Что значит номинальный ток двигателя
Как определить ток электродвигателя по мощности?
Для новых электродвигателей в измерении тока нет необходимости – вся информация о токах, номинальной мощности, оборотах и напряжении питания указана на бирке. Без бирки номинальный пусковой ток рассчитывают по формуле. После снятия рабочей нагрузки с вала электродвигатель переходит в режим холостого хода. При такой работе можно узнать исправность устройства, мощность, намагничивающий ток и коэффициент потерь в конструкциях привода.
Номинальный ток электродвигателя – это необходимый параметр при настройке защитной автоматики и подборе питающего провода. Однако, стоит учитывать, что чем выше температура окружающей среды, тем меньшего значения будет максимальный ток отключающего реле.
Формула расчета номинального тока электродвигателя по мощности
Силу тока маломощных асинхронных двигателей Аир до 30 кВт можно определить экстренным методом, с незначительной погрешностью, умножив мощность электродвигателя на 2. Таким образом получаем формулу. При полном отсутствии данных, прочтите статью как определить мощность и обороты электродвигателя без бирки?
Если трехфазный двигатель имеет мощность более 30 кВт, то следует воспользоваться формулой точного расчета номинального тока электродвигателя.
Формула определения рабочего тока по мощности электродвигателя:
Uн – номинальное напряжение, подающееся на электродвигатель;
η – коэффициент полезного действия (КПД);
cosφ – коэффициент мощности двигателя.
Данная формула поможет рассчитать максимальный допустимый ток, при котором асинхронный трехфазный двигатель сможет работать долгий срок.
Для примера возьмем электродвигатель АИР250S6, из бирки можно понять, что:
Pн = 45кВт, Uн = 380В, cosφ = 0,85, n = 92% (в расчетах будет 0,92).
Iн = 45000/√3(380*0,85*0,92) = 45000/514,696 = 87,43А.
Как измерить пусковой ток электродвигателя
Произвести расчеты пускового тока двигателя можно по формуле:
где Iн – номинальный ток, который вы узнали ранее.
K – кратность пускового тока (можно найти в паспорте двигателя).
Таблицы значений номинального тока двигателей АИР
Если вы знаете маркировку своего электродвигателя, то можете узнать ток из таблиц ниже:
Таблица потребляемых токов электродвигателей АИР 750 об/мин
Двигатель АИР | Ток Iн, А | Iп/Iн | Электродвигатель | Iн, А | Отношение Iп/Iн |
АИР71В8 | 1,1 | 3,3 | АИР180М8 | 34,1 | 6,6 |
АИР80А8 | 1,49 | 4 | АИР200М8 | 41,1 | 6,6 |
АИР80В8 | 2,17 | 4 | АИР200L8 | 48,9 | 6,6 |
АИР90LА8 | 2,43 | 4 | АИР225М8 | 60 | 6,5 |
АИР90LВ8 | 3,36 | 5 | АИР250S8 | 78 | 6,6 |
АИР100L8 | 4,4 | 5 | АИР250М8 | 92 | 6,6 |
АИР112МА8 | 6 | 6 | АИР280S8 | 111 | 7,1 |
АИР112МВ8 | 7,8 | 6 | АИР280М8 | 150 | 6,2 |
АИР132S8 | 10,3 | 6 | АИР315S8 | 178 | 6,4 |
АИР132М8 | 13,6 | 6 | АИР315М8 | 217 | 6,4 |
АИР160S8 | 17,8 | 6 | АИР355S8 | 261 | 6,4 |
АИР160М8 | 25,5 | 6,5 | – | – | – |
Номинальный и пусковой ток электродвигателей 1000 об/мин
Мотор АИР | Iн, А | Iп/Iн | Электромотор | Iн, А | Iп/Iн |
АИР 63А6 | 0,8 | 4,1 | АИР160M6 | 31,6 | 7 |
АИР 63В6 | 1,1 | 4 | АИР180М6 | 38,6 | 7 |
АИР71А6 | 1,3 | 4,7 | АИР200М6 | 44,7 | 7 |
АИР71В6 | 1,8 | 4,7 | АИР200L6 | 59,3 | 7 |
АИР80А6 | 2,3 | 5,3 | АИР225М6 | 71 | 7 |
АИР80В6 | 3,2 | 5,5 | АИР250S6 | 86 | 7 |
АИР90L6 | 4 | 5,5 | АИР250М6 | 104 | 7 |
АИР100L6 | 5,6 | 6,5 | АИР280S6 | 142 | 6,7 |
АИР112МА6 | 7,4 | 6,5 | АИР280М6 | 169 | 6,7 |
АИР112МВ6 | 9,75 | 6,5 | АИР315S6 | 207 | 6,7 |
АИР132S6 | 12,9 | 6,5 | АИР315М6 | 245 | 6,7 |
АИР132М6 | 17,2 | 6,5 | АИР355S6 | 292 | 6,7 |
АИР160S6 | 24,5 | 6,5 | АИР355М6 | 365 | 6,7 |
Рабочий ток трехфазного двигателя 1500 об/мин
Электродвигатель АИР | Iн, А | Iп/Iн | Двигатель 1500 об/мин | Iн, А | Iп/Iн |
АИР 56А4 | 0,5 | 4,6 | АИР160S4 | 30 | 7,5 |
АИР 56В4 | 0,7 | 4,9 | АИР160М4 | 36,3 | 7,5 |
АИР 63А4 | 0,82 | 5,1 | АИР180S4 | 43,2 | 7,5 |
АИР 63В4 | 2,05 | 5,1 | АИР180M4 | 57,6 | 7,2 |
АИР71А4 | 1,17 | 5,2 | АИР200M4 | 70,2 | 7,2 |
АИР71В4 | 2,05 | 6 | АИР225М4 | 103 | 7,2 |
АИР80А4 | 2,85 | 6 | АИР250S4 | 138,3 | 6,8 |
АИР80В4 | 3,72 | 6 | АИР250М4 | 165,5 | 6,8 |
АИР90L4 | 5,1 | 7 | АИР280S4 | 201 | 6,9 |
АИР100S4 | 6,8 | 7 | АИР280М4 | 240 | 6,9 |
АИР100L4 | 8,8 | 7 | АИР315S4 | 288 | 6,9 |
АИР112М4 | 11,7 | 7 | АИР315М4 | 360 | 6,9 |
АИР132S4 | 15,6 | 7 | АИР355S4 | 360 | 6,9 |
АИР132М4 | 22,5 | 7 | АИР355М4 | 559 | 6,9 |
Таблица номинального тока электродвигателей 3000 об/мин
Электромотор | Iн, А | Iп/Iн | Электродвигатель | Iн, А | Iп/Iн |
АИР 56А2 | 0,5 | 5,3 | АИР180S2 | 41 | 7,5 |
АИР 56В2 | 0,73 | 5,3 | АИР180M2 | 55,4 | 7,5 |
АИР 63А2 | 1 | 5,7 | АИР200М2 | 67,9 | 7,5 |
АИР 63В2 | 2,05 | 5,7 | АИР200L2 | 82,1 | 7,5 |
АИР71А2 | 1,17 | 6,1 | АИР200L4 | 84,9 | 7,2 |
АИР71В2 | 2,6 | 6,9 | АИР225М2 | 100 | 7,5 |
АИР80А2 | 3,46 | 7 | АИР250S2 | 135 | 7 |
АИР80В2 | 4,85 | 7 | АИР250М2 | 160 | 7,1 |
АИР90L2 | 6,34 | 7,5 | АИР280S2 | 195 | 6,6 |
АИР100S2 | 8,2 | 7,5 | АИР280М2 | 233 | 7,1 |
АИР100L2 | 11,1 | 7,5 | АИР315S2 | 277 | 7,1 |
АИР112М2 | 14,9 | 7,5 | АИР315М2 | 348 | 7,1 |
АИР132М2 | 21,2 | 7,5 | АИР355S2 | 433 | 7,1 |
АИР160S2 | 28,6 | 7,5 | АИР355М2 | 545 | 7,1 |
АИР160М2 | 34,7 | 7,5 | – | – | – |
Если не получилось узнать значение тока
Номинальный ток – необходимый параметр для настройки защитной автоматики (тепловое реле, мотор-автоматы, релейная защита) и подбора питающего кабеля
При некорректном определении тока, настройка защитной автоматики и подбор провода становятся невозможными, что может привести к сгоранию кабеля и поломке двигателя.
