Что значит объединение множеств
Пересечение, объединение и разность множеств
Пересечение множеств
Пересечением множеств A и B называют множество, содержащее те и только те элементы, которые входят одновременно как в множество A, так и в множество B:
Объединение множеств
Объединением – множеств A и B называют множество, содержащее те и только те элементы, которые входят хотя бы в одно из множеств, A или B:
Универсум и отрицание
Универсум (универсальное множество) – множество, включающее в себя все множества, рассматриваемые в данной задаче.
В литературе универсум обозначают U.
На диаграммах Эйлера универсум изображают как множество точек прямоугольника, в котором лежат остальные множества:
При рассмотрении целочисленных задач, универсум – это множество целых чисел.
При построении двумерных графиков, универсум – это множество всех точек координатной плоскости.
При решении вероятностных задач, универсум – это множество всех возможных исходов цепочек событий.
Свойства операций пересечения и объединения
$(A \cap B) \cap C = A \cap (B \cap C)$
$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
Взаимодействие с отрицанием, пустым множеством и универсумом
$A \cap \varnothing = \varnothing$
$A \cup \varnothing = A$
Разность множеств
Разностью двух множеств A и B называют множество, в которое входят все элементы из множества A, не принадлежащие множеству B:
На диаграммах Эйлера разности для пересекающихся множеств выглядят так:
Формулы включений и исключений
Рассмотрим два конечных пересекающихся множества A и B.
Сумма n(A)и n(B) даст нам больше, чем общее количество, потому что мы два раза посчитаем то, что попадает в пересечение. Значит, если отнять одно пересечение, получится как раз то, что ищем:
$$n(A \cup B) = n(A)+ n(B)-n(A \cap B)$$
Выведем аналогичную формулу для трёх пересекающихся конечных множеств.
Примеры
Пример 1. Найдите пересечение данных множеств:
Математика часто оперирует абстрактными объектами, для задания связи между которыми существуют различные операции, такие как пересечение и объединение множеств. Понятие множества является интуитивным, не определяемым. Оно обычно ассоциируется с набором чего-либо, группой каких-то предметов или живых объектов, совокупностью некоторых условий, рассматривается как класс, семейство в некоторой классификации, промежуток числовой прямой. Например, в геометрии рассматриваются линии как множества точек.
То, из чего состоит множество, называется его элементами.
Графическим изображением, служащим для наглядности рассматриваемых объектов, является круг Эйлера.
Что такое пересечение множеств
Для любого набора множеств их пересечением называется множество, состоящее из всех элементов, принадлежащих одновременно каждому из заданных. Другими словами, это совокупность всех общих элементов.
С помощью кругов Эйлера-Венна пересечение можно изобразить так:
Часто применяется для определения решений систем уравнений и неравенств.
Ассоциируется с обычным умножением двух числовых объектов.
Что такое объединение множеств
Изображение кругами Эйлера выглядит следующим образом:
Часто используется при решении уравнений и неравенств, подчёркивая наличие серий корней и решений, нескольких используемых промежутков числовой прямой.
В обычной математике близко по смыслу с операцией, называемой «сложение».
Свойства пересечения и объединения множеств
Для решения задач нужно знать о следующих свойствах:
1. Коммутативность (перестановочность):
Эти свойства распространяются на любое количество компонентов. Следуют из определения операций.
2. Ассоциативность (расстановка скобок):
Данные свойства также применимы к большому количеству компонентов. Позволяют опускать скобки и упрощать запись.
3. Дистрибутивность (раскрытие скобок):
(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C);
(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C).
4. Закон идемпотентности (идентичности):
Множество, не содержащее ни одного элемента, называется пустым. Обозначается перечёркнутым нулём: Ø
Выполнение операций с Ø:
Прослеживается аналог со сложением и умножением на ноль.
Операции над множествами
Помимо объединения и пересечения существуют другие операции:
Для двух множеств A и B можно определить их разность как набор элементов, входящих в A и не содержащихся в B:
Рассматривая некоторое множество в качестве содержащего все остальные, можно прийти к понятию «дополнение», как к совокупности всех элементов, не входящих в A:
Благодаря этой операции свойства объединения и пересечения можно расширить/
Примеры решения задач
Задача №1
Выписать все элементы множества
При поиске M операции выполняются последовательно.
B \ A состоит из всех элементов B, которые не принадлежат A, поэтому:
B ∪ A включает в себя все элементы, принадлежащие хотя бы одному из множеств A или B. Таким образом:
M = (B \ A) \ (B ∪ A) состоит из всех элементов B \ A, которые не принадлежат B ∪ A, следовательно, M = Ø.
Задача №2
Доказать методом включений тождество:
Необходимо доказать выполнение включений:
Выбирается произвольный x из (A ∩ B) ∪ C. По определению операции объединения x ∈ B ∩ A или x ∈ C.
