Что значит нулевая степень числа
Better Explained: Как понять ноль в нулевой степени?
Как мы можем повторить ноль нулевое количество раз и получить единицу? Всё дело в том, что наш подход к степени числа как к многократному умножению неверен. Нам нужно сменить парадигму. Давайте посмотрим, как мы привыкли воспринимать арифметические действия, и что они на самом деле из себя представляют.
Сложение
Как мы привыкли думать: это повторяющийся счёт
Как на самом деле: перемещение
Умножение
Как мы привыкли думать: это многократное сложение
Как на самом деле: масштабирование
Степень
Как мы привыкли думать: многократное умножение
Как на самом деле: рост с течением времени
Смотрим на арифметику как на преобразование
Отойдём на шаг назад. Как мы изучаем арифметику? Нас учат, что числа — это некое количество единиц; сложение — это прибавление одного количества единиц к другому количеству единиц (3+4 = 7), а умножение — это многократное сложение (2*3 = 2+2+2 = 6).
Очевидно, что эта модель восприятия неполноценна. Числа — это не просто единицы чего-то; гораздо лучше представлять их как некие точки с определённым положением на линии. Положение может быть отрицательным (-1), либо между другими числами (2²), либо в другом измерении (i).
Таким образом арифметика предстаёт перед нами как способ преобразовывать число. Сложение становится перемещением (+3 — это перемещение на 3 единицы вправо); умножение становится масштабированием (*3 — это увеличить число в три раза).
А что же такое тогда степень числа?
Познакомьтесь с Экпандотроном™
Это Экспандотрон 3000. Он выглядит как достаточно потрёпанная микроволновка, но вместо подогрева пищи она занимается ростом чисел. Просто положите число внутрь и проделайте несколько простых операций.
Вуаля! После звукового сигнала достаём наше новенькое готовое число. Например, мы хотим изменить 1 на 9. Что нам нужно сделать?
Что мы видим? Мы видим, как число начинает преобразовываться: 1; 1,1; 1,2. По окончании первой секунды оно уже выглядит как 3 и продолжает меняться: 3,1; 3,5; 4,0; 6,0; 7,5. И по окончании второй секунды оно превратилось в 9.
В математическом представлении Экспандотрон (или показательная функция) делает для нас следующее:
Например, 3 2 = 9/1. Основанием является то количество раз, в которое нам нужно вырастить число (х3), а степенью — количество времени (2). Формула типа 2 n означает «Используйте свой Экспандотрон на мощности х2 в течение n секунд».
Работу Экспандотрона мы всегда начинаем с 1, чтобы посмотреть, как он меняет одну единицу. Если мы хотим посмотреть, что случится с 3 в Экспандотроне, мы просто масштабируем конечный результат. Например:
Начните с 1 и умножьте на двойку в третьей степени: 1*2 3 = 1 * 2 * 2 * 2 = 8
Начните с 3 и умножьте на двойку в третьей степени: 3*2 3 = 3 * 2 * 2 * 2 = 24
Каждый раз, когда вы видите простую степень, вы начинаете с 1.
Идём к пониманию масштабирующего множителя
При умножении мы можем просто указать конечный масштабирующий множитель. Хотите число в 8 раз больше? Умножаем на 8. Готово.
Степени более капризны в обращении. Вот как они работают:
Вы: Хочу вырастить вот это число.
Экспандотрон: Ок, давай его сюда.
Вы: И насколько большим оно станет?
Экспандотрон: Пффф, без понятия. Давай посмотрим.
Вы: Посмотрим? Я думал, ты зна.
Экспандотрон: Тихо! Оно растёт! Растёт!
Экспандотрон: Готово! Это шедевр!
Это может звучать раздражающе неопределённо, но знаете, что? Большинство явлений природы заканчиваются неизвестно чем!
Как думаете, бактерия действительно планирует делиться каждые 14 часов? Нет, она просто питается забытым вами в холодильнике хлебом и растёт так быстро, как только может. Чтобы предсказать поведение этой бактерии, мы можем лишь использовать значения темпа её роста и длительности роста — и только потом мы получим конечное значение.
Иными словами, степень числа — это такой способ сказать «Начинаем с таких условий, изменяем их и смотрим, к чему мы придём». Этим и занимается наш Экспандотрон.