Если у вас не получилось рассчитать силу тока или нет на это времени, позвоните и наши специалисты ответят на все ваши вопросы.
Что такое номинальный ток электродвигателя – советы электрика
Номинальный ток асинхронных двигателей
Подавляющее большинство электродвигателей, используемых в промышленности, относятся к трехфазному асинхронному типу. Для питания таких устройств необходима промышленная трехфазная сеть переменного тока, обеспечивающая сетевое напряжение заданной частоты и напряжения.
Высокая популярность асинхронных электродвигателей обусловлена дешевизной, простотой изготовления и механической прочностью данных устройств.
Кроме того, изменяя схему подключения обмоток (звезда или треугольник) можно подключать двигатель к сетям различного напряжения (обычно используются комбинации 220/380 и 127/220В).
Высокий стартовый ток – главный недостаток асинхронного электродвигателя
Однако несмотря на множество неоспоримых преимуществ, асинхронные двигатели имеют минусы, среди которых одним из наиболее значительных является достаточно большой пусковой ток электродвигателя данного типа.
Особенно заметен этот недостаток в асинхронных устройствах с короткозамкнутым ротором.
Такие двигатели следует с осторожностью применять, в тех системах, для которых требуется значительный пусковой момент, который может привести к превышению номинального значения силы тока (Iн).
Для большинства асинхронных электродвигателей допустимо кратковременное превышение значение Iн, которое может произойти в момент пуска.
Так, в момент запуска, допускается шестикратное превышение значения номинального тока при условии, что оно будет длиться не более 5 секунд.
В случае, если в некотором режиме номинальный ток превышается не более чем в два раза, допускается увеличить время работы устройства в этом режиме до 15 секунд.
Расчет номинального значения тока асинхронного электродвигателя
Номинальный ток электродвигателя, при котором возможна его длительная работа, связан с номинальной мощностью устройства и его КПД следующим выражением: Iн=1000*Pн/(Uн*cosφ√η), где Рн – мощность, Uн – номинальное напряжение, которым питается электродвигатель, η – КПД, а cosφ – коэффициент мощности двигателя.
Отсюда можно сделать важный вывод, который состоит в том, что при уменьшении U (например при переключении устройства из сети в 220 В сеть 127 В), увеличивается ток двигателя, который может превысить номинальное значение.
А длительная работа двигателя на токе I>Iн может привести не только к его повреждению, но и к возгоранию.
Поэтому, используемые в системе с электрическим двигателем предохранительные устройства должны быть подобраны так, чтобы предотвратить продолжительную работу при токе I>Iн.
Расчет номинального тока электродвигателя, Заметки электрика
Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».
Решил написать статью о расчете номинального тока для трехфазного электродвигателя.
Этот вопрос является актуальным и кажется на первый взгляд не таким и сложным, но почему-то в расчетах зачастую возникают ошибки.
В качестве примера для расчета я возьму трехфазный асинхронный двигатель АИР71А4 мощностью 0,55 (кВт).
Вот его внешний вид и бирка с техническими данными.
Если двигатель Вы планируете подключать в трехфазную сеть 380 (В), то значит его обмотки нужно соединить по схеме «звезда», т.е. на клеммнике необходимо соединить выводы V2, U2 и W2 между собой с помощью специальных перемычек.
При подключении этого двигателя в трехфазную сеть напряжением 220 (В) его обмотки необходимо соединить треугольником, т.е. установить три перемычки: U1-W2, V1-U2 и W1-V2.
Если же Вы решите подключить этот двигатель в однофазную сеть 220 (В), то его обмотки также должны быть соединены треугольником.
Для правильного выбора автоматического выключателя (или предохранителей) и тепловых реле для защиты двигателя, а также для выбора контактора для его управления, в первую очередь нам нужно знать номинальный ток двигателя для конкретной схемы соединения обмоток.
Обычно, номинальные токи указаны прямо на бирке, поэтому можно смело ориентироваться на них. Но иногда циферки не видны или стерты, а известна только лишь мощность двигателя или другие его параметры.
Такое очень часто встречается, но еще чаще бирка вообще отсутствует или так затерта, что на ней абсолютно ничего не видно — приходится только догадываться, что там изображено.
Но это отдельный случай и что делать в таких ситуациях, я расскажу Вам в ближайшее время.
В данной же статье я хочу акцентировать Ваше внимание на формулу по расчету тока двигателя, потому что даже не все «специалисты» ее знают, хотя может и знают, но не хотят вспомнить основы электротехники.
Внимание! Мощность на шильдике двигателя указывается не электрическая, а механическая, т.е. полезная механическая мощность на валу двигателя. Об этом отчетливо говорится в действующем ГОСТ Р 52776-2007, п.5.5.3:
Полезную механическую мощность обозначают, как Р2.
Чаще всего мощность двигателя указывают не в ваттах (Вт), а в киловаттах (кВт). Для тех кто забыл, читайте статью о том, как перевести ватты в киловатты и наоборот.
Еще реже, на бирке указывают мощность в лошадиных силах (л.с.), но такого я ни разу еще не встречал на своей практике. Для информации: 1 (л.с.) = 745,7 (Ватт).
Но нас интересует именно электрическая мощность, т.е. мощность, потребляемая двигателем из сети. Активная электрическая мощность обозначается, как Р1 и она всегда будет больше механической мощности Р2, т.к. в ней учтены все потери двигателя.
