Что значит необходимое и достаточное условие

Достаточность Необходимость

Необходимое условие и достаточное условие — виды условий связи суждений. Различие этих условий используется в логике и математике для обозначения видов связи суждений.

Содержание

Необходимое условие

Суждение P является необходимым условием суждения X, когда из (истинности) X следует (истинность) P. То есть, если P ложно, то заведомо ложно и X.

Для суждений X типа «объект принадлежит классу M» такое суждение P называется свойством (элементов) M.

Достаточное условие

Суждение Q является достаточным условием суждения X, когда из (истинности) Q следует (истинность) X, то есть в случае истинности Q проверять X уже не требуется.

Для суждений X типа «объект принадлежит классу M» такое суждение Q называется признаком (элементов) M.

Необходимое и достаточное условие

Суждение K является необходимым и достаточным условием суждения X, когда K является как необходимым условием X, так и достаточным. В этом случае говорят ещё что K и X равносильны, или эквивалентны.

Для суждений X типа «объект принадлежит классу M» такое суждение K называется критерием принадлежности классу M.

Пример

Суждение X: «Вася получает стипендию».
Необходимое условие P: «Вася — студент».
Достаточное условие Q: «Вася учится в вузе без троек».

Из того, что Вася — студент, еще не следует, что он получает стипендию. Но это условие необходимо, то есть если Вася не студент, то он заведомо не получает стипендию.

Если же Вася учится в вузе без троек, то он заведомо получает стипендию. Тем не менее, студент Вася может получать стипендию (в виде пособия), если он учится с тройками, но, например, имеет хроническое заболевание.

См. также

Полезное

Смотреть что такое «Достаточность Необходимость» в других словарях:

Необходимость, достаточность — Необходимое условие и достаточное условие виды условий связи суждений. Различие этих условий используется в логике и математике для обозначения видов связи суждений. Содержание 1 Необходимое условие 2 Достаточное условие … Википедия

Необходимость достаточность — Необходимое условие и достаточное условие виды условий связи суждений. Различие этих условий используется в логике и математике для обозначения видов связи суждений. Содержание 1 Необходимое условие 2 Достаточное условие … Википедия

ДОСТАТОЧНОСТЬ СОБСТВЕННОГО КАПИТАЛА — CAPITAL ADEQUACYСтруктура капитала банков включает в себя собственный капитал и долг. Банки это фин. институты, имеющие большую долю заемных средств, что может сказаться на их жизнеспособности. Более того, банки имеют значительные потенциальные… … Энциклопедия банковского дела и финансов

оценка — давать оценку • действие дать высокая оценка • действие дать высокую оценку • действие дать объективную оценку • действие дать оценку • действие дать правовую оценку • действие даётся оценка • действие, пассив на ся касаться оценки • касательство … Глагольной сочетаемости непредметных имён

IPO — (Публичное размещение) IPO это публичное размещение ценных бумаг на фондовом рынке Сущность понятия публичного размещения (IPO), этапы и цели проведения IPO, особенности публичного размещения ценных бумаг, крупнейшие IPO, неудачные публичные… … Энциклопедия инвестора

МДС 11-3.99: Методические рекомендации по проведению экспертизы технико-экономических обоснований (проектов) на строительство объектов жилищно-гражданского назначения — Терминология МДС 11 3.99: Методические рекомендации по проведению экспертизы технико экономических обоснований (проектов) на строительство объектов жилищно гражданского назначения: 2.9.6. Анализ влияния неопределенности и риска на эффективность… … Словарь-справочник терминов нормативно-технической документации

Теорема Вильсона — теорема теории чисел, которая утверждает, что Натуральное число является простым тогда и только тогда, когда делится на p. Практическое использование теоремы Вильсона для определения простоты числа нецелесообразно из за сложности вычисления… … Википедия

Теорема Кронекера — Капелли — Теорема Кронекера Капелли критерий совместности системы линейных алгебраических уравнений: Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы,… … Википедия

Критерий совместности — Теорема Кронекера Капелли критерий совместности системы линейных алгебраических уравнений: Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы, причём система … Википедия

Источник

Необходимое и достаточное условие

Необходимое условие и достаточное условие — виды условий связи суждений. Различие этих условий используется в логике и математике для обозначения видов связи суждений.

Содержание

Необходимое условие

Суждение P является необходимым условием суждения X, когда из (истинности) X следует (истинность) P. То есть, если P ложно, то заведомо ложно и X.

