовое волокно vs многомодовое волокно: правила выбора
Учитывая описанные характеристики многомодовых и одномодовых волокон, можно привести рекомендации по выбору типа волокна в зависимости от производительности приложения и расстояния, на котором оно должно работать:
для скоростей свыше 10 Гбит/с выбор в пользу одномодового волокна независимо от расстояния
для 10-гигабитных приложений и расстояний свыше 550 м выбор также в пользу одномодового волокна
для 10-гигабитных приложений и расстояний до 550 м также возможно применение многомодового волокна OM4
для 10-гигабитных приложений и расстояний до 300 м также возможно применение многомодового волокна OM3
для 1-гигабитных приложений и расстояний до 600-1100 м возможно применение многомодового волокна OM4
для 1-гигабитных приложений и расстояний до 600-900 м возможно применение многомодового волокна OM3
для 1-гигабитных приложений и расстояний до 550 м возможно применение многомодового волокна OM2
Вывод
Одномодовая оптическая кабельная система подходит для приложений передачи данных на длинные расстояния и широко используется в сетях операторов связи, MAN и PON. Многомодовая волоконно-оптическая кабельная система имеет более короткий охват и широко используется на предприятиях, в центрах обработки данных и локальных сетях. Независимо от того, какой из них вы выбираете, исходя из общей стоимости волокна, выбор того, который наилучшим образом соответствует потребностям вашей сети, является важной задачей для каждого сетевого дизайнера.
Многомодовые и одномодовые оптоволоконные кабели
Передача света в оптическом волокне
Основное различие между одномодовым и многомодовым оптоволоконным кабелем заключается в способе передачи света в сердцевине. Ядро многомодового волокна передает множество режимов (для упрощения — лучи света с той же длиной волной). Распространение множества мод вызывает модальную дисперсию, которая приводит к значительному сокращению дальности или скорости передачи сигнала. Просто сигнал распределяется во времени, потому что скорость распространения оптического сигнала не одинакова для всех мод из-за разной длины пути между передатчиком и приемником, возникающей из-за разных углов отражения световых лучей от границ ядро.
Явление модальной дисперсии практически устранено в сердцевине одномодового волокна, которое пропускает только одну моду света с определенной длиной волны. В случае одномодового варианта световая волна распространяется почти параллельно оси. Скорость передачи данных в одномодовых оптических кабелях ограничена поляризационной модовой дисперсией и хроматической дисперсией. Хроматическая дисперсия — это комбинация материальной дисперсии и волноводной дисперсии. Эти явления приводят к ухудшению качества сигнала из-за различной задержки во времени прихода между различными компонентами сигнала, однако они не влияют на качество сигнала так значительно, как в случае многомодового варианта. Существуют также волокна со смещенной дисперсией или с ненулевым смещением, для которых внутримодовая дисперсия практически устранена в 3 окне передачи (1550 нм).
Отличия оптического волокна
Из вышеизложенного становиться понятно, что внутренняя часть оптического кабеля имеет разный размер в зависимости от типа пропускания света. Сердцевина одномодового кабеля обычно составляет от 8 до 10 микрометров (обычно 9 мкм), а диаметр сердцевины многомодового кабеля составляет 62,5 или 50 микрометров. В обоих случаях типичный диаметр оболочки составляет 125 микрометров.
Так как нет видимой разницы между кабелями — установщик должен обратить внимание на маркировку кабелей и взаимодействующего оборудования. В большинстве случаев устройства для соединения оптических волокон, такие как инструменты для дуговой сварки или механические сварочные аппараты, подходят для использования с обоими типами оптоволоконных кабелей. Установщик должен тщательно подобрать соответствующие активные устройства, оптические кабели и аксессуары.
Большим преимуществом одномодовых волоконно-оптических кабелей является возможность передачи сигналов (без регенерации) на расстояние до 120 километров. В случае многомодовых волокон максимальная дальность передачи составляет около 2 км. Конечно, реальная дальность передачи определяется применяемыми оптическими устройствами и их возможностями.
Если стоит выбор, где купить оптоволоконный кабель, выбирайте надёжного поставщика. Компания « АнЛан » занимает лидирующие позиции на рынке РФ с 2007 года. Разумная цена и европейское качество — то, что отличает продукцию компании от других организаций.