К механическим потерям относятся трение в подшипниках и вентиляция. Их величина напрямую зависит от оборотов двигателя, т.е. чем выше скорость, тем больше механические потери.
У асинхронных трехфазных двигателей с фазным ротором еще учитываются потери между щетками и контактными кольцами. Более подробно об устройстве асинхронных двигателей Вы можете почитать здесь.
Магнитные потери возникают в «железе» магнитопровода. К ним относятся потери на гистерезис и вихревые токи при перемагничивании сердечника.
Величина магнитных потерь в статоре зависит от частоты перемагничивания его сердечника. Частота всегда постоянная и составляет 50 (Гц).
Магнитные потери в роторе зависят от частоты перемагничивания ротора. Эта частота составляет 2-4 (Гц) и напрямую зависит от величины скольжения двигателя. Но магнитные потери в роторе имеют малую величину, поэтому в расчетах чаще всего не учитываются.
3. Электрические потери в статорной обмотке (Рэ1)
Электрические потери в обмотке статора вызваны их нагревом от проходящих по ним токам. Чем больше ток, чем больше нагружен двигатель, тем больше электрические потери — все логично.
4. Электрические потери в роторе (Рэ2)
Электрические потери в роторе аналогичны потерям в статорной обмотке.
5. Прочие добавочные потери (Рдоб.)
К добавочным потерям можно отнести высшие гармоники магнитодвижущей силы, пульсацию магнитной индукции в зубцах и прочее. Эти потери очень трудно учесть, поэтому их принимают обычно, как 0,5% от потребляемой активной мощности Р1.
Все Вы знаете, что в двигателе электрическая энергия преобразуется в механическую. Если объяснить чуть подробнее, то при подведенной к двигателю электрической активной мощности Р1, некоторая ее часть затрачивается на электрические потери в обмотке статора и магнитные потери в магнитопроводе.
Затем остаточная электромагнитная мощность передается на ротор, где она расходуется на электрические потери в роторе и преобразуется в механическую мощность. Часть механической мощности уменьшается за счет механических и добавочных потерь.
В итоге, оставшаяся механическая мощность — это и есть полезная мощность Р2 на валу двигателя.
Все эти потери и заложены в единственный параметр — коэффициент полезного действия (КПД) двигателя, который обозначается символом «η» и определяется по формуле:
Кстати, КПД примерно равен 0,75-0,88 для двигателей мощностью до 10 (кВт) и 0,9-0,94 для двигателей свыше 10 (кВт).
Еще раз обратимся к данным, рассматриваемого в этой статье двигателя АИР71А4.
На его шильдике указаны следующие данные:
В первую очередь необходимо найти электрическую активную потребляемую мощность Р1 из сети по формуле:
Р1 = Р2/η = 550/0,75 = 733,33 (Вт)
Величины мощностей подставляются в формулы в ваттах, а напряжение — в вольтах. КПД (η) и коэффициент мощности (cosφ) — являются безразмерными величинами.
Но этого не достаточно, потому что мы не учли коэффициент мощности (cosφ), а ведь двигатель — это активно-индуктивная нагрузка, поэтому для определения полной потребляемой мощности двигателя из сети воспользуемся формулой:
S = P1/cosφ = 733,33/0,71 = 1032,85 (ВА)
Найдем номинальный ток двигателя при соединении обмоток в звезду:
Iном = S/(1,73·U) = 1032,85/(1,73·380) = 1,57 (А)
Найдем номинальный ток двигателя при соединении обмоток в треугольник:
Iном = S/(1,73·U) = 1032,85/(1,73·220) = 2,71 (А)
Как видите, получившиеся значения равны токам, указанным на бирке двигателя.
Для упрощения, выше приведенные формулы можно объединить в одну общую. В итоге получится:
Поэтому, чтобы определить номинальный ток двигателя, необходимо в данную формулу подставлять механическую мощность Р2, взятую с бирки, с учетом КПД и коэффициента мощности (cosφ), которые указаны на той же бирке или в паспорте на электродвигатель.
Ток двигателя при соединении обмоток в звезду:
Iном = P2/(1,73·U·cosφ·η) = 550/(1,73·380·0,71·0,75) = 1,57 (А)
Ток двигателя при соединении обмоток в треугольник:
Iном = P2/(1,73·U·cosφ·η) = 550/(1,73·220·0,71·0,75) = 2,71 (А)
Надеюсь, что все понятно.
Решил привести еще несколько примеров с разными типами двигателей и мощностями. Рассчитаем их номинальные токи и сравним с токами, указанными на их бирках.
1. Асинхронный двигатель 2АИ80А2ПА мощностью 1,5 (кВт)
Как видите, этот двигатель можно подключить только в трехфазную сеть напряжением 380 (В), т.к. его обмотки собраны в звезду внутри двигателя, а в клеммник выведено всего три конца, поэтому:
Iном = P2/(1,73·U·cosφ·η) = 1500/(1,73·380·0,85·0,82) = 3,27 (А)
Полученный ток 3,27 (А) соответствует номинальному току 3,26 (А), указанному на бирке.
2. Асинхронный двигатель АОЛ2-32-4 мощностью 3 (кВт)
Данный двигатель можно подключать в трехфазную сеть напряжением, как на 380 (В) звездой, так и на 220 (В) треугольником, т.к. в клеммник у него выведено 6 концов:
Iном = P2/(1,73·U·cosφ·η) = 3000/(1,73·380·0,83·0,83) = 6,62 (А) — звезда
Iном = P2/(1,73·U·cosφ·η) = 3000/(1,73·220·0,83·0,83) = 11,44 (А) — треугольник
Полученные значения токов при разных схемах соединения обмоток соответствуют номинальным токам, указанных на бирке.
3. Асинхронный двигатель АИРС100А4 мощностью 4,25 (кВт)
Iном = P2/(1,73·U·cosφ·η) = 4250/(1,73·380·0,78·0,82) = 10,1 (А) — звезда
Iном = P2/(1,73·U·cosφ·η) = 4250/(1,73·220·0,78·0,82) = 17,45 (А) — треугольник
Расчетные значения токов при разных схемах соединения обмоток соответствуют номинальным токам, указанных на шильдике двигателя.
4. Высоковольтный двигатель А4-450Х-6У3 мощностью 630 (кВт)
Этот двигатель можно подключить только в трехфазную сеть напряжением 6 (кВ). Схема соединения его обмоток — звезда.
Iном = P2/(1,73·U·cosφ·η) = 630000/(1,73·6000·0,86·0,947) = 74,52 (А)
Расчетный ток 74,52 (А) соответствует номинальному току 74,5 (А), указанному на бирке.
Представленные выше формулы это конечно хорошо и по ним расчет получается более точным, но есть в простонародье более упрощенная и приблизительная формула для расчета номинального тока двигателя, которая наибольшее распространение получила среди домашних умельцев и мастеров.
