Что значит характер монотонности функции

Монотонность функций

Что значит характер монотонности функции Что значит характер монотонности функции Что значит характер монотонности функции Что значит характер монотонности функции

Что значит характер монотонности функции

Что значит характер монотонности функции

Функция f (x) называется возрастающей на промежутке D, если для любых чисел x1 и x2 из промежутка D таких, что x1 f (x2).

Что значит характер монотонности функции
Рисунок 1.3.5.1. Промежутки возрастания и убывания функции

На показанном на рисунке графике функция y = f (x), Что значит характер монотонности функциивозрастает на каждом из промежутков [a; x1) и (x2; b] и убывает на промежутке (