Что значит неопределенность в пределах
Основные неопределенности пределов и их раскрытие
В предыдущей статье мы рассказывали, как правильно вычислять пределы элементарных функций. Если же мы возьмем более сложные функции, то у нас в расчетах появятся выражения с неопределенным значением. Они и называются неопределенностями.
Выделяют следующие основные виды неопределенностей:
Мы перечислили все основные неопределенности. Другие выражения в различных условиях могут принимать конечные или бесконечные значения, следовательно, они не могут считаться неопределенностями.
Раскрытие неопределенностей
Раскрыть неопределенность можно:
С помощью замечательных пределов;
С помощью правила Лопиталя;
Заменив одно бесконечно малое выражение на эквивалентное ему выражение (как правило, это действие выполняется с помощью таблицы бесконечно малых выражений).
Всю информацию, представленную выше, можно наглядно представить в виде таблицы. С левой стороны в ней приводится вид неопределенности, с правой – подходящий метод ее раскрытия (нахождения предела). Этой таблицей очень удобно пользоваться при расчетах, связанных с нахождением пределов.
Неопределенность | Метод раскрытия неопределенности |
1. Деление 0 на 0 | Преобразование и последующее упрощение выражения. Если выражение имеет вид sin ( k x ) k x или k x sin ( k x ) то нужно использовать первый замечательный предел. Если такое решение не подходит, пользуемся правилом Лопиталя или таблицей эквивалентных бесконечно малых выражений |
2. Деление бесконечности на бесконечность | Преобразование и упрощение выражения либо использование правила Лопиталя |
3. Умножение нуля на бесконечность или нахождение разности между двумя бесконечностями | Преобразование в » open=» 0 0 или » open=» ∞ ∞ с последующим применением правила Лопиталя |
4. Единица в степени бесконечности | Использование второго замечательного предела |
5. Возведение нуля или бесконечности в нулевую степень | Логарифмирование выражения с применением равенства lim x → x 0 ln ( f ( x ) ) = ln lim x → x 0 f ( x ) |
Разберем пару задач. Эти примеры довольно простые: в них ответ получается сразу после подстановки значений и неопределенности при этом не возникает.
Решение
Выполняем подстановку значений и получаем ответ.
Решение
Значит, мы можем преобразовать предел в следующее выражение:
Далее мы приведем примеры решений задач на раскрытие неопределенностей с использованием метода преобразования. На практике выполнять это приходится довольно часто.
Решение
Выполняем подстановку значений.
В итоге у нас получилась неопределенность. Используем таблицу выше, чтобы выбрать метод решения. Там указано, что нужно выполнить упрощение выражения.
Как мы видим, упрощение привело к раскрытию неопределенности.
Решение
Подставляем значение и получаем запись следующего вида.
Домножение знаменателя выполняется для того, чтобы потом можно было воспользоваться формулой сокращенного умножения (разность квадратов) и выполнить сокращение.
Как мы видим, в результате этих действий нам удалось избавиться от неопределенности.
Важно отметить, что при решении подобных задач подход с использованием домножения используется очень часто, так что советуем запомнить, как именно это делается.
Решение
Выполняем разложение числителя на множители:
Теперь делаем то же самое со знаменателем:
Мы получили предел следующего вида:
Как мы видим, в ходе преобразования нам удалось избавиться от неопределенности.
Решение
Решение
lim x → ∞ x 8 + 11 3 x 2 + x + 1 = » open=» ∞ ∞
lim x → ∞ x 8 + 11 3 x 2 + x + 1 = » open=» ∞ ∞ = lim x → ∞ x 8 + 11 3 x 8 3 x 2 + x + 1 x 8 3 = = lim x → ∞ 1 + 11 x 8 3 1 x 2 3 + 1 x 5 3 + 1 x 8 3 = 1 + 11 ∞ 3 1 ∞ + 1 ∞ + 1 ∞ = 1 + 0 3 0 + 0 + 0 = 1 0 = ∞
Решение
Выводы
В случае с пределом отношений возможны три основных варианта:
Если степень числителя равна степени знаменателя, то предел будет равен отношению коэффициентов при старших степенях.
Если степень числителя будет больше степени знаменателя, то предел будет равен бесконечности.
Если степень числителя меньше степени знаменателя, то предел будет равен нулю.
Другие методы раскрытия неопределенностей мы разберем в отдельных статьях.
Неопределенности пределов
Вы будете перенаправлены на Автор24
Очень часто при вычислении пределов функций в какой-либо точке в результате упрощения получаются выражения, не несущие какой-либо информации об этой функции. Такие выражения носят название неопределённостей.
Виды неопредлённостей
$\frac<0><0>$ — деление нуля на нуль;
$\frac<\infty><\infty>$ — деление бесконечности на бесконечность;
$0 \cdot \infty$ — умножение нуля на бесконечность;
$1^<\infty>$ — единица, возведённая в степень бесконечности;
$(\infty-\infty$) — разность бесконечностей;
$0^0$ — нуль в нулевой степени;
$\infty^0$ — бесконечность в степени 0.
