Что значит найдите коэффициент
Как определить a, b и c по графику параболы
Предположим, вам попался график функции \(y=ax^2+bx+c\) и нужно по этому графику определить коэффициенты \(a\), \(b\) и \(c\). В этой статье я расскажу 3 простых способа сделать это.
1 способ – ищем коэффициенты на графике
Данный способ хорош, когда координаты вершины и точка пересечения параболы с осью \(y\) – целые числа. Если это не так, советую использовать способ 2.
Коэффициент \(a\) можно найти с помощью следующих фактов:
— Если \(a>0\), то ветви параболы направленных вверх, если \(a 1\), то график вытянут вверх в \(a\) раз по сравнению с «базовым» графиком (у которого \(a=1\)). Вершина при этом остается на месте. Это наглядно видно по выделенным точкам.
Ищем 3 точки с целыми координатами, принадлежащие параболе.
Пример:
Выписываем координаты этих точек и подставляем в формулу квадратичной функции: \(y=ax^2+bx+c\). Получится система с тремя уравнениями.
Решаем систему.
Пример:
Вычтем из второго уравнения первое:
Подставим \(9a\) вместо \(b\):
Первое и второе уравнения совпали (это нормально для точек, симметричных относительно прямой проходящей через вершину – как точки \(A\) и \(B\) в нашем случае), но нас это не остановит – мы вычтем из второго уравнение третье:
Подставим в первое уравнение \(a\):
Получается квадратичная функция: \(y=-x^2-9x-15\).
Сразу заметим, что по графику можно сразу определить, что \(c=4\). Это сильно облегчит нашу систему – нам хватит 2 точек. Выберем их на параболе: \(C(-1;8)\), \(D(1;2)\) (на самом деле, если присмотреться, то можно заметить, что эти точки выделены жирно на изначальной картинке – это вам подсказка от авторов задачи).
Таким образом имеем систему:
Сложим 2 уравнения:
Подставим во второе уравнение:
Теперь найдем точки пересечения двух функций:
Теперь можно найти ординату второй точки пересечения:
3 способ – используем преобразование графиков функций
Этот способ быстрее первого и более универсальный, в частности он может пригодится и в задачах на другие функции.
Сам способ базируется на следующих идеях:
График \(y=-x^2\) симметричен относительно оси \(x\) графику \(y=x^2\).
– Если \(a>1\) график \(y=ax^2\) получается растяжением графика \(y=x^2\) вдоль оси \(y\) в \(a\) раз.
– Если \(a∈(0;1)\) график \(y=ax^2\) получается сжатием графика \(y=x^2\) вдоль оси \(y\) в \(a\) раз.
– График \(y=a(x+d)^2\) получается сдвигом графика \(y=ax^2\) влево на \(d\) единиц.
— График \(y=a(x-d)^2\) получается сдвигом графика \(y=ax^2\) вправо на \(d\) единиц.
График \(y=a(x+d)^2+e\) получается переносом графика \(y=a(x+d)^2\) на \(e\) единиц вверх.
График \(y=a(x+d)^2-e\) получается переносом графика \(y=a(x+d)^2\) на \(e\) единиц вниз.
Сначала смотрим на её форму и направленность её ветвей. Видим, что форма стандартная, базовая и ветви направлены вверх, поэтому \(a=1\). То есть она получена перемещениями графика базовой параболы \(y=x^2\).
А как надо было перемещать зеленый график чтоб получить оранжевый? Надо сдвинуться вправо на пять единиц и вниз на \(4\).
То есть наша функция выглядит так: \(y=(x-5)^2-4\).
После раскрытия скобок и приведения подобных получаем искомую формулу:
Чтобы найти \(f(6)\), надо сначала узнать формулу функции \(f(x)\). Найдем её:
Парабола растянута на \(2\) и ветви направлены вниз, поэтому \(a=-2\). Иными словами, первоначальной, перемещаемой функцией является функция \(y=-2x^2\).
Парабола смещена на 2 клеточки вправо, поэтому \(y=-2(x-2)^2\).
Парабола поднята на 4 клеточки вверх, поэтому \(y=-2(x-2)^2+4\).