Одномодовые и многомодовые оптические кабели
Самые частые вопросы, которые задают нашим экспертам: в чем отличие одномодового от многомодового кабеля, где и чем обусловлено их применение, можно ли заменить один тип другим? И даже такой вопрос — каких цветов бывают «кабельные моды»? Разберем все это в нашем материале.
Сначала определимся с понятием «кабельной моды». Такого термина не существует! Любой волоконно-оптический кабель (ВОК) содержит в своей конструкции так называемые модули — пластиковые трубки, защищающие оптические волокна. Они действительно бывают разных цветов и в зависимости от их количества можно условно разделить ВОК на одномодульные и многомодульные. Если же говорить об одномодовых (Single-mode, SM) и многомодовых (Multi-mode, MM) кабелях — подразумевается, что кабель изготовлен из соответствующих типов оптических волокон (ОВ). Итак:
ИЛИ НЕ ОЗНАЧАЕТ Single-mode / Multi-mode
Что такое «мода оптического волокна»?
Мода — это элементарная составляющая, отдельный луч, из которого состоит свет, проходящий по волокну. С точки зрения теоретической физики, каждая мода — это одно из решений волновых уравнений Максвелла, описывающих распространение света в световоде. Условно каждую моду представляют в виде набора прямых линий, образующих конус. На схемах же, обычно в поперечном сечении, моды изображают в виде отдельных лучей, распространяющихся в волокне под углом к оптической оси. При этом луч, который геометрически совпадает с осью волокна носит название первой или основной моды, а все остальные называют боковыми модами.
В зависимости от диаметра сердцевины ОВ, показателей преломления материалов сердцевины и оболочки в оптическом волокне будет распространяться только одна или несколько мод излучения. На рис. 1 наглядно показано, что в волокно с маленьким диаметром сердцевины можно ввести только одну моду, в то время как больший диаметр позволяет вводить несколько мод.
Рис. 1. Распространение мод излучения.
Диаметры сердцевины и оболочки для MM составляют, соответственно, 50/125 мкм или 62,5/125 мкм, а для SM — 9/125 мкм. В самом простом случае, когда показатели преломления сердцевины и оболочки имеют равномерные по сечению величины, их профиль носит название ступенчатого. Сечения этих типов ОВ в этом случае выглядят так, как показано на рис. 2:
Рис. 2. Профили показателей преломления различных типов ОВ.
Для SM-волокна ступенчатый профиль показателя преломления вполне приемлем, поскольку в нём распространяется только одна мода. А вот в MM-волокнах со ступенчатым показателем условия прохождения сигнала сильно ухудшаются из-за появления дисперсии. Дисперсию, то есть искажение формы импульса света, вызванную разницей маршрутов распространения отдельных мод, называют межмодовой. Такой вид дисперсии служит главным отличием по оптическим свойствам между SM и MM.
В настоящее время частично подавить межмодовую дисперсию стало возможным за счёт изготовления волокон с так называемым градиентным профилем преломления сердцевины. В этом случае оптическая плотность кварцевого стекла, из которого изготовления сердцевина, плавно снижается от центра к границе. Это даёт возможность скорректировать линии распространения боковых мод и уменьшить искажения сигнала. Наглядно разница между сигналами на входе и на выходе волокна для разных вариантов изготовления показана на рис. 3:
Рис. 3. Изменения формы и амплитуды сигнала на выходе линии в волокнах с разными профилями показателя преломления.
Для систем связи, использующих ММ-волокна рекомендуется использовать именно ОВ с градиентным коэффициентом преломления, однако надо понимать, что стоимость изготовления такого типа волокон гораздо выше, чем у волокон со ступенчатым коэффициентом.
Рассмотрим подробнее различные виды MM и SM волокон и кабелей на их основе.
Многомодовое волокно
Из-за влияния межмодовой дисперсии MM-волокно имеет ограничения по скорости и дальности распространения сигнала по сравнению с SM-волокном. Длину многомодовых линий связи ограничивает также большое по сравнению с одномодовым волокном затухание.
В то же время требования к расходимости излучения источника сигнала, а так же к точности юстировки компонентов оборудования ощутимо снижаются за счёт большого диаметра. Вследствие этого оборудование для многомодового волокна стоит гораздо дешевле, чем для одномодового (хотя само многомодовое волокно несколько дороже).