Для суждений X типа «объект принадлежит классу M» такое суждение P называется свойством (элементов) M.

Достаточное условие

Суждение P является достаточным условием суждения X, когда из (истинности) P следует (истинность) X, то есть в случае истинности P проверять X уже не требуется.

Для суждений X типа «объект принадлежит классу M» такое суждение P называется признаком (элементов) M.

Необходимое и достаточное условие

Суждение K является необходимым и достаточным условием суждения X, когда K является как необходимым условием X, так и достаточным. В этом случае говорят ещё что K и X равносильны, или эквивалентны.

Для суждений X типа «объект принадлежит классу M» такое суждение K называется критерием принадлежности классу M.

Пример

Суждение X: «Вася получает стипендию».
Необходимое условие P: «Вася — учащийся».
Достаточное условие Q: «Вася учится в вузе без троек».

Из того, что Вася — учащийся, ещё не следует, что он получает стипендию. Но это условие необходимо, то есть если Вася не учащийся, то он заведомо не получает стипендии.

Если же Вася учится в вузе без троек, то он заведомо получает стипендию. Тем не менее, студент Вася может получать стипендию (в виде пособия), если он учится с тройками, но, например, имеет хроническое заболевание.

В импликации A → B
A — это достаточное условие для B
B — это необходимое условие для A

См. также

Ссылки

Что значит необходимое и достаточное условие

Полезное

Смотреть что такое «Необходимое и достаточное условие» в других словарях:

необходимое и достаточное условие — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN necessary and sufficient condition … Справочник технического переводчика

Достаточное условие — Необходимое условие и достаточное условие виды условий связи суждений. Различие этих условий используется в логике и математике для обозначения видов связи суждений. Содержание 1 Необходимое условие 2 Достаточное условие … Википедия

ДОСТАТОЧНОЕ УСЛОВИЕ — А является таким условием для В, если истинно условное высказывание «Если А, то 5». Напр., т.к. условное высказывание «Если число делится на 9, то оно делится на 3» истинно, делимость числа на 9 является Д.у. его делимости на 3. Понятие Д.у.… … Философская энциклопедия

Необходимое условие — и достаточное условие виды условий связи суждений. Различие этих условий используется в логике и математике для обозначения видов связи суждений. Содержание 1 Необходимое условие 2 Достаточное условие … Википедия

НЕОБХОДИМОЕ УСЛОВИЕ — В является таким условием для А, если истинно условное высказывание «Если А, то 5». Напр., поскольку условное высказывание «Если ниобий металл, то он электропроводен» истинно, то электропроводность ниобия является Н.у. того, что он металл. То,… … Философская энциклопедия

условие — сущ., с., употр. часто Морфология: (нет) чего? условия, чему? условию, (вижу) что? условие, чем? условием, о чём? об условии; мн. что? условия, (нет) чего? условий, чему? условиям, (вижу) что? условия, чем? условиями, о чём? об условиях … … Толковый словарь Дмитриева

условие — ▲ предпосылка ↑ необходимый условие необходимая предпосылка чего л; пассивная необходимость (# существования. основное #. необходимое #. достаточное #. необходимое и достаточное #). являться условием чего. предполагать (эта работа предполагает… … Идеографический словарь русского языка

Достаточность Необходимость — Необходимое условие и достаточное условие виды условий связи суждений. Различие этих условий используется в логике и математике для обозначения видов связи суждений. Содержание 1 Необходимое условие 2 Достаточное условие … Википедия

Если и только если — Необходимое условие и достаточное условие виды условий связи суждений. Различие этих условий используется в логике и математике для обозначения видов связи суждений. Содержание 1 Необходимое условие 2 Достаточное условие … Википедия

Критерий (логика) — Необходимое условие и достаточное условие виды условий связи суждений. Различие этих условий используется в логике и математике для обозначения видов связи суждений. Содержание 1 Необходимое условие 2 Достаточное условие … Википедия

Источник

Необходимое и достаточное условие

Необходимое условие и достаточное условие — виды условий связи суждений. Различие этих условий используется в логике и математике для обозначения видов связи суждений.

Содержание

Необходимое условие

Суждение P является необходимым условием суждения X, когда из (истинности) X следует (истинность) P. То есть, если P ложно, то заведомо ложно и X.

Для суждений X типа «объект принадлежит классу M» такое суждение P называется свойством (элементов) M.