Раскрытие неопределенностей
Сам по себе термин «неопределённость» не означает, что предела не существует. Во многих случаях для того чтобы прийти к конечному ответу можно использовать упрощения, правило Лопиталя и другие способы раскрытия математических неопределенностей.
Наиболее универсальным способом для раскрытия неопределённостей является правило Лопиталя, но к нему не всегда возможно прибегнуть. Как было упомянуто выше, его возможно применять лишь к двум видам неопределённостей, тогда как остальные необходимо для начала привести к одной из форм основных неопределённостей.
В целом, при раскрытии неопредлённостей возможно использовать различные тождественные преобразования, замечательные пределы и замену одного бесконечно малого выражения на другое, подобное ему.
Готовые работы на аналогичную тему
Рассмотрим подробнее замену бесконечно малых выражений на аналогичное.
Таблица эквивалентных бесконечно малых выражений
Таблица эквивалентных бесконечно малых функций:
Пределы в математике для чайников: объяснение, теория, примеры решений
Теория пределов – раздел математического анализа. Наряду с системами линейных уравнений и диффурами пределы доставляют всем студентам, изучающим математику, немало хлопот. Чтобы решить предел, порой приходится применять массу хитростей и выбирать из множества способов решения именно тот, который подойдет для конкретного примера.
В этой статье мы не поможем вам понять пределы своих возможностей или постичь пределы контроля, но постараемся ответить на вопрос: как понять пределы в высшей математике? Понимание приходит с опытом, поэтому заодно приведем несколько подробных примеров решения пределов с пояснениями.
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Понятие предела в математике
Допустим, есть некоторая переменная величина. Если эта величина в процессе изменения неограниченно приближается к определенному числу a, то a – предел этой величины.
Для определенной в некотором интервале функции f(x)=y пределом называется такое число A, к которому стремится функция при х, стремящемся к определенной точке а. Точка а принадлежит интервалу, на котором определена функция.
Звучит громоздко, но записывается очень просто:
Существует также геометрическое объяснение определения предела, но здесь мы не будем лезть в теорию, так как нас больше интересует практическая, нежели теоретическая сторона вопроса. Когда мы говорим, что х стремится к какому-то значению, это значит, что переменная не принимает значение числа, но бесконечно близко к нему приближается.
Чтобы решить такой пример, подставим значение x=3 в функцию. Получим:
Кстати, если Вас интересуют базовые операции над матрицами, читайте отдельную статью на эту тему.
В примерах х может стремиться к любому значению. Это может быть любое число или бесконечность. Вот пример, когда х стремится к бесконечности:
Интуитивно понятно, что чем больше число в знаменателе, тем меньшее значение будет принимать функция. Так, при неограниченном росте х значение 1/х будет уменьшаться и приближаться к нулю.
Как видим, чтобы решить предел, нужно просто подставить в функцию значение, к которому стремиться х. Однако это самый простой случай. Часто нахождение предела не так очевидно. В пределах встречаются неопределенности типа 0/0 или бесконечность/бесконечность. Что делать в таких случаях? Прибегать к хитростям!
Неопределенности в пределах
Неопределенность вида бесконечность/бесконечность
Если мы попробуем в функцию подставить бесконечность, то получим бесконечность как в числителе, так и в знаменателе. Вообще стоит сказать, что в разрешении таких неопределенностей есть определенный элемент искусства: нужно заметить, как можно преобразовать функцию таким образом, чтобы неопределенность ушла. В нашем случае разделим числитель и знаменатель на х в старшей степени. Что получится?
Из уже рассмотренного выше примера мы знаем, что члены, содержащие в знаменателе х, будут стремиться к нулю. Тогда решение предела:
Для раскрытия неопределенностей типа бесконечность/бесконечность делим числитель и знаменатель на х в высшей степени.
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Еще один вид неопределенностей: 0/0
В таких случаях рекомендуется раскладывать числитель и знаменатель на множители. Но давайте посмотрим на конкретный пример. Нужно вычислить предел:
Как всегда, подстановка в функцию значения х=-1 дает 0 в числителе и знаменателе. Посмотрите чуть внимательнее и Вы заметите, что в числителе у нас квадратное уравнение. Найдем корни и запишем:
Сократим и получим:
Итак, если Вы сталкиваетесь с неопределенностью типа 0/0 – раскладывайте числитель и знаменатель на множители.
Чтобы Вам было проще решать примеры, приведем таблицу с пределами некоторых функций:
Правило Лопиталя в пределах
Еще один мощный способ, позволяющий устранить неопределенности обоих типов. В чем суть метода?
Если в пределе есть неопределенность, берем производную от числителя и знаменателя до тех пор, пока неопределенность не исчезнет.