Как было упомянуто ранее, наибольшее распространение получили многомодовые волокна 50/125 и 62,5/125 мкм. Первые коммерческие MM волокна, производство которых началось в 1970-х годах, имели диаметр сердцевины 50 мкм и ступенчатый профиль коэффициента преломления. На тот момент единственным источником излучения были светодиоды. Увеличение передаваемого трафика привело к появлению волокон с сердцевиной 62,5 мкм. Бо́льший диаметр позволял более эффективно использовать излучение светодиодов, которые отличаются большой расходимостью светового потока. Однако при этом увеличивалось число распространяемых мод, что негативно сказывается на характеристиках передачи. Поэтому, когда вместо светодиодов стали использоваться узконаправленные лазеры, популярность снова обрело волокно 50/125 мкм. В результате совершенствования технологии производства были разработаны волокна, которые стали называть «оптимизированными для работы с лазерами». Дальнейшему росту скорости и дальности передачи информации способствовало появление волокон с градиентным профилем показателя преломления.
В настоящее время существует классификация многомодовых кварцевых волокон, подробно описанная в различных стандартах. Например, стандарт ISO/IEC 11801 определяет 4 категории многомодовых волокон. Они обозначаются латинскими буквами OM (Optical Multimode) и цифрой, обозначающей класс волокна:
Основной параметр, зависящий от дисперсии и определяющий способность волокна поддерживать распространение сигнала на определенные расстояния — коэффициент широкополосности. Для каждого класса в стандарте указываются значения затухания и коэффициента широкополосности. Данные представлены в таблице 1, где параметр OFL (overfilled launch) описывает метод определения ширины полосы пропускания, а именно – с помощью светодиодов.
Коэффициент широкополосности (OFL), МГц*км
Применяется для расширения ранее установленных систем. Использовать в новых системах не рекомендуется.
Применяется для поддержки приложений с производительностью до 1 Гбит/с на расстоянии до 550 м.
Волокно оптимизировано для применения лазерных источников. В режиме RML коэффициент широкополосности на длине волны 850 нм составляет 2000 МГц·км. Волокно применяется в системах с производительностью до 10 Гбит/с на расстоянии до 300 м.
Волокно оптимизировано для применения лазерных источников. В режиме RML коэффициент широкополосности на длине волны 850 нм составляет 4700 МГц·км. Волокно применяется для поддержки приложений с производительностью до 10 Гбит/с на расстоянии до 550 м.
Табл. 1. Сравнение характеристик ММ-волокон разных классов.
В июне 2016 года Ассоциация телекоммуникационной промышленности (TIA) опубликовала стандарт, описывающий новый класс ММ волокна – ОМ5 (TIA-492AAAE). Волокна, изготовленные по такому стандарту, позволят использовать технологию SWDM (Short-wavelength division multiplexing – уплотнение по коротким длинам волн) с четырьмя различными длинами волн. Что, в свою очередь, даст возможность повысить скорость передачи информации в 4 раза при сохранении и даже небольшом увеличении максимальной длины линии. В настоящий момент волокна OM5 в нашей стране практически не применяются, поскольку все их достоинства реализуются только в случае использования активного оборудования (трансиверов), работающего с технологией SWDM. О коммерческой целесообразности применения таких волокон говорить пока рано.
Подписывайтесь на канал ВОЛС.Эксперт
Показываем, как правильно выполнять монтаж оптических муфт и кроссов, разбираем частые ошибки, даем полезные советы специалистам.
Одномодовое волокно
В одномодовом волокне отсутствует межмодовая дисперсия, то есть искажение сигнала во времени из-за разницы в скорости распространения мод. Поэтому одномодовое волокно характеризуется очень большой величиной ширины полосы пропускания (сотни ТГц*км). Стандартное SM-волокно имеет, как упоминалось ранее, ступенчатый профиль показателя преломления.
Величина затухания в SM волокне в несколько раз меньше, чем в MM, что позволяет передавать информацию на очень большие расстояния (500 и более км) на высокой скорости без ретрансляции (повторения) сигнала, при этом характеристики передачи определяются главным образом параметрами активного оборудования.
