Что значит область определения симметрична относительно начала координат
Функции четные и нечетные
Понятия четной и нечетной функции вам хорошо знакомы, и, как правило, их определения даются с упоминанием области определения, например: функция у=f(x) называется четной, если ее область определения D(f) симметрична относительно начала координат, и для всех х из этой области определения выполняется равенство f(-x)=f(x).
Это не значит, конечно, что данное определение неправильное, оно лишь «неэкономное», и в учебниках определение четной функции дается в таком виде, для того чтобы лишний раз напомнить о симметричности области определения такой функции.
С терминами четная и нечетная также возникает языковой эффект, похожий на тот, о котором мы ранее уже говорили: свойства четности и нечетности для функций не являются отрицаниями друг друга, как можно подумать, исходя из четности и нечетности натуральных и целых чисел. Равенства f(-x)=f(x) и f(-x)=-f(x) не противоречат, как может показаться, друг другу, но могут выполняться одновременно — правда, только в случае, когда f(x)=f(-x)=0 («особое» число 0, как вы уже многократно убеждались в разных ситуациях, нередко «отравляет жизнь»).
Поэтому функция может быть одновременно и четной, и нечетной, и простейшим примером такой функции является постоянная функция — тождественный нуль, т.е. равная 0 при всех значениях аргумента. Можно и описать все функции, одновременно четные и нечетные — это, очевидно, такие функции, имеющие в качестве области определения произвольное симметричное относительно начала координат множество чисел, но принимающее на ней только нулевое значение.