Все просто. Берете мощность двигателя в киловаттах, указанную на бирке и умножаете ее на 2 — вот Вам и готовый результат. Только данное тождество уместно для двигателей 380 (В), собранных в звезду. Можете проверить и поумножать мощности приведенных выше двигателей. Но лично я же настаиваю Вам использовать более точные методы расчета.
Ток электродвигателя, какую силу тока потребляет двигатель при пуске и работе. Как узнать пусковой и номинальный ток электромотора, движка
Тема: способы нахождения и вычисления электрических токов движка
Производители на самом корпусе электрических двигателей ставят металлическую табличку, на которой написаны основные характеристики данного электродвигателя.
На этой табличке указан и ток, который потребляет данная электрическая машина при своей номинальной работе (средне допустимой, с нормальной нагрузкой на валу двигателя).
Данная надпись может иметь два значения, например 5,9/3,4А, что означает – при подключении двигателя в режиме «треугольник» номинальные ток будет равен 5,9 ампер, а при подключении в режиме «звезда» он будет 3,4 ампера.
На этой же табличке можно увидеть и символы, указывающие данные режимы работы.
Если по каким-то причинам на корпусе электродвигателя нет надписи, какую номинальную силу тока он потребляет, то ток можно вычислить по следующей формуле (если конечно известны все остальные, имеющиеся в этой формуле, величины!):
При отсутствии металлической таблички с основными характеристиками на корпусе электрического двигателя можно пойти более простым путем, чтобы узнать приближенную силу тока, потребляемой движком.
Если известна номинальная мощность двигателя, то применим следующее условие – «киловатт электрической мощности равен двум амперам тока» (это условие подходит для электродвигателей с мощностью от 3-х киловатт и более, то есть будет максимально приближенным).
Например, у нас есть асинхронный электрический двигатель мощностью 5 кВт (5000 ватт). Следовательно, приближенное значение потребляемого тока будет около 10 ампер. Может возникнуть небольшая непонятка. Если воспользоваться простой формулой вычисления тока, зная мощность и напряжение: 5000 ватт / 380 вольт = 13,15 ампер.
Но ведь у электродвигателей есть свой коэффициент полезного действия, который вовсе не равен 100% и косинус фи, который также меньше единицы. Вот мы и получаем, что реальная сила тока будет ближе к значению 10 ампер, а не 13,15 ампер.
Практическим вариантом узнать значение силы тока, который потребляется электродвигателем при его номинальной работе, будет использование обычного амперметра, или токоизмерительных клещей.
При уверенности в том, что наш электродвигатель точно рассчитан на то напряжение, что мы собираемся на него подать, мы даем питание на него. Далее, все просто, берем токоизмерительные клещи и измеряем силу тока на проводах, что питают наш электродвигатель.
Причем еще стоит обратить внимание на то, что у трехфазного электродвигателя рабочие токи должны быть одинаковыми на всех трех фазах.
Если Вы вдруг обнаружили факт неодинаковости, то причиной может быть, как перекос фаз электрического питания, так и неисправности самого электродвигателя, который может в скором времени вовсе выйти из строя из-за ненормального режима своей работы. В любом случае желательно выяснить причину неодинаковости значений силы тока на проводах.
Помимо номинального тока, который потребляется электродвигателем при нормальной своей работе, существует еще так называемый пусковой ток. Его величина может быть превышать номинальный ток аж в 3-8 раз.
То есть, когда мы подаем питание на электрический двигатель, который до этого находился в состоянии покоя, в начальный момент по его обмоткам начинает протекать увеличенный ток по причине нескомпенсированности сил электромагнитных полей внутри двигателя. Чем быстрее электродвигатель начинает вращаться, тем меньше тока он начинает потреблять.
То есть, пусковым током считается то значение электрического тока, которое существует с момента включения электродвигателя и до выхода его на свои номинальные обороты (время разгона двигателя от нуля до нормального значения).
Минимальный ток, что будет течь через обмотки электрического двигателя, будет тогда, когда движок работает на холостом ходу (то есть, к его валу не подсоединено ни одной механической нагрузки).
Следовательно, чем сильнее мы нагрузим вал двигателя, тем большую силу тока начнет он потреблять.
Номинальной нагрузкой считается та, на которую изначально данный электродвигатель был рассчитан при своем изготовлении, и при которой эта электрическая машина может работать продолжительное время без вреда для себя.
Имеется также понятие о максимальной нагрузке, при которой сила тока, что потребляется двигателем, находится на предельно допустимом значении. При максимальных токах электродвигатели могут работать лишь незначительный промежуток времени, поскольку длительная работа может негативно влиять на сам движок (перегрев), сокращая его общий срок службы.
Пусковые токи у разных электродвигателей разные, их можно посмотреть в справочных таблицах, где прописаны характеристики каждого конкретного движка. Для чего нужно знать значение пусковых токов? Для того, чтобы правильно подобрать устройства защиты для электрических цепей, которые непосредственно относятся к схеме этого электрического двигателя.
Например, зная конкретную величину пускового тока мы правильно можем подобрать тепловую защиту под него, автоматически выключатель, что отвечает за включение и выключение данного двигателя и т.д.
Это избавит нас от таких проблем как постоянное срабатывание токовой защиты (если устройство рассчитано на меньший ток, чем нужно) или не срабатывание тогда, когда это нужно (если ток срабатывания устройства гораздо больше нужного).
Большие пусковые токи – это негативное явление, которое на короткий промежуток времени создает просадку питающей сети. В этой электросети возникает кратковременное падение напряжения.
Как можно уменьшить пусковые токи электродвигателя? Первый вариант (классический), это запускать электродвигатель по схеме «звезда», а спустя некоторое время переключаться на схему «треугольник».
В этом случае при включении начальный, пусковой ток будет относительно небольшой, а при переключении режима в «треугольник» движок выйдет на свои номинальные обороты.
Иными вариантами снижения пусковых токов электродвигателя являются использование различных устройств плавного пуска, которые за счет электронных схем контролируют начальный режим разгона электрической машины. Допустим при использовании преобразователей частоты можно легко задать нужные параметры для старта и последующий работы электрического двигателя.
P.S. Правильные режим работы любого электродвигателя способствует увеличению общего срока службы данного электротехнического устройства, а также щадящей работе тех электрических цепей, что относятся к питанию данного устройства (включая и саму питающую сеть).
Расчет тока электродвигателя
Привет посетители сайта fazanet.ru, и в сегодняшней статье мы с вами разберём, как же сделать, этот непонятный расчёт тока электродвигателя.
Каждый уважающий себя электромонтёр, робота которого связана с обслуживанием электрических, машин просто обязан это знать.
Я в своё время тоже помню, что меня это очень сильно интересовало, когда меня перевили с одного цеха в другой. А конкретно именно работать электромонтёром.