Идём к пониманию дробных степеней
Очень легко запутаться, если мы думаем о двойке в полуторной степени привычным способом — как о многократном умножении. Но в Экспандотроне всё просто: 1,5 — это всего лишь проведённое в нём время.
2 1,5 означает 1,5 секунды в машине, значит, этот рост окажется где-то между двукратным и четырёхкратным.
Умножение степеней
Что если мы захотим прогнать два цикла роста один за другим? Ну, например, мы используем машину в течение 2 секунд, а потом ещё 3 секунды на той же мощности:
Представьте самую обычную микроволновку. Разве это не будет самый обычный цикл длительностью в 5 секунд? Будет. Здесь происходит то же самое — раз уже мощность (основание) остаётся одинаковой, мы просто складываем время:
Квадратные корни
Продолжим. Предположим, мы выбрали мощность а и устанавливаем рост в течение 3 секунд:
Неплохо. Как будет выглядеть рост в течение половины этого времени? Логично, что 1,5 секунды.
А если мы проделаем то же самое два раза?
частичный рост * частичный рост = полный рост
Смотрим на это уравнение и видим, что «частичный рост» — это квадратный корень из значения полного роста. А если мы разделим время на три части?
частичный рост * частичный рост * частичный рост = полный рост
А вот и кубический корень! Это даёт нам интуитивное понимание того, почему деление степеней даёт нам корни: мы разбиваем время на равные доли.
Отрицательные степени
А как быть с отрицательными степенями? Отрицательные степени для нас будут значить обратный отсчёт во времени. Если движение вперёд во времени приводит нас к росту, движение назад, скорее всего, выльется в уменьшение числа.
Это значит следующее: «Секунду назад у нас была половина от текущего количества (1/2 1 ). Любой график экспоненциального роста строится именно так.
Выберите точку на шкале времени, например, 3,5 секунды (2 3,5 = 11,3). Через секунду мы удвоим наше количество (2 4,5 = 22,5). А секунду назад у нас была всего лишь половина от текущего количества (2 2,5 = 5,65).
Приходим к нулевой степени
Значит, масштабирующий множитель равен единице, значит, никаких изменений с нашим числом не происходит. Новое число будет равняться исходному числу, то есть (вы же помните, что исходное число у нас единица?) единице. Масштабирования не происходит.
Приходим к нулевому основанию
Приходим к нулевому основанию в нулевой степени
0 в степени 0 означает рост х0 в течение 0 секунд. Хоть мы и планировали аннулировать число, мы так и не запустили машину. Новое число равно исходному числу (то есть в наш Экспандотрон мы положили единицу), масштабирующий множитель тоже равен единице.
Конечно, Экспандотрона на самом деле не существует (а жаль!). Конечно, числа на самом деле не выстраиваются в линейку — они всего лишь один из множества способов взглянуть на мир.
По материалам очаровательной статьи на Better Explained.
Почему 0 в степени 0 равно 1?
Ноль в степени ноль является неопределенным выражением.
Это выражение может быть равно чему угодно в зависимости от скорости направления предельного перехода к нулю.
Однако, некоторые авторы предлагают принять соглашение о том, что 0^0=1. В пользу подобного варианта приводятся несколько доводов. Например, разложение в ряд экспоненты и другие.
Дискуссия по поводу определения продолжается, по крайней мере, с начала XIX века и ДО СИХ ПОР. В начале 19-го века математики считали, что 0^0=1, но в 1821 году Коши причислил 0^0 к неопределённостям, таким, как, например, 0/0.
Сайт MathWorld считает, что 0^0 считается неопределённым, несмотря на то, что соглашение 0^0=1 позволяет в некоторых случаях упростить запись некоторых формул. В России Большая российская энциклопедия, Большая советская энциклопедия, Математический энциклопедический словарь, Справочник по элементарной математике Выгодского, школьные учебники и другие источники однозначно характеризуют 0^0 как выражение, не имеющее смысла (неопределённость).
Интересно, что в компьютерных языках программирования, при использовании функции возведения в целую степень, 0^0 всегда дает результат равный 1. Но такой же результат будет не только для нуля, но и для NaN и для бесконечность. То есть, это чисто так устроена функция возведения в целую степень.
А вот функция возведения в нецелую степень уже дает результат NaN, то есть неопределенность.