Числовой коэффициент выражения: определение, примеры
В математических описаниях часто фигурирует термин «числовой коэффициент», например, в работе с буквенными выражениями и выражениями с переменными. Материал статьи ниже раскрывает понятие этого термина, в том числе, на примере решения задач на нахождение числового коэффициента.
Определение числового коэффициента. Примеры
Учебник Н.Я. Виленкина (учебный материал для учащихся 6 классов) задает такое определение числового коэффициента выражения:
Если буквенное выражение является произведением одной или нескольких букв и одного числа, то это число называется числовым коэффициентом выражения.
Числовой коэффициент зачастую называют просто коэффициентом.
Данное определение дает возможность указать примеры числовых коэффициентов выражений.
Также разберем такое выражение:
Мы видим, что запись выражения содержит три числа, и, чтобы найти числовой коэффициент исходного выражения, его следует переписать в виде выражения с единственным числовым множителем. Собственно, это и является процессом нахождения числового коэффициента.
Отметим, что произведения одинаковых букв могут быть представлены как степени с натуральным показателем, поэтому определение числового коэффициента верно и для выражений со степенями.
Далее определение числового коэффициента расширяется с произведения нескольких букв и числа до произведения числа и нескольких буквенных выражений.
Нахождение числового коэффициента выражения
Выше мы говорили о том, что если выражение представляет собой произведение с единственным числовым множителем, то этот множитель и будет являться числовым коэффициентом выражения. В случае, когда выражение записано в ином виде, предстоит совершить ряд тождественных преобразований, который приведет заданное выражение к виду произведения с единственным числовым множителем.
Решение
Ответ: 18
Решение
С целью определения числового коэффициента преобразуем в многочлен заданное целое выражение. Раскроем скобки и приведем подобные слагаемые, получим:
График линейной функции, его свойства и формулы
Понятие функции
Функция — это зависимость «y» от «x», где «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.
Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:
График функции — это объединение всех точек, когда вместо «x» можно подставить произвольные значения и найти координаты этих точек.
Понятие линейной функции
Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.
Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.
Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.
Если известно конкретное значение х, можно вычислить соответствующее значение у.
Для удобства результаты можно оформлять в виде таблицы:
Графиком линейной функции является прямая линия. Для его построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.
Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.
Буквенные множители «k» и «b» — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.
Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты «k» и «b».
Функция | Коэффициент «k» | Коэффициент «b» |
---|---|---|
y = 2x + 8 | k = 2 | b = 8 |
y = −x + 3 | k = −1 | b = 3 |
y = 1/8x − 1 | k = 1/8 | b = −1 |
y = 0,2x | k = 0,2 | b = 0 |
Может показаться, что в функции «y = 0,2x» нет числового коэффициента «b», но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа «y = kx + b» есть коэффициенты «k» и «b».
Еще не устали? Изучать математику веселее с опытным преподавателем на курсах по математике в Skysmart!
Свойства линейной функции
Построение линейной функции
В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида «у = kx + b», достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.
Например, чтобы построить график функции y = 1 /3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:
В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:
Проанализируем рисунок. Все графики наклонены вправо, потому что во всех функциях коэффициент k больше нуля. Причем, чем больше значение k, тем круче идет прямая.
В каждой функции b = 3, поэтому все графики пересекают ось OY в точке (0; 3).
В этот раз во всех функциях коэффициент k меньше нуля, и графики функций наклонены влево. Чем больше k, тем круче идет прямая.
Коэффициент b равен трем, и графики также пересекают ось OY в точке (0; 3).
Теперь во всех уравнениях функций коэффициенты k равны. Получили три параллельные прямые.
При этом коэффициенты b различны, и эти графики пересекают ось OY в различных точках:
Прямые будут параллельными тогда, когда у них совпадают угловые коэффициенты.
Подытожим. Если мы знаем знаки коэффициентов k и b, то можем представить, как выглядит график функции y = kx + b.
Если k 0, то график функции y = kx + b выглядит так:
0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>
Если k > 0 и b > 0, то график функции y = kx + b выглядит так:
0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>
Точки пересечения графика функции y = kx + b с осями координат:
Решение задач на линейную функцию
Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!
Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).
Урок 41 Бесплатно Коэффициент
В предыдущих уроках мы уже познакомились со свойствами действий с рациональными числами и раскрытием скобок. В этих темах у нас зачастую фигурируют не числа, а выражения.
В некоторых случаях у выражения можно выделить такое число, которое называют коэффициентом.
О том, что это такое, чему он равен, какой у него может быть знак и где его можно применить, мы узнаем в сегодняшнем уроке.
Определение коэффициента
Мы уже знаем переместительное и сочетательное свойства умножения.
Они позволяют нам упрощать выражения, что делает работу удобнее.
Упростим выражение \(\mathbf<\frac<1><2>a\cdot(-\frac<2><3>b)>\), используя эти свойства.
\(\mathbf<\frac<1><2>a\cdot(-\frac<2><3>b)=\frac<1><2>\cdot a\cdot(-\frac<2><3>)\cdot b=\frac<1><2>\cdot(-\frac<2><3>)\cdot a\cdot b=-\frac<1><3>\cdot a\cdot b=-\frac<1><3>ab>\)
Мы представили выражения как произведение четырех множителей, сгруппировали в начало численные множители, а в конец буквенные, далее мы перемножили имеющиеся численные множители так, чтобы получилось одно число.
В данном случае коэффициентом выражения будет являться число \(\mathbf<-\frac<1><3>>\)
Определение: если выражения является произведением числа и одной или нескольких букв, то это число называется числовым коэффициентом (или сокращенно коэффициентом).
Коэффициент обычно пишут перед буквенными множителями; также после него можно написать знак умножения, но обычно его не пишут, а он просто подразумевается.
Пример:
Каков коэффициент выражения \(\mathbf<0.4a>\)?
Проверяем, подходит ли выражение под определение: да, оно подходит, так как является произведением.
Числовой множитель только один, значит, ничего считать не надо, и мы сразу можем сказать, что коэффициент данного выражения равен \(\mathbf<0.4>\)
Пример:
Опять же, данное выражение является произведением, правда коэффициент пока не ясен, так как числовой множитель не один.
В данном случае, как и в примере из начала урока множители необходимо сгруппировать, в результате получим, что коэффициент равен \(\mathbf<3\cdot 2\cdot 4=24>\)
Что если мы хотим посчитать коэффициент выражения, которое является произведением одних лишь буквенных множителей?
Тут нам поможет следующая логика.
Например, очевидно такое равенство: \(\mathbf\)
Так мы можем приписать умножение на единицу к любому выражению, при этом значение выражения никак не изменится.
Таким образом мы получим необходимый для определения числовой множитель, он и будет коэффициентом.
Поэтому если мы видим выражения, состоящие из одних лишь буквенных множителей, то мы знаем, что их коэффициент равен единице.
Примеры:
Пройти тест и получить оценку можно после входа или регистрации
Знак коэффициента
Как мы уже определили в прошлой главе, коэффициент будет являться произведением числовых множителей.
Значит, знак коэффициента будет соответствовать знаку этого произведения.
Посмотрим на примерах:
Пример:
Посчитаем коэффициент выражения \(\mathbf<3a\cdot (-3)\cdot b>\):
В данном случае коэффициент получился равным \(\mathbf<-9>\), то есть отрицательным, так как произведение числовых множителей получилось отрицательным.
Пример:
Посчитаем коэффициент выражения \(\mathbf<-\frac<1><3>a\cdot (-\frac<1><2>)bc>\):
В данном случае количество отрицательных множителей четное, поэтому и коэффициент получается меньше нуля.
Если бы отрицательных множителей было число нечетное, то коэффициент получился бы отрицательным.
Правило: если выражение является произведением числовых и буквенных множителей и отрицательных числовых множителей четное количество, а остальные множители больше нуля, то коэффициент будет положительным; если же их нечетное количество, то коэффициент будет отрицательным.
Также мы знаем, что произведение любых чисел и нуля равняется нулю.
То же самое касается и буквенных множителей.
Пример:
\(\mathbf<\frac<1><2>ab\cdot 0c=0>\)
Поэтому такие выражения, которые являются произведением, а один из их множителей равен нулю, сами равны нулю.
Сразу можно понять, как можно использовать эти знания.
Представим, что у нас есть некоторая сумма. И если для каждого выражения, которое является слагаемым, мы посчитаем коэффициент, то, возможно, некоторые слагаемые уничтожаться, потому что их коэффициент окажется равен нулю.
Пример:
Как видите, нам не пришлось вдаваться в подробности слагаемого, так как один из его числовых множителей равен нулю.
Пройти тест и получить оценку можно после входа или регистрации
Применение коэффициента выражений
Вы уже знаете с прошлых уроков, что умножение рациональных чисел обладает распределительным свойством относительно сложения.
То есть для любых рациональных чисел a, b и c будет верно равенство:
Мы знаем, что выражение, состоящее из рациональных чисел и включающее в себя операции сложения, вычитания, умножения и деления, также будет равняться рациональному числу.
Также известно, что отношение равенства симметрично, то есть из того, что (\(\mathbf\)) следует, что (\(\mathbf\))
Значит, мы можем использоваться распределительное свойство и так:
Часто мы будем называть такой переход вынесением общего множителя (общим является множитель с).
Теперь применим все эти факты на практике.
Пример:
Упростим выражение \(\mathbf<345ab+345bc+345cd>\) :
Первым делом мы добавили скобки для наглядности, чтобы показать, что дальше мы будет упрощать сумму первых двух слагаемых.
К ним мы применили распределительной свойство и вынесли общий множитель 345.
Заметим, что теперь выражение представляет из себя два слагаемых, и у них у обоих есть общий множитель 345.
Поэтому в следующем действие мы снова выносим общий множитель.
Теперь остается убрать ненужные скобки, и мы получаем упрощенное выражение.
Кстати, на этом примере становится понятно, что распределительно свойство работает на любом количестве слагаемых:
Под троеточием в данном случае подразумевается сколько угодно много слагаемых, главное, что они такого же вида, как первые и последние.
То есть первое троеточие обозначает слагаемые, состоящие из одного числа (буквы), второе же троеточие обозначает слагаемые вида «слагаемое из левой части выражения домноженное на t».
Как же в данном случае нам может помочь коэффициент?
В нашем примере мы выносили общий множитель. Им как раз и является коэффициент таких выражений, как ab, bc и cd.
В примере он уже был везде посчитан и нам ничего не приходилось умножать.
Пример:
Упростим выражение \(\mathbf<30a+15b\cdot2c+10d\cdot3e>\) :
В данном случае мы сначала посчитали в каждом слагаемом коэффициент (слагаемые в данном случае являются не просто числами, а выражениями).
А далее мы поняли, что этот коэффициент является общим множителем и мы его выносим, пользуясь распределительным свойством.
Пример:
Это выражение можно упростить еще сильнее, вынося общий буквенный множитель. В данном случае в скобках у слагаемых общий множитель a и с, их и вынесем:
Здесь мы применили тот факт, что если у выражения не стоит коэффициент, то мы считаем, что его коэффициент равен единице.
Пройти тест и получить оценку можно после входа или регистрации
Как рассчитываются коэффициенты ставок?
Коэффициент — это главная характеристика любой ставки на спорт, потому что от него зависит размер потенциального выигрыша. Как букмекеры рассчитывают котировки пари, какие факторы влияют на их величину, и как найти контору с самыми выгодными кэфами?
Что такое коэффициент пари?
Коэффициент представляет собой число, на которое нужно умножить сумму ставки, чтобы узнать величину выигрыша. В линии пари букмекеров кэф обозначен цифрой с сотыми долями, например, 1.78. Но некоторые конторы, в частности, БК «1хСтавка», используют несколько вариантов написания котировок: целыми числами, а также цифрами с десятичными и сотыми долями.
Допустим, вы решили зарядить на исход матча РПЛ «Арсенал» — «Зенит» и хотите узнать, какой доход принесут пари в размере 1000 рублей. БК «Лига Ставок» дает на победу «Арсенала» кэф 8.20, следовательно, вы заработаете 8200 рублей, если тульская команда возьмет верх. Котировка на триумф «Зенита» гораздо ниже — 1.37, соответственно, контора выплатит всего лишь 1370 рублей в случае выигрыша сине-бело-голубых. Ставка на ничью позволит сорвать внушительный куш 5400 рублей благодаря приличному коэффициенту — 5.40.
Как букмекеры вычисляют котировки?
Коэффициент отражает прогноз конторы на матч. Чем он выше, тем меньше шансов на то, что событие произойдет. И наоборот, чем ниже кэф, тем выше вероятность определенного исхода. То есть по коэффициентам можно сразу же определить фаворита и аутсайдера игры. Например, БК «1хСтавка» выставила котировку 1.72 на победу «Авангарда» и 3.94 на викторию «Барыса». Соответственно, букмекер предрекает первому клубу выигрыш, а второму — поражение.
Чтобы рассчитать коэффициент, букмекеры учитывают следующие факторы:
Сотрудники контор оценивают вероятность результата матча в процентах и затем переводят их в котировку. Соответственно, чтобы узнать прогноз экспертов, необходимо поделить 100 на коэффициент. Если применить эту формулу к игре КХЛ из нашего примера, то мы получим следующие результаты:
Относительно равные коэффициенты, в частности, 1.90 и 1.95, говорят о том, что у обеих команд примерно одинаковые шансы на триумф. В этом случае прогнозы на спорт от экспертов сайта Prosports.ru помогут определить фаворита.
Почему конторы выставляют разные коэффициенты?
Ни для кого не секрет, что в букмекерских конторах отличаются коэффициенты на одно и то же событие. Это явление обусловлено двумя причинами:
Проанализируем бой UFC Лэдд — Дюмонт. «Париматч» дает кэф 1.76 на победу Аспен и 2.14 — на выигрыш Нормы. «Бет365» — 1.72 и 2.10 соответственно. Подсчитаем маржу букмекеров по формуле: (1/кэф первого исхода)+(1/кэф второго исхода)-1х100. Parimatch взимает комиссию 3.54%, а Bet365 — 5.75. Поэтому в БК «Париматч» более высокие котировки.
Зачастую различия между коэффициентами возникают из-за реакции игроков на событие. Например, в БК «1хСтавка» можно зарядить на выигрыш Исмаилова в поединке против Минеева с котировкой 1.62. В БК «Лига Ставок» кэф на этот исход намного выше — 1.72. Этот факт свидетельствует о том, что клиенты конторы «1хСтавка» «загрузили» больше денег на Магомеда. Чтобы подтолкнуть беттеров к заключению пари на Владимира, букмекер сократил кэф ставки на победу его соперника и одновременно с этим увеличил котировку на викторию Минеева.
Как найти самые выгодные коэффициенты?
Многие букмекерские конторы регулярно проводят акции, участники которых вправе заключить пари с повышенными коэффициентами. В частности, «Олимпбет» увеличивает котировку экспрессов на 1% за каждое событие вплоть до 10%, если кэф «паровоза» составляет хотя бы 4.50. БК «Марафонбет» обнуляет маржу за обработку ставок на некоторые турниры, повышая таким образом котировки.
Чтобы узнать об активных предложениях в российских конторах, перейдите в раздел «Бонусы букмекеров» на сайте Prosports.ru. Если вас интересует информация об акциях для незарегистрированных клиентов, то выберите опцию «Новым игрокам». Во вкладке «Действующим игрокам» представлен список подарков, которыми компании награждают лояльных клиентов.
Для сравнения коэффициентов в букмекерских конторах стоит использовать специальный сервис, например, OddsPedia. Для просмотра котировок на исходы матча на этом ресурсе выполните следующие действия:
OddsPedia мониторит линии ставок как отечественных, так и зарубежных букмекеров, а также отслеживает динамику изменения коэффициентов и показывает ее в графическом виде. Портал публикует данные о соревнованиях по всем популярным видам спорта и кибердисциплинам.