Наглядно правило Лопиталя выглядит так:
Важный момент : предел, в котором вместо числителя и знаменателя стоят производные от числителя и знаменателя, должен существовать.
А теперь – реальный пример:
Налицо типичная неопределенность 0/0. Возьмем производные от числителя и знаменателя:
Вуаля, неопределенность устранена быстро и элегантно.
Надеемся, что Вы сможете с пользой применить эту информацию на практике и найти ответ на вопрос «как решать пределы в высшей математике». Если нужно вычислить предел последовательности или предел функции в точке, а времени на эту работу нет от слова «совсем», обратитесь в профессиональный студенческий сервис за быстрым и подробным решением.
Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.
Раскрытие неопределённостей
Из Википедии — свободной энциклопедии
Раскрытие неопределённостей — методы вычисления пределов функций, заданных формулами, которые в результате формальной подстановки в них предельных значений аргумента теряют смысл, то есть переходят в выражения типа:
по которым невозможно судить о том, существуют или нет искомые пределы, не говоря уже о нахождении их значений, если они существуют.
Самым мощным методом является правило Лопиталя, однако и оно не во всех случаях позволяет вычислить предел. К тому же напрямую оно применимо только ко второму и третьему из перечисленных видов неопределённостей, то есть отношениям, и чтобы раскрыть другие типы, их надо сначала привести к одному из этих.
Также для вычисления пределов часто используется разложение выражений, входящих в исследуемую неопределённость, в ряд Тейлора в окрестности предельной точки. Для раскрытия неопределённостей видов ( 0 0 ) <\displaystyle \left(
0^<0>\right)> , ( 1 ∞ ) <\displaystyle \left(1^<\infty >\right)> , ( ∞ 0 ) <\displaystyle \left(\infty ^<0>\right)> пользуются следующим приёмом: находят предел (натурального) логарифма выражения, содержащего данную неопределённость. В результате вид неопределённости меняется. После нахождения предела от него берут экспоненту.
0^<0>\right)=\left(e^<0\cdot \ln <0>>\right)=\left(e^<0\cdot (-\infty )>\right)> ( 1 ∞ ) = ( e ∞ ⋅ ln 1 ) = ( e ∞ ⋅ 0 ) <\displaystyle \left(
1^<\infty >\right)=\left(e^<\infty \cdot \ln <1>>\right)=\left(e^<\infty \cdot 0>\right)> ( ∞ 0 ) = ( e 0 ⋅ ln ∞ ) = ( e 0 ⋅ ∞ ) <\displaystyle \left(
\infty ^<0>\right)=\left(e^<0\cdot \ln <\infty >>\right)=\left(e^<0\cdot \infty >\right)>
Для раскрытия неопределённостей типа ∞ ∞ <\displaystyle <\frac <\infty ><\infty >>> используется следующий алгоритм:
Для раскрытия неопределённостей типа ( 0 0 ) <\displaystyle \left(<\frac <0><0>>\right)> существует следующий алгоритм:
Данный вид неопределённостей может раскрываться с использованием асимптотических разложений уменьшаемого и вычитаемого, при этом бесконечно большие члены одного порядка должны уничтожаться.
При раскрытии неопределённостей также применяются замечательные пределы и их следствия.
Раскрытие неопределенностей вида
Пусть
Пример №1
Вычислить предел
Решение:
Числитель и знаменатель дроби при х=-2 обращаются в нуль. Имеем неопределенность вида Для ее раскрытия разложим числитель и знаменатель дроби на множители, а затем применим теоремы о пределах частного, суммы и произведения:
Пример №2
Вычислить предел
Решение:
Имеем неопределенность вида Избавимся от иррациональности в числителе, умножив и разделив дробь на сопряженное к числителю выражение Получим:
В остальных случаях для раскрытия неопределенности вида используют первый замечательный предел или эквивалентные бесконечно малые функции.
Раскрытие неопределенностей вида
Пусть
Пример №3
Вычислить предел если 1) а=2; 2) а=1; 3) а=4.
Решение:
Замечание. Для раскрытия неопределенностей вида используют также правило Лопиталя.
Раскрытие неопределенностей вида
Неопределенное выражение вида преобразуется к неопределенности вида Методику раскрытия такой неопределенности покажем на примерах.
Пример №4
Вычислить предел
Решение:
Имеем неопределенность вида которая преобразуется к неопределенности вида приведением функции к общему знаменателю:
Пример №5
Вычислить предел последовательности
Решение:
Для раскрытия неопределенности вида умножим и разделим выражение в скобках на сопряженное:
Получили неопределенность вида Раскроем ее, разделив все члены полученного выражения на n:
Раскрытие неопределенностей вида
Неопределенное выражение вида получается при нахождении пределов вида где и сводится к неопределенности вида следующим образом:
Замечание. При вычислении пределов показательно-степенных функций могут получиться неопределенности вида для раскрытия которых используют второй замечательный предел или правило Лопиталя.
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.