А в тех языках программирования, где нет разделения функции возведения в степень на функцию для целого и вещественного показателя, там всё по разному. Например, в C++ выдает единицу.
Степень 0
В алгебре возведение с нулевую степень встречается часто. Что такое степень 0? Какие числа можно возводить в нулевую степень, а какие — нет?
Любое число в нулевой степени, за исключением нуля, равно единице:
Таким образом, какое бы число ни возвели в степень 0, результат всегда получится одинаковый — единица.
И 1 в степени 0, и 2 в степени 0, и любое другое число — целое, дробное, положительное, отрицательное, рациональное, иррациональное — при возведении в нулевую степень дает единицу.
Единственное исключение — нуль.
Нуль в нулевой степени не определен, такое выражение не имеет смысла.
То есть в нулевую степень можно возводить любое число, кроме нуля.
Если при упрощении выражения со степенями получается число в нулевой степени, его можно заменить единицей:
Если при упрощении получается переменная или выражение с переменными в нулевой степени, пишем дополнительное условие — основание степени должно быть отличным от нуля:
Что значит нулевая степень числа
Ноль в степени ноль равно нулю. Я знаком с методами как доказывают обратное. Все они не приемлемы. Вот внизу ролик поставили. Человек вычитывает степень числа которое приближается к нулю. Итог приближается к единице. Но во первых это не ноль, на самом деле это бесконечность. Ибо число приближается к нулю бесконечно. Значит тот число в его степени бесконечно приближается к единице. Но то число никогда не станет нулем, и степень ни когда не станет единицей. По этому такой подход не верный. Если использовать логарифму, получается то же самое. Ничего если возвести на степень ни чего, то ничего не будет происходить. Ибо нет какого либо числа, над чем можно работать. Ноль- на самом деле не число а дополнение, без которого математика просто не работает. А само по себе, это ни что. То есть нуля нет.
Любое число в нулевой степени это число деленное на само себя. Поэтому почти всегда это будет 1 так как x/x=1
С нулем немного другая история.
0^0=0/0. А 0/0 не обязательно единица, это неопределенность, ведь на 0 делить нельзя))) это работает для выражения «а в степени b, где a и b стремятся к 0».
Из всего, что нагуглила в интернете, самое доступное для нематематиков обьяснение нашла вот это: «отображение пустого множества в пустое, а оно единственно». Такое литературное выражение хоть как-то (с трудом), но можно переварить.
Математический парадокс,любое число в степени ноль,равно единице,в случае с нолем,ответ считается неочевидным.Просто математический закидон.
Значит так решили принять.
А вообще-то это одна из неопределённостей. Но всё зависит от того, что является этим нулём.
Известно, что абсолютно любое число в нулевой степени равно единице.Если правильно помню,класс 2-3.
Это чисто символически. В нуле эта функция разрывается и не имеет значения
Математики всего мира ещё не пришли к единому мнению по этому вопросу.
Любое число или выражение в нулевой степени равно 1(правило).
Потому что это не так. значение 0 в степени 0 – не определено
Отрицательная и нулевая степень числа
То же правило применимо и к любому другому экспоненциальному числу, таким образом, можно сформулировать правило в общем виде:
любое число, возведенное в первую степень, остается без изменения
То есть 5 1 =5, 27 1 =27 и так далее.
Этот вывод, возможно, привел вас в изумление. Еще можно как-то понять смысл выражения 2 1 =2, хотя выражение «одно число два, умноженное само на себя» звучит достаточно странно. Но выражение 2 0 означает «ни одного числа два, умноженного само на себя», то есть кажется логичным, чтобы 2 0 равнялось нулю. Возможно, это и логично, но математики отнюдь не следуют правилам обычной повседневной логики. Они руководствуются общими закономерностями и необходимостью взаимной совместимости постулатов. Иными словами, математики могут принять самые невероятные правила, которые с обывательской точки зрения могут показаться просто безумными. Но эти правила не должны противоречить одно другому, какие бы результаты ни получались. Правило сложения и вычитания экспонент работает настолько хорошо, что если для того, чтобы его применять, необходимо, чтобы 2 0 =1, значит, так и должно быть. Мы просто принимаем, что утверждение 2 0 =1 верно.
любое число, возведенное в нулевую степень, равно 1
Можно привести еще множество примеров, и каждый раз мы обнаружим, что:
отрицательная степень числа становится положительной при переходе к обратному числу