С другой стороны, одномодовое волокно требует большой точности при вводе излучения и при стыковке оптических волокон друг с другом, что является причиной удорожания используемых волоконно-оптических компонентов (активное оборудование, соединительные изделия) и усложняет процесс монтажа и обслуживания линий.
Первые SM-волокна появились в начале 80-х годов и стали активно использоваться в протяженных линиях связи. В то же время для передачи на короткие расстояния, например, в локальных сетях, продолжалось использование ММ-волокна. Со временем, в связи с уменьшением стоимости как самого волокна, так и компонентов для него, одномодовое волокно стало завоевывать все большую популярность и в непротяженных сетях. Таким образом, сегодня кварцевое SM- волокно является самым распространенным типом оптического волокна.
По мере совершенствования технологий производства создавались и менялись и стандарты, описывающие требования к оптическим волокнам. В отличие от MM-волокон, которые в настоящее время описываются стандартом ISO/IEC 11801, для SM волокон наиболее распространёнными и повсеместно используемыми стали стандарты ITU-T G.652-657.
Перечислим основные свойства волокон, соответствующих этим стандартам.
Наиболее распространенный тип одномодового волокна с точкой нулевой хроматической дисперсии на длине волны 1300 нм. Стандарт выделяет четыре подкласса (A, B, C и D), отличающихся своими характеристиками. Особо стоит отметить волокна G.652.C и G.652.D – они имеют низкое затухание на длине волны 1383 нм, то есть в области «водного пика», а потому могут использоваться в системах CWDM. Такие волокна еще называют «всеволновыми».
Изменяя профиль показателя преломления, можно сдвинуть точку нулевой дисперсии в третье окно прозрачности (1550 нм), что позволяет увеличить дальность передачи сигнала при работе в этом диапазоне. Используются только за рубежом и только в линиях, работающих без использования спектрального уплотнения.
Волокна с минимизацией потерь на длине волны l=1550 нм являются модификацией волокон SSF с уменьшенными потерями (менее 0,18 дБ/км) в третьем окне прозрачности. Низкое затухание достигается за счет применения кварца сверхвысокой степени очистки для сердцевины, что позволяет снизить затухание, обусловленное поглощением примесями, а также формирования больших значений длины волны отсечки для уменьшения чувствительности к потерям, обусловленным изгибами волокна. Такое оптоволокно может использоваться для передачи цифровой информации на большие расстояния, например, в наземных системах дальней связи и магистральных подводных кабелях с оптическими усилителями. Из-за трудности производства эти волокна очень дороги.
Предназначено для передачи на длинах волн вблизи 1550 нм и оптимизировано для систем DWDM. Абсолютное значение коэффициента хроматической дисперсии в этом волокне больше некоего ненулевого значения в диапазоне длин волн от 1530 нм до 1565 нм. Ненулевая дисперсия препятствует возникновению нелинейных эффектов, которые особенно вредны для DWDM систем.
Подобно волокну G.655, имеет ненулевое значение коэффициента хроматической дисперсии, но уже в диапазоне длин волн 1460-1625 нм, поэтому хорошо подходит как для систем DWDM, так и для CWDM.
Помимо оптических свойств, важную роль играют и механические характеристики оптоволокна, в частности, его чувствительность к изгибам. Особенно это важно при прокладке внутри помещения, где волокно часто нужно изгибать. Стандарт G.657 выделяет несколько подклассов одномодового волокна, отличающихся минимальным радиусом изгиба и соответствующей величиной потерь.
Описанные стандарты оптических волокон не всегда взаимоисключают друг друга. К примеру, распространенное оптоволокно компании Corning марки SMF-28® Ultra соответствует стандартам G.652.D и G.657.A1. В то же время бывают случаи, когда оптические волокна разных типов не совместимы друг с другом.
Применение кабелей на основе SM и MM волокна
В настоящее время сложилась практика выбора оптического кабеля в зависимости от сферы применения.
Одномодовое волокно используется:
Многомодовое волокно в основном используется:
Для демонстрации коммерческой целесообразности применения SM и MM волокон в различных случаях сравним стоимость активного оборудования. Будем сравнивать конкретные модели оборудования, необходимого для работы на различных скоростях передачи информации. См. табл. 2.