Достаточное условие

Суждение P является достаточным условием суждения X, когда из (истинности) P следует (истинность) X, то есть в случае истинности P проверять X уже не требуется.

Для суждений X типа «объект принадлежит классу M» такое суждение P называется признаком (элементов) M.

Необходимое и достаточное условие

Суждение K является необходимым и достаточным условием суждения X, когда K является как необходимым условием X, так и достаточным. В этом случае говорят ещё что K и X равносильны, или эквивалентны.

Для суждений X типа «объект принадлежит классу M» такое суждение K называется критерием принадлежности классу M.

Пример

Суждение X: «Вася получает стипендию ».
Необходимое условие P: «Вася — учащийся».
Достаточное условие Q: «Вася учится в вузе без троек».

Из того, что Вася — учащийся, ещё не следует, что он получает стипендию. Но это условие необходимо, то есть если Вася не учащийся, то он заведомо не получает стипендии.

Если же Вася учится в вузе без троек, то он заведомо получает стипендию. Тем не менее, студент Вася может получать стипендию (в виде пособия), если он учится с тройками, но, например, имеет хроническое заболевание.

В импликации A ⇒ B
A — это достаточное условие для B
B — это необходимое условие для A

См. также

Ссылки

Что значит необходимое и достаточное условие

[[Категория:Наука:Статьи без ссылок на источники Ошибка: неправильное время]] К:Наука:Статьи без источников (страна: ) Шаблон:Logic-stub

Выделить Необходимое и достаточное условие и найти в:

Источник

Необходимое и достаточное условие

Содержание

Необходимое условие

Суждение P является необходимым условием суждения X, когда из (истинности) X следует (истинность) P. То есть, если P ложно, то заведомо ложно и X.

Для суждений X типа «объект принадлежит классу M» такое суждение P называется свойством (элементов) M.

Достаточное условие

Суждение Q является достаточным условием суждения X, когда из (истинности) Q следует (истинность) X, то есть в случае истинности Q проверять X уже не требуется.

Для суждений X типа «объект принадлежит классу M» такое суждение Q называется признаком (элементов) M.

Необходимое и достаточное условие

Суждение K является необходимым и достаточным условием суждения X, когда K является как необходимым условием X, так и достаточным. В этом случае говорят ещё что K и X равносильны, или эквивалентны.

Для суждений X типа «объект принадлежит классу M» такое суждение K называется критерием принадлежности классу M.

Пример

Суждение X: «Вася получает стипендию».
Необходимое условие P: «Вася — студент».
Достаточное условие Q: «Вася учится в вузе без троек».

Из того что Вася студент, еще не следует что он получает стипендию, но это условие необходимо, то есть если Вася не студент, то он заведомо не получает стипендию.

Если же Вася учится в вузе без троек, то он заведомо получает стипендию. Тем не менее, студент Вася может получать стипендию (в виде пособия), если он учится с тройками, но, например, имеет хроническое заболевание.

См. также

cs:Nutná a postačující podmínka he:תנאי שקול

Источник

Необходимое и достаточное условие

Содержание

Необходимое условие

Суждение P является необходимым условием суждения X, когда из (истинности) X следует (истинность) P. То есть, если P ложно, то заведомо ложно и X.

Для суждений X типа «объект принадлежит классу M» такое суждение P называется свойством (элементов) M.

Достаточное условие

Суждение Q является достаточным условием суждения X, когда из (истинности) Q следует (истинность) X, то есть в случае истинности Q проверять X уже не требуется.

Для суждений X типа «объект принадлежит классу M» такое суждение Q называется признаком (элементов) M.

Необходимое и достаточное условие

Суждение K является необходимым и достаточным условием суждения X, когда K является как необходимым условием X, так и достаточным. В этом случае говорят ещё что K и X равносильны, или эквивалентны.

Для суждений X типа «объект принадлежит классу M» такое суждение K называется критерием принадлежности классу M.

Пример

Суждение X: «Вася получает стипендию».
Необходимое условие P: «Вася — студент».
Достаточное условие Q: «Вася учится в вузе без троек».

Из того что Вася студент, еще не следует что он получает стипендию, но это условие необходимо, то есть если Вася не студент, то он заведомо не получает стипендию.

Если же Вася учится в вузе без троек, то он заведомо получает стипендию. Тем не менее, студент Вася может получать стипендию (в виде пособия), если он учится с тройками, но, например, имеет хроническое заболевание.

См. также

cs:Nutná a postačující podmínka he:תנאי שקול

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *