Что значит найти сумму углов
Внешний угол треугольника
Внешний угол треугольника – это угол, смежный с любым из внутренних углов треугольника.
При каждой вершине треугольника может быть построено по два равных внешних угла. Например, если продолжить все стороны треугольника ABC, то при каждой его вершине получится по два внешних угла, которые равны между собой, как вертикальные углы:
Из данного примера можно сделать вывод, что внешние углы, построенные при одной вершине, будут равны ( как вертикальные).
Записываем в тетрадь:
Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.
Так как внешний угол (∠1) дополняет внутренний угол (∠4) до развёрнутого угла, то их сумма равна 180°:
Сумма внутренних углов углов любого треугольника тоже равна 180°, значит:
Из этого следует, что
Сократив обе части полученного равенства на одно и тоже число (∠4), получим:
Из этого можно сделать вывод, что внешний угол треугольника всегда больше любого внутреннего угла, не смежного с ним.
Сумма внешних углов
Сумма трёх внешних углов треугольника, построенных при разных вершинах, равна 360°
Рассмотрим треугольник ABC:
Каждая пара углов (внутренний и смежный с ним внешний) в сумме равны 180°. Все шесть углов (3 внутренних и 3 внешних) вместе равны 540°:
(∠1 + ∠4) + (∠2 + ∠5) + (∠3 + ∠6) = 180° + 180° + 180° = 540°
Значит чтобы найти сумму внешних углов, надо из общей суммы вычесть сумму внутренних углов:
Изучите видео ролик ниже:
Видео YouTube
Практическая часть занятий:
Решение задач на отыскание величин треугольника по теореме о сумме углов треугольника и внешнем угле. Теоремы обязательно выучить и видео внимательно все разобрать:
Видео YouTube
Сумма углов треугольника
Сумма треугольника равна 180 градусов.
Это легко доказать. Нарисуйте треугольник. Через одну из его вершин проведите прямую, параллельную противоположной стороне, и найдите на рисунке равные углы. Сравните с решением в конце статьи.
А мы разберем задачи ЕГЭ, в которых фигурирует сумма углов треугольника.
1. Один из внешних углов треугольника равен 85 градусов. Углы, не смежные с данным внешним углом, относятся как 2:3. Найдите наибольший из них. Ответ дайте в градусах.
Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним. Следовательно, сумма двух других углов треугольника равна 85 градусов, а их отношение равно 2:3. Пусть эти углы равны 2х и 3х. Получим уравнение
2. Один из углов равнобедренного треугольника равен 98 градусов. Найдите один из других его углов. Ответ дайте в градусах.
Как вы думаете, может ли равнобедренный треугольник иметь два угла по 98 градусов?
Давайте отметим на чертеже еще несколько углов. Они нам понадобятся.
Заметим, что такой способ решения — не единственный. Просто находите и отмечайте на чертеже все углы, которые можно найти.
Ты нашел то, что искал? Поделись с друзьями!
Чему равна сумма углов?
Просто мне нужно объяснить. Но не просто объяснить, а чтобы ещё стало понятно!
Е. Гришковец «Одновременно»
Разговор покупателя с продавцом в магазине «Ткани».
— Здравствуйте! Я шью дома и сама делаю выкройки. Для этого использую угольник с различными углами. Мне нужны чаще всего 90, 60 и 45 градусов, но они у меня в разных угольниках. Приходится перекладывать. Нет ли у вас угольника, в котором были бы именно эти углы?
— Вы знаете, среди тех, что я вижу, нет, но вы заходите, такие должны на днях привезти.
— Большое спасибо, обязательно зайду.
Для математического уха разговор выглядит комично. То, что сумма углов треугольника равна 180°, знают даже школьники, не очень увлечённые математикой. А что такое 180° и почему именно 180? Ясно, скажет умный школьник, это половина от 360, то есть полного оборота.
Невозможно точно сказать, почему окружность была разбита на 360 одинаковых частей и когда это произошло. То ли это персы придумали, у которых год длился 360 дней, то ли вавилоняне, которым удобно было делить окружность на 6 равных частей с помощью равностороннего треугольника.
Была, правда, попытка ввести более логичную, с точки зрения современных представлений о счёте, шкалу для угловых мер. Она делила окружность на 400 равных частей — градов. В этой шкале величина прямого угла равнялась 100 градам. Однако шкала эта не прижилась. Трудно одним желанием изменить пятитысячелетнюю историю цивилизации. Да впрочем, какая разница, в чём мерить, хоть в попугаях, главное — понять, что угол — это некоторая доля от полного оборота.
Почему же сумма углов любого треугольника равна в точности половине полного оборота? Давайте представим себе, что у нас есть три прожектора. Каждый освещает внутренность некоторого угла до бесконечности (жить мы будем временно в двумерном мире). Если мы, стоя в одной точке, включим три прожектора (зелёный, розовый и жёлтый на рисунке), сумма «световых углов» которых равна 180°, и направим их без наложений освещаемой площади, то осветим ровно половину нашего двумерного пространства.
Теперь рассмотрим произвольный треугольник и в вершинах его поставим трёх помощников (Али, Бен и Сирил по буквам вершин, но можно попросить Анну, Варвару и Светлану), доверив им по прожектору. Каждый помощник должен осветить внутренность треугольника лучами света, которые выходят из вершины и продолжаются до бесконечности. Таким образом, каждый прожектор будет освещать внутренность своего угла и не будет освещать внутренность такого же угла, вертикального выбранному. При этом каждая точка плоскости либо попадёт внутрь освещённого угла, либо не будет освещена, попав в вертикальный угол к углу треугольника. Точки же самого треугольника будут освещены трижды. Теперь давайте посмотрим на нашу частично освещённую плоскость с большой высоты (мы-то, как люди трёхмерные, имеем на это право). Если закрыть глаза на небольшой участок перекрытия внутри треугольника, то нетрудно понять, что мы осветили «ровно» половину плоскости. Из чего и можно заключить, что сумма углов произвольного треугольника равна 180°!
Если наше маленькое жульничество внутри треугольника режет глаз, давайте отойдём далеко-далеко от плоскости и забудем, что где-то стоят наши помощники. Нарисуем окружность огромного радиуса с центром где-то внутри треугольника. Какая часть окружности освещена? Ровно (почти) половина. И чем больше радиус нашей окружности, тем меньше будут отличаться освещённая и тёмная части окружности. Ведь каждой светлой дуге будет в пару поставлена такая же тёмная.
Не будем останавливаться на сумме углов треугольника, а попробуем развить эту идею. Самое естественное продолжение — четырёхугольник. Нетрудно понять, что четыре помощника, выполняя аналогичное задание, осветят всю плоскость, что значит: сумма углов четырёхугольника равна 360°. Стоп! Давайте не торопиться, отойдём подальше. Что мы видим? Ужас! Некоторые точки плоскости вообще не освещены. Всё пропало? Не будем паниковать преждевременно. Продолжим наши прямые до бесконечности. На рисунке серым цветом закрашена неосвещённая часть плоскости. Посмотрим внимательно на вертикальный с ней угол. Он освещён, конечно, но освещён дважды! А значит, и здесь всё сходится. Так и должно быть, ведь четырёхугольник можно просто разрезать на два треугольника. Думаем дальше.
Нарисуем пятиконечную звёздочку (не обязательно правильную). Теперь позовём пять фонарщиков, поставим их в вершинах «лучиков» нашей звёздочки, и пусть каждый освещает внутренность того угла, в котором стоит. Соответственно, вертикальный угол освещён не будет. Что мы видим? Картина почти такая же, как у треугольника. Половина плоскости светлая, половина тёмная, а значит, сумма углов пятиконечной звезды равна 180°!
При этом мы нигде не пользовались какими-то особенностями формы этой звёздочки. Более того, а где мы считали количество углов? Давайте внимательно посмотрим на 7-конечную звезду. А потом на 2021-конечную (нарисовать непросто, а представить можно). Что изменится для суммы? Да ничего — половина светлого, половина тёмного. Правда, для большого числа углов нужно «правильно» рисовать звёздочку. Например, для семиугольной конструкции можно привести два примера. Подсчитайте самостоятельно сумму для «более тупоугольной» звёздочки.
Теперь давайте немного развернём наших фонарщиков и дадим им задание осветить один из своих внешних углов. Для начала позовём четверых, поставим их в вершинах выпуклого четырёхугольника. Нетрудно понять, что они осветят всё, кроме самого четырёхугольника. Удаляясь от них, мы поймём, что сумма внешних углов выпуклого четырёхугольника равна 360°.
Также при достаточном удалении мы забудем о количестве помощников, а когда вспомним, поймём, что это совершенно неважно. Сколько бы их ни было, плоскость будет освещена полностью и без перекрытий. Из этого следует чрезвычайно важный и удивительный вывод: сумма внешних углов выпуклого многоугольника равна 360°!
Продолжая применять этот метод, можно получить и другие формулы для суммы углов. То есть если внимательно посмотреть на количество перекрытий, можно вывести формулу для суммы углов выпуклого многоугольника. Но даже без вывода становится понятно, почему сумма внутренних углов зависит от их количества, а сумма внешних нет. Попробуйте развить эту идею на случай невыпуклых многоугольников. Можно, немного поломав голову, найти сумму внутренних углов, а вот для суммы внешних надо сначала понять: что такое внешний угол невыпуклого многоугольника? Успехов в вашем исследовании!
P. S. А угольник 45°, 60° и 90°, оказывается, существует! Это специальный портновский угольник — треугольник, в котором сделаны треугольные дырки с другими углами. И речь в магазине «Ткани», оказывается, совсем не шла о сумме углов треугольника.
Углы многоугольника
Внутренний угол многоугольника — это угол, образованный двумя смежными сторонами многоугольника. Например, ∠ABC является внутренним углом.
Внешний угол многоугольника — это угол, образованный одной стороной многоугольника и продолжением другой стороны. Например, ∠LBC является внешним углом.
Количество углов многоугольника всегда равно количеству его сторон. Это относится и к внутренним углам и к внешним. Несмотря на то, что для каждой вершины многоугольника можно построить два равных внешних угла, из них всегда принимается во внимание только один. Следовательно, чтобы найти количество углов любого многоугольника, надо посчитать количество его сторон.
Сумма внутренних углов
Сумма внутренних углов выпуклого многоугольника равна произведению 180° и количеству сторон без двух.
где s — это сумма углов, 2d — два прямых угла (то есть 2 · 90 = 180°), а n — количество сторон.
Если мы проведём из вершины A многоугольника ABCDEF все возможные диагонали, то разделим его на треугольники, количество которых будет на два меньше, чем сторон многоугольника:
Следовательно, сумма углов многоугольника будет равна сумме углов всех получившихся треугольников. Так как сумма углов каждого треугольника равна 180° (2d), то сумма углов всех треугольников будет равна произведению 2d на их количество:
Из этой формулы следует, что сумма внутренних углов является постоянной величиной и зависит от количества сторон многоугольника.
Сумма внешних углов
Сумма внешних углов выпуклого многоугольника равна 360° (или 4d).
где s — это сумма внешних углов, 4d — четыре прямых угла (то есть 4 · 90 = 360°).
Сумма внешнего и внутреннего угла при каждой вершине многоугольника равна 180° (2d), так как они являются смежными углами. Например, ∠1 и ∠2:
Урок геометрии по теме «Сумма углов многоугольника». 9-й класс
Разделы: Математика
Класс: 9
Цель: Вывести формулу для нахождения суммы углов выпуклого многоугольника;
Великий русский ученый, гордость Земли Русской,
Михайло Васильевич Ломоносов, сказал: “ Неусыпный труд препятствия преодолевает”. Я надеюсь, что сегодня на уроке наш с вами труд поможет нам преодолеть все препятствия.
1. Актуализация опорных знаний. (Фронтальный опрос.)
– Сформулируйте определение многоугольника, назовите его основные элементы.
– Определение выпуклого многоугольника.
– Приведите примеры известных вам четырехугольников, которые являются выпуклыми многоугольниками.
– Можно ли треугольник считать выпуклым многоугольником?
– Что такое внешний угол выпуклого многоугольника?
2. Постановка проблемы (выход на тему урока).
Устная фронтальная работа.
Найдите сумму углов данных многоугольников (Слайды 5–6)
– треугольника; прямоугольника:
– трапеции; произвольного семиугольника.
В случае затруднения учитель задает вопросы:
– Сформулируйте определение трапеции.
– Назовите основания трапеции.
– Что можно сказать о паре углов А и Д, каким свойством они обладают?
– Можно ли еще назвать на чертеже пару внутренних односторонних улов?
– Смогли вы найти сумму углов семиугольника? Какой возникает вопрос? (Существует ли формула для нахождения суммы углов произвольного многоугольника?)
Итак, ясно, что наших знаний на сегодня не достаточно для решения этой задачи.
Каким образом можно сформулировать тему нашего урока? – Сумма углов выпуклого многоугольника.
3. Решение проблемы. Чтобы ответить на поставленный вопрос, давайте проведем небольшое исследование.
Мы уже знаем теорему о сумме углов треугольника. Можем ли мы ее каким либо образом применить?
– Что для этого надо сделать? (Разбить многоугольник на треугольники.)
– А каким образом многоугольник можно разбить на треугольники? Подумайте над этим, обсудите и предложите свои самые удачные варианты.
Идет работа в группах, каждая группа работает за отдельным компьютером, на котором установлена программа “Geo Gebra”.
По окончании работы учитель выводит на экран результаты работы групп. (Слайд 7)
– Давайте проанализируем предложенные варианты и попробуем выбрать самый оптимальный для нашего исследования.
Определимся с критериями отбора: что мы хотим получить в результате разбиения? (Сумма всех углов построенных треугольников должна быть равна сумме углов многоугольника.)
– Какие варианты можно сразу отбросить? Почему?
(Вариант 1, так как сумма углов всех треугольников не равна сумме углов многоугольника.)