Перед этим я уже немного затрагивал темы электродвигателей, когда писал о том как запустить асинхронные двигателей, и когда писал какие бывают номиналы электродвигателей.
Ну а теперь приступим конкретно к самому расчёту. Допустим: у вас есть трёхфазный асинхронный электродвигателей переменного тока, номинальная мощность, которого составляет 25 кВт, и вам хочется узнать какой же у него будет номинальный ток.
Для этого существует специальная формула: Iн = 1000Pн /√3•(ηн • Uн • cosφн),
Где Pн – это мощность электродвигателя; измеряется в кВт
Uн – это напряжение, при котором работает электродвигатель; В
ηн – это коэффициент полезного действия, обычно это значение 0.9
ну и cosφн – это коэффициент мощности двигателя, обычно 0.8.
Последние два значения обычно пишутся на заводской бирке, хотя они у всех двигателей практически одинаковые. Но все же нужно брать данные именно с заводской бирки на двигателе.
Вот как на этой картинке все значения видны, а ток нет. Только если КПД написан 81%, то для расчёта нужно брать 0.81.
Теперь подставим значения Iн = 1000•25/√3 • (0.9 • 380 • 0.8) = 52.81 А
Тем, кто не помнит, сколько будет √3, напоминаю – это будет 1,732
Вот и всё, все расчёты закончены. Всё очень легко и просто. По моему образцу вы можете легко рассчитать номинальный ток электродвигателя, вам всего лишь нужно подставить своих данных.
Как определить ток электродвигателя на практике
Ещё в заключении, хотел поделиться с вами, тем как я определяю приблизительное значение тока без всяких расчётов. Если реально посмотреть, что у нас с вами получилось при расчёте, то реально вид, что номинальный ток приблизительно в два раза больше чем его мощность. Вот так я определяю ток на практике, мощность умножаю на два. Но это только приблизительное значение.
А ток холостого хода будет обычно в два раза меньше, чем его мощность. Но про то, как определить эти значения, мы поговорим с вами в следующих статьях. Так что подписывайтесь на обновления и не забываете поделиться этой статьёй со своими друзьями в социальных сетях.
На этом у меня всё. Пока.
С уважением Александр!
Как определить мощность электродвигателя?
Электрические двигатели сегодня используются в различных технических средствах и оборудовании, потому многих пользователей интересует, как определить мощность и ток электродвигателя? Производители двигателей оснащают свои товары специальными таблицами, устанавливаемыми на корпусах устройств. Эти таблички содержат в себе исчерпывающую информацию о технических характеристиках устройства: марка, номинальный рабочий ток, мощность, частота вращения, КПД, тип двигателя и т.д. Все эти данные содержатся также в технической документации на электродвигатели.
Из всех характеристик двигателей, для пользователей наибольшее значение имеют потребляемый ток и мощность. Эти данные позволяют определить сечение и пропускную способность электрических кабелей, которые необходимо использовать для подключения оборудования, выбрать подходящие по номиналам устройства безопасности – УЗО и автомат.
Несмотря на то, что в большинстве случаев с поиском технических характеристик двигателей не возникает никаких проблем, иногда техническая документация и таблички на устройствах отсутствуют. Подобные проблемы вынуждают пользователей искать другие варианты определения мощности, тока и других параметров работы электродвигателя.
Методика определения мощности электродвигателя
Существуют различные формулы расчета, позволяющие определить точную мощность электродвигателя. Для использования некоторых формул пользователю придется измерить размеры статора двигателя, для других формул – нужно знать величину тока или КПД двигателя.
Многие специалисты используют эти формулы на практике, но существует и гораздо более простая, удобная методика определения мощности двигателя – практические измерения.
С помощью установленного счетчика потребления электрической энергии в бытовой электросети можно узнать мощность любого оборудования.
Для проведения таких измерений нужно будет отключить от питания все бытовые электрические устройства, чтобы ни один прибор не потреблял электрическую энергию и счетчик «не крутился». Освещение также необходимо отключить, так как даже одна включенная лампочка может навредить испытаниям.
Особенности определения мощности зависят от того, какой именно счетчик потребления электроэнергии у вас установлен. Если на вводе электричества на объект установлен счетчик «Меркурий», достаточно просто включить электродвигатель на полной мощности на 3-5 минут. В процессе работы двигателя счетчик будет показывать величину нагрузки, измеряемую в кВт.
Провести такие измерения можно и с помощью стандартного индукционного счетчика потребления, но нужно помнить, что такие устройства ведут учет в Квт/ч. Итак, сначала нужно записать точные показателя счетчика до начала исследования, затем нужно включить двигатель ровно на 10 минут, не допуская никаких погрешностей.
Лучше всего засекать время с помощью секундомера, позволяющего вовремя включить и выключить двигатель. После выключения двигателя нужно снять показания с индукционного счетчика, отнять из показаний записанную перед измерениями величину. Теперь показатели умножаем на 6.
Полученные в ходе этих простых измерений и вычислений результаты будут точно отображать активную мощность двигателя в кВт.
Сложнее определить технические характеристики маломощных двигателей, но и их мощность можно рассчитать, хотя это потребует больших усилий. Легче всего определить мощность двигателя путем подсчета полных оборотов диска за единицу времени. К примеру, на счетчике указано, что 1200 оборотов равняется 1 кВт/ч.
Если в течение одной минуты счетчик сделает 10 оборотов, то в этом случае 10 нужно умножить на 60 (число минут в часе) и получаем 600 оборотов в час. Делим 1200 на 600 и получаем мощность электродвигателя. Важно отметить, что на точность напрямую влияет продолжительность измерений.
Чем дольше измерять показания, тем точнее можно определить мощность двигателя.
Методика определения тока электродвигателя
Для эксплуатации электродвигателя пользователю требуются различные параметры его работы. Второй по важности характеристикой такого устройства является величина потребляемого тока. Методика расчета тока зависит от числа фаз в двигателе и величине потребляемого напряжения.
Проще всего рассчитать величину тока для трехфазных двигателей, подключаемых от электрических сетей напряжением 380 В. Величина потребляемого тока для таких устройств равняется умноженной на 2 мощности.
К примеру, трехфазный двигатель мощностью 2 кВт умножаем на 2 и получаем потребляемый ток двигателя, равный 4 Ампер.
Величина тока электродвигателя в момент времени может зависеть от вида запуска. Зависимость величины тока от вида запуска представлена на графике ниже.
Это точная формула, однако, требующая определенных дополнений. Обязательно нужно учитывать, что результат таких расчетов – это величина потребляемого тока при номинальной нагрузке. Двигатель на холостом ходу будет иметь куда меньшую величину потребляемого тока.
Для расчета тока трехфазного асинхронного двигателя можно также использовать формулу:
Iн = 1000 Pн / √3 * (ηн * Uн * cosφн),
Потребляемый ток однофазными двигателями рассчитывается по другой формуле. В этом случае для определения тока пользователю нужно будет разделить мощность двигателя на напряжение в электросети. Уровень напряжения в месте подключения двигателя необходимо измерить перед проведением расчетов, так как уровень напряжения при включенном устройстве в месте ввода будет снижаться.