Если x ∈ B ∩ A, то по определению пересечения x ∈ B и x ∈ A.
Так как x ∈ A, то x ∈ C ∪ A; так как x ∈ B, то x ∈ C ∪ B, следовательно, x ∈ (A ∪ C) ∩ (B ∪ C).
Если x ∈ C, то x ∈ C ∪ A и x ∈ C ∪ B, а значит: x ∈ (A ∪ C) ∩ (B ∪ C).
Поскольку x ∈ (A ∩ B) ∪ C был выбран произвольно, утверждается, что любой элемент этого множества содержится в (A ∪ C) ∩ (B ∪ C), то есть:
Выбирается произвольный y из (A ∪ C) ∩ (B ∪ C).
По определению операции пересечения y ∈ C ∪ A и y ∈ C ∪ B.
Так как y ∈ C ∪ A, то y ∈ A или y ∈ C; так как y ∈ C ∪ B, то y ∈ C или y ∈ B. Таким образом, y ∈ C или y ∈ A и y ∈ B.
Если y ∈ A и y ∈ B, то y ∈ B ∩ A, а, следовательно, y ∈ (A ∩ B) ∪ C; если y ∈ C, то также y ∈ (A ∩ B) ∪ C.
Поскольку y из (A ∪ C) ∩ (B ∪ C) выбирался произвольно, утверждается, что любой элемент этого множества содержится в (A ∩ B) ∪ C, то есть
Из пунктов 1 и 2 вытекает, что
Что значит объединение множеств
Объединение множеств X и Y — это множество, состоящее из всех тех и только тех элементов, которые принадлежат хотя бы одному из множеств X или Y, т.е. принадлежат X или принадлежат Y.
Объединение X и Y обозначается через X∪Y
Формально x∈X∪Y ⇔ x∈X или x∈Y
Пример 3. Если X — множество точек левого круга и Y — множество точек правого круга, то
X∪Y — заштрихованная область, ограниченная обоими кругами.
представляет собой множество, состоящее из всех тех и только тех элементов, которые принадлежат хотя бы одному из множеств данной системы М.
Для объединенных множеств справедливы:
справедливость которых вытекает из того, что левая и правая части равенств состоят из одних и тех же элементов.
Очевидно, что X∪∅ = X. Отсюда можно видеть, что ∅ играет роль нуля в алгебре множеств.
2. Пересечение множеств
Пересечение множеств X и Y — это множество, состоящее из всех тех и только тех элементов, которые принадлежат как множеству X, так и множеству Y.
Пересечение множеств обозначается X∩Y.
Формально x∈X∩Y ⇔ x∈X и x∈Y
Пример 5. Если Х — множество точек левого круга, а Y — множество точек правого круга, то X∩Y представляет собой заштрихованную область, являющуюся общей частью обоих кругов.
Множества X и Y называются непересекающимися (дизъюнктными), если они не имеют общих элементов, то есть если X∩Y=∅.
Частный случай: кортеж длины 1 —
кортеж длины 0 — или ∧ — пустой кортеж.
Отличие кортежа и обыкновенного множества: в кортеже могут быть одинаковые элементы.
Упорядоченные множества, элементами которых являются вещественные числа, будем называть векторами или точками пространства (n-мерного).
Два вектора равны, если они имеют одинаковую длину и соответствующие координаты их равны.
Компонентами кортежа (вектора) могут быть также компоненты кортежи (векторы):
Пример. Слова в предложении,
Прямое произведение множеств
Прямым (декартовым) произведением множеств X и Y называется множество, состоящее из всех тех и только тех упорядоченных пар, первая компонента которых принадлежит множеству X, а вторая принадлежит множеству Y.
Пример 3. Пусть X и Y — отрезки вещественной оси. Прямое произведение X*Y изображается заштрихованным прямоугольником. См. рис. б).
Прямое произведение изменяется при изменении порядка сомножителей т.е.
Очевидно X*Y = ∅ ⇔ X = ∅ или Y = ∅.
Частным случаем прямого произведения является понятие степеней (декартовых) множества — прямое произведение одинаковых множеств
M s =M*M*. *M, M 1 =M, M 0 =∧.
Обычно R — множество вещественных чисел, тогда R 2 =R*R — вещественная плоскость и R 3 =R*R*R — трехмерное вещественное пространство.
Проекция множества.
Операция программирования множества тесно связана с операцией проектирования кортежа и может применяться лишь к таким множествам, элементами которых являются кортежи одинаковой длины.
Пусть M — множество, состоящее из кортежей длины S. Тогда пролинией множества M будем называть множество пролиний всех кортежей из М
Очевидно что если М=Х*Y то Пр1М=Х, Пр2М=Y
и если Q⊆Х*Y то Пр1Q⊆Х и Пр2Q⊆Y
Пусть V — множество векторов одинаковой длины S.
В общем случае ПрiV — вовсе не обязательно прямое произведение: оно может быть подмножеством.