– Какой вариант годиться больше всего? Почему? (Вариант 3.)
Как получили этот вариант? (Провели диагонали из одной вершины многоугольника
чертеж | n – количество вершин многоугольника | Количество диагоналей, проведенных из одной вершины | Количество полученных треугольников |
4 | |||
5 | |||
6 | |||
7 | |||
n |
– Попробуем установить зависимость между количеством вершин многоугольника, количеством диагоналей, которые можно провести из одной вершины и количеством получаемых при этом треугольников.
Каждая группа получает таблицу, которую должны заполнить в процессе исследования.
После обсуждения в группах дети формулируют полученные выводы:
из одной вершины n-угольника можно провести n – 3 диагонали, (так как диагональ нельзя провести к самой выбранной вершине и к двум соседним). При этом получим n – 2 треугольника.
Следовательно, сумма углов выпуклого многоугольника равна 180 0 (n-2).
– Вернемся к предложенным вариантам разбиения многоугольника на треугольники.
Можно ли использовать для доказательства этой теоремы вариант, предложенный на рисунке 4?
– Сколько треугольников получается при таком разбиении? (п штук)
– На сколько отличается сумма углов всех треугольников от суммы углов многоугольника? (На 360 0 )
– Каким образом можно сосчитать сумму углов многоугольника в этом случае?
– Удовлетворяет ли главному требованию, которое мы предъявляли к разбиению, вариант, предложенный на рисунке 2? (Да.)
– Почему не целесообразно его использование для нахождения суммы углов многоугольника? (Тяжелее подсчитать количество получаемых треугольников.)
Ну а теперь вернемся к задаче, которую мы не смогли решить вначале урока.
(Дети устно считают сумму углов семиугольника и еще два аналогичных упражнения.) (Слайд 9 и 10)
4. Применение полученных знаний.
Мы вывели формулу для нахождения суммы внутренних углов выпуклого многоугольника. А теперь поговорим о сумме внешних углов многоугольника, взятых по одной при каждой вершине.
Итак, задача: что больше: сумма внешних углов, взятых по одному при каждой вершине, у выпуклого шестиугольника или у треугольника? (Слайд 11)
Дети высказывают свои предположения. Учитель предлагает провести исследование для решения этого вопроса.
Каждая группа получает задание для самостоятельного решения.
После окончания работы дети сообщают свои результаты, учитель заносит их в таблицу и демонстрирует на экране. (Слайд 12)
Итак, какой вывод можно сделать из полученных результатов? (Сумма внешних углов, взятых по одному при каждой вершине, у любого многоугольника равна 360 0. )
А теперь давайте попробуем доказать этот факт для любого н-угольника.
Если возникают трудности, коллективно обсуждается план доказательства:
1. Обозначить внутренние углы многоугольника через α, β, γ и т.д.
2. Выразить через введенные обозначения градусные меры внешних углов
3. Составить выражение для нахождения суммы внешних углов многоугольника
4. Преобразовать полученное выражение, использовать полученную ранее формулу для суммы внутренних углов многоугольника.
Доказательство записывается на доске:
(180 – α) + (180 – β) + (180 – γ) + …= 180 п – (α+ β +γ + …) = 180 п – 180(п – 2) = 360
Далее демонстрируется видео: как можно проиллюстрировать этот факт с помощью картонной модели. (Слайд 13)
5. Закрепление изученного материала. Решение задач.
В выпуклом многоугольнике три угла по 80 градусов, а остальные – 150 градусов. Сколько углов в выпуклом многоугольнике?
Так как: для выпуклого n-угольника сумма углов равна 180°(n – 2), то 180(n – 2)=3*80 + x*150, где 3 угла по 80 градусов нам даны по условию задачи, а количество остальных углов нам пока неизвестно, значит, обозначим их количество через x.
Однако из записи в левой части мы определили количество углов многоугольника как n, поскольку из них величины трех углов мы знаем по условию задачи, то очевидно, что x=n-3.
Таким образом, уравнение будет выглядеть так: 180(n – 2) = 240 + 150(n – 3)
Решаем полученное уравнение
180n – 360 = 240 + 150n – 450
180n – 150n = 240 + 360 – 450
6. Подведение итогов урока.
Итак, давайте подведем итоги. Сформулируйте свои вопросы для ребят из другой группы по материалам сегодняшнего урока.
Какой вопрос вы считаете наиболее удачным?
Обсудите степень участия каждого члена группы в коллективной работе, назовите самых активных.
Чья работа в группе была самой результативной?
7. Домашнее задание:
В многоугольнике три угла по 113 градусов, а остальные равны между собой и их градусная мера – целое число. Найти количество вершин многоугольника.
2. п.114 стр.169–171, Погорелов А.В. “Геометрия 7–9”.