Таким образом, если мощность мотора равняется 2 кВт или 2000 Вт, а напряжение в сети равняется 220 В, то 2000 следует разделить на 220. Получаем величину в 9 А, которая и принимается за величину потребляемого тока электродвигателем.
Как подобрать автоматический выключатель для двигателя
Правильный подбор автоматического выключателя для защити электродвигателя имеет огромное значение для оборудования. Надежность работы, защита двигателя от аварийных режимов работы и проводки напрямую зависит от подбора автоматического выключателя.
В этой статье наведем условия выбора автоматического выключателя для защиты электродвигателя. Для того чтобы выбрать автоматический выключатель необходимо знать:
— номинальный ток двигателя;
— кратность пускового тока к номинальному;
— максимально допустимый ток электропроводки.
Номинальный ток двигателя – это ток который имеет электродвигатель во время работы при номинальной мощности. Он указывается на паспорте электродвигателе или берется с таблиц паспортных данных электродвигателей.
Кратность пускового тока к номинальному – это соотношение пускового ток который возникает в электродвигателе во время пуска к номинальному. Он тоже указывается на паспорте электродвигателя или в таблицах электродвигателей.
Максимально допустимый ток электропроводки – это допустимый ток, который может проходить по проводу, кабеля, что подключен к электродвигателю.
Условия для правильного выбора автоматического выключателя для защиты электродвигателя:
— номинальный ток автоматического выключателя должен бить больше или равен номинальному току электродвигателя. Например: ток электродвигателя АИР112М4У2 Ін. дв. =11,4А выбираем автоматический выключатель ВА51Г2534 на номинальный ток Ін. = 25А и ток расцепителя Ін..рас. = 12.5А.
После этого проверим автоматический выключатель на не срабатывания при пуске электродвигателя используя условие :
Iу.е.>kзап. · kр.у ·kр.п. ·Iн.дв ·kі
kр.п. — коэффициент, который учитывает возможное отклонение пускового тока от его номинального, kр.п. = 1,2 ;
K і — каталожная кратность пускового тока электродвигателя;
Iу.е = 14 · Iн.рос = 14 · 12,5 = 175А
З таблицы электродвигателей находим K і = 7,0 для электродвигателя АИР112М4У2.
Подставляем в условие и определяем
Условие выполнилось, следовательно, автоматический выключатель не сработает при запуске двигателя.
В этой статье вы узнали как правильно, используя условия выбора правильно подобрать автоматический выключатель для защиты электродвигателя.
Большая Энциклопедия Нефти и Газа
Номинальные токи электродвигателей: I mv Pi / ( U ш мХ X cos cpi ом) 9200Д ПО – 0 75) 1 1 1 52 A; h ном Ядз / ( Ш X XCOS – OM) 17 318Д1 10 – 0 9) 174 85 А. [1]
Номинальный ток электродвигателя, измеряемый в конце заводки рабочих пружин при максимальном моменте на валу привода, при UHOM на ПО В постоянного и 127 В переменного тока составляет по 5 А; на 220 В постоянного и переменного тока 2 5 А. [2]
Эл – номинальный ток электродвигателя; / 0 – ток нулевой уставки реле; с – цена деления, равная 0 05 для открытых пускателей и 0 055 – для защищенных. [3]
Здесь / н – номинальный ток электродвигателя; / – текущее значение тока ( соответствующее моменту времени ti); to – время паузы за цикл; р – коэффициент ухудшения условий охлаждения при стоянке. [4]
Тепловые реле выбирают пономинальным токам электродвигателей с учетом того, что тепловое реле нужно выбирать по току, соответствующему мощности двигателя, при которой его можно применять как двигатель повышенной надежности против взрыва. [5]
Тепловые реле выбирают пономинальному току электродвигателя. [6]
Выбор тепловых реле производят пономинальному току электродвигателя. [7]
Выбор тепловых реле производится пономинальным токам электродвигателей с учетом того, что тепловое реле нужно выбирать по току, соответствующему мощности двигателя, при которой его можно применять как двигатель повышенной надежности против взрыва. При этом перегрузки электродвигателя не допускаются. [8]
Выбор тепловых реле производят пономинальным токам электродвигателей. Особенностью выбора тепловых реле электродвигателе й, приведенных в табл.
60, а также электродвигателей, применение которых обусловлено решением Госэнергонадзора № 36 – 30 от 22 января 1965 г.
, является то, что тепловые реле нужно выбирать по току, соответствующему мощности электродвигателя, при которой его можно применять как двигатель повышенной надежности против взрыва. [9]
Ток 1С 5 а являетсяноминальным током электродвигателя мощностью 8 кет. [10]
Магнитные пускатели и контакторы выбирают пономинальному току электродвигателя с учетом условий эксплуатации. В промышленности применяются магнитные пускатели серий ПМЕ и ПМЛ с прямоходовыми контакторами и серии ПАЕ с подвижной системой поворотного типа. [11]
Нагревательные элементы выбираются в соответствии сноминальным током электродвигателя. [12]
Номинальный ток теплового расцепителя должен быть неменьше номинального тока защищаемого электродвигателя. [13]
При значительном понижении напряжения ток статора может существенно превыситьноминальный ток электродвигателя; еще более резко будет перегружена обмотка ротора. Вследствие этого длительная работа нагруженных асинхронных электродвигателей с напряжением, меньшим 0 95 UIH, недопустима. [15]
Выбор электродвигателя по типу, мощности и другим параметрам
Типы электродвигателей
По виду питающего тока
Синхронные электродвигатели
Асинхронные электродвигатели
Вентильные электродвигатели
Расчет мощности
Расчет пускового тока
Режимы работы
Климатическое исполнение
Энергоэффективность
Электродвигатель – механизм, преобразующий энергию электрического тока в кинетическую энергию. Современное производство и быт сложно представить без машин с электроприводом. Они используются в насосном оборудовании, системах вентиляции и кондиционирования, в электротранспорте, промышленных станках различных типов и т.д.
При выборе электродвигателя необходимо руководствоваться несколькими основными критериями:
Типы двигателей
Электродвигатели постоянного и переменного тока
В зависимости от используемого электрического тока двигатели делятся на две группы:
Электродвигатели постоянного тока сегодня применяются не так часто, как раньше. Их практически вытеснили асинхронные двигатели с короткозамкнутым ротором.
Главный недостаток электродвигателей постоянного тока – возможность эксплуатации исключительно при наличии источника постоянного тока или преобразователя переменного напряжения в постоянный ток. В современном промышленном производстве обеспечение данного условия требует дополнительных финансовых затрат.
Тем не менее, при существенных недостатках этот тип двигателей отличается высоким пусковым моментом и стабильной работой в условиях больших перегрузок. Приводы данного типа чаще всего применяются в металлургии и станкостроении, устанавливаются на электротранспорт.
Принцип работы электродвигателей переменного тока построен на электромагнитной индукции, возникающей в процессе движения проводящей среды в магнитном поле. Для создания магнитного поля используются обмотки, обтекаемые токами, либо постоянные магниты.
Электродвигатели переменного тока подразделяются на синхронные и асинхронные. У каждой подгруппы есть свои конструктивные и эксплуатационные особенности.
Синхронные электродвигатели
Синхронные двигатели – оптимальное решение для оборудования с постоянной скоростью работы: генераторов постоянного тока, компрессоров, насосов и др.
Технические характеристики синхронных электродвигателей разных моделей отличаются. Скорость вращения колеблется в диапазоне от 125 до 1000 оборотов/мин, мощность может достигать 10 тысяч кВт.
В конструкции приводов предусмотрена короткозамкнутая обмотка на роторе. Ее наличие позволяет осуществлять асинхронный пуск двигателя. К преимуществам оборудования данного типа относятся высокий КПД и небольшие габариты. Эксплуатация синхронных электродвигателей позволяет сократить потери электричества в сети до минимума.
Асинхронные электродвигатели
Асинхронные электродвигатели переменного тока получили наибольшее распространение в промышленном производстве. Особенностью данных приводов является более высокая частота вращения магнитного поля по сравнению со скоростью вращения ротора.
В современных двигателях для изготовления ротора используется алюминий. Легкий вес этого материала позволяет уменьшить массу электродвигателя, сократить себестоимость его производства.
КПД асинхронного двигателя падает почти вдвое при эксплуатации в режиме низких нагрузок – до 30-50 процентов от номинального показателя. Еще один недостаток таких электроприводов состоит в том, что параметры пускового тока почти втрое превышают рабочие показатели. Для уменьшения пускового тока асинхронного двигателя используются частотные преобразователи или устройства плавного пуска.
Асинхронные электродвигатели удовлетворяют требованиям разных промышленных применений:
Вентильные электродвигатели
Группа вентильных электродвигателей включает в себя приводы, в которых регулирование режима эксплуатации осуществляется посредством вентильных преобразователей.
К преимуществам данного оборудования относятся:
Мощность электродвигателя
В режиме постоянной или незначительно изменяющейся нагрузки работает большое количество механизмов: вентиляторы, компрессоры, насосы, другая техника. При выборе электродвигателя необходимо ориентироваться на потребляемую оборудованием мощность.
Определить мощность можно расчетным путем, используя формулы и коэффициенты, приведенные ниже.
Мощность на валу электродвигателя определяется по следующей формуле:
где:Рм – потребляемая механизмом мощность;
Номинальную мощность электродвигателя желательно выбирать больше расчетного значения.
Формула расчета мощности электродвигателя для насоса
где:K3 – коэффициента запаса, он равен 1,1-1,3;g –ускорение свободного падения;Q – производительность насоса;H – высота подъема (расчетная);Y – плотность перекачиваемой насосом жидкости;ηнас – КПД насоса;
Давление насоса рассчитывается по формуле:
Формула расчета мощности электродвигателя для компрессора
Мощность поршневого компрессора легко рассчитать по следующей формуле:
где:Q – производительность компрессора;ηk – индикаторный КПД поршневого компрессора (0,6-0,8);ηп – КПД передачи (0,9-0,95);
Значение A можно рассчитать по формуле:
или взять из таблицы
sub>2, 105Па | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
A, 10-3 Дж/м³ | 132 | 164 | 190 | 213 | 230 | 245 | 260 | 272 |
Формула расчета мощности электродвигателя для вентиляторов
где:
K3 – коэффициент запаса. Его значения зависят от мощности двигателя:
Q – производительность вентилятора;H – давление на выходе;ηв – КПД вентилятора;
Приведенная формула используется для расчета мощности осевых и центробежных вентиляторов. КПД центробежных моделей равен 0,4-0,7, а осевых вентиляторов – 0,5-0,85.
Остальные технические характеристики, необходимые для расчета мощности двигателя, можно найти в каталогах для каждого типа механизмов.
ВАЖНО! При выборе электродвигателя запас мощности должен быть, но небольшой. При значительном запасе мощности снижается КПД привода. В электродвигателях переменного тока это приводит еще и к снижению коэффициента мощности.
Пусковой ток электродвигателя
Зная тип и номинальную мощность электродвигателя, можно рассчитать номинальный ток.
Номинальный ток электродвигателей постоянного тока
Номинальный ток трехфазных электродвигателей переменного тока
где:PH – номинальная мощность электродвигателя;UH — номинальное напряжение электродвигателя,ηH — КПД электродвигателя;
cosfH — коэффициент мощности электродвигателя.
Номинальные значения мощности, напряжения и КПД можно найти в технической документации на конкретную модель электродвигателя.
Зная значение номинального тока, можно рассчитать пусковой ток.
Формула расчета пускового тока электродвигателей
где:IH – номинальное значение тока;
Кп – кратность постоянного тока к номинальному значению.
Пусковой ток необходимо рассчитывать для каждого двигателя в цепи. Зная эту величину, легче подобрать тип автоматического выключателя для защиты всей цепи.
Режимы работы электродвигателей
Режим работы определяет нагрузку на электродвигатель. В некоторых случаях она остается практически неизменной, в других может изменяться. Характер предполагаемой нагрузки обязательно учитывается при выборе двигателя. Действующими стандартами предусмотрены следующие режимы эксплуатации:
Режим S1 (продолжительный). При таком режиме эксплуатации нагрузка остается постоянной в течение всего времени, пока температура электродвигателя не достигнет необходимого значения. Мощность привода рассчитывается по формулам, приведенным выше.
Режим S2 (кратковременный). При эксплуатации в этом режиме температура двигателя в период его включения не достигает установившегося значения. За время отключения электродвигатель охлаждается до температуры окружающей среды. При кратковременном режиме эксплуатации необходимо проверять перегрузочную способность электропривода.
Режим S3 (периодически-кратковременный). Электродвигатель работает с периодическими отключениями.
В периоды включения и отключения его температура не успевает достигнуть заданного значения или охладиться до температуры окружающей среды.
При расчете мощности двигателя обязательно учитывается продолжительность пауз и потерь в переходные периоды. При выборе электродвигателя важным параметром является допустимое количество включений за единицу времени.
Режимы S4 (периодически-кратковременный, с частыми пусками) и S5 (периодически-кратковременный с электрическим торможением). В обоих случаях работа двигателя рассматривается по тем же параметрам, что и в режиме эксплуатации S3.
Режим S6 (периодически-непрерывный с кратковременной нагрузкой). Работа электродвигателя в данном режиме предусматривает эксплуатацию под нагрузкой, чередующуюся с холостым ходом.
Режим S7 (периодически-непрерывный с электрическим торможением)
Режим S8 (периодически-непрерывный с одновременным изменением нагрузки и частоты вращения)
Режим S9 (режим с непериодическим изменением нагрузки и частоты вращения)
Большинство моделей современных электроприводов, эксплуатируемых продолжительное время, адаптированы к изменяющемуся уровню нагрузки.
Климатические исполнения электродвигателей
При выборе электродвигателя учитываются не только его технические характеристики, но и условия окружающей среды, в которых он будет эксплуатироваться.
Современные электроприводы выпускаются в разных климатических исполнениях. Категории маркируются соответствующими буквами и цифрами:
Цифры в номенклатуре модели указывают на тип ее размещения:
Энергоэффективность
Рациональное потребление энергии при сохраняющейся высокой мощности сокращает текущие производственные затраты при одновременном увеличении производительности электродвигателя. Поэтому при выборе привода обязательно учитывается класс энергоэффективности.
В технической документации и каталогах обязательно указывается класс энергоэффективности двигателя. Он зависит от показателя КПД.
Проводимые в тестовом и рабочем режимах экспериментальные исследования показывают, что электродвигатель мощностью 55 кВт высокого класса энергоэффективности сокращает потребление электроэнергии на 8-10 тысяч кВт ежегодно.
Другие полезные материалы:
Редуктор от «А» до «Я»
Как выбрать мотор-редуктор
Выбор преобразователя частоты
Подключение и настройка частотного преобразователя
Вопросы-ответы по электродвигателям
Сессия вопрос-ответ по электродвигателям для частотно-регулируемого привода.До слов”Читать далее” приведены часть вопросов и ответов.
-У меня диапазон регулирования 1:10 подходит ли обычный общепромышленный электродвигатель для работы с преобразователем частоты?
– Условно подходит.
При частотах ниже 25Гц электродвигатель должен работать в повторно-кратковременном режиме с ПВ=25% из-за недостаточной охлаждающей способности вентилятора.Для восьми и более полюсных электродвигателей это значение может быть увеличено до 30 Гц.
-У меня диапазон регулирования 1:20 подходит ли обычный электродвигатель для работы с преобразователем частоты?
–Условно подходит.При частотах ниже 25 Гц электродвигатель должен работать в повторно-кратковременном режиме с ПВ=25% из-за недостаточности охлаждения вентилятором электродвигателя.
-У меня диапазон регулирования 1:50( и выше) подходит ли обычный электродвигатель для работы с преобразователем частоты?
– Можно применить преобразователь частоты задав верхний предел регулирования 100Гц и выставив частоту 66,7 Гц.Момент на валу электродвигателя при этом может упасть(если не применять преобразователи частоты с верхним регулированием типа С2000).Если у вас преобразователь частоты не модели VFD-C,то лучше помощнее выбрать электродвигатель.
– 400 Гц электродвигатель в обычную сеть включается или через машинный агрегат,или через преобразователь частоты имеющий верхнюю рабочую частоту не ниже 400Гц(преобразователи имеющие на выходе частоту 0-120 Гц не подходят).В большинстве преобразователей частоты напряжение на номинальной частоте регулируется,но надо помнить,что ток через электродвигатель не должен превышать 120% номинального тока преобразователя частоты.Преобразователь частоты подбирается по току электродвигателя.-У меня электродвигатель на 100Гц. Как его включить в обычную сеть?- 100Гц электродвигатель включается в обычную сеть через преобразователь частоты.Настройки такие же как и для 400 Гц электродвигателя.
-У меня трёхфазный электродвигатель на 220 Вольт как его включить в сеть 380 Вольт?
– Такой электродвигатель в сеть 380 Вольт включается или через трёхфазный трансформатор или через преобразователь частоты.При необходимости плавного пуска или регулировки частоты допускается только преобразователь частоты.Преобразователь частоты подбирается по номинальному току электродвигателя.
-У меня трёхфазный электродвигатель на 42 Вольта. Как его включить в сеть 380 Вольт?А в сеть 220 Вольт?
– В сеть 380 Вольт электродвигатель на 42 вольта можно включить или через трёхфазный трансформатор, или через преобразователь частоты,допускающиий установку номинального напряжения ниже 100 Вольт.При этом преобразователь частоты подбирается не по мощности,а по току электродвигателя. В сеть 220 Вольт 42 вольтовый электродвигатель можно включить через преобразователь частоты.Преобразователь частоты выбирается аналогично преобразователю частоты на 380 Вольт.- У меня электродвигатель с тормозом. Как его подключить к преобразователю частоты?
– Для подключения к преобразователю частоты необходимо выделить цепь питания тормоза.Эта цепь пропускается или через контактор или через контакты реле преобразователя частоты.
При питании тормоза 220 Вольт годится и первый и второй способы подключения,а при напряжении 380 вольт только подключение через контактор.
Если в тормозе применена токовая катушка(сопротивление менее 50 Ом),то необходим источник питания рассчитанный исходя из номинального тока электродвигателя и сопротивления катушки.Обычно это 5-10 Вольт.Годится источник постоянного тока.
-У меня трёхфазный электродвигатель. Как его включить в однофазную сеть без потери мощности?
– Существуют два способа включения: через электромашинный агрегат с входным выпрямителем и через преобразователь частоты.Преобразователи частоты выпускаются для включения в однофазную сеть.У большинства фирм преобразователи рассчитаны на электродвигатели до 2,2кВт включительно,а у Omron и Powtran до 5,5 кВт.
– У меня трёхфазный электродвигатель на 380 Вольт.Как его включить в однофазную сеть?
– Существуют два способа включения: через электромашинный агрегат с выпрямителем и через преобразователь частоты VFD-VL.Электромашинный агрегат должен состоять из электродвигателя постоянного тока и генератора на 380 Вольт.Преобразователь частоты VFD-VL допускает питание от сети 220 Вольт в аварийном режме при нижнем значении напряжения сети 200 Вольт(иначе потребуются аккумуляторы с суммарным напряжением 96 Вольт).Преобразователи частоты рассчитаны на электродвигатели с током не менее 4А(2,2кВт)).- Защитит ли преобразователь частоты электродвигатель?
– Да.Защитит если в параметрах по умолчанию включена защита.
– Нужны ли тепловые реле?
– Если на выходе преобразователя частоты один электродвигатель,то не нужны.Если два и более электродвигателя,то все электродвигатели снабжаются тепловыми реле.Контакты тепловых реле выводятся в цепь управления преобразователя частоты и на них запрещено подавать напряжения 220 и 380 Вольт.
– Допускается ли применение контакторов на выходе преобразователя частоты?
– В большинстве моделей не допускается. Если в техническом описании приводится схема с контакторами,то такое включение допускается. При этом управляет контакторами преобразователь частоты. Попадание напряжения 220 и 380 Вольт на выходные цепи преобразователя частоты недопустимо- это приводит к выходу преобразователя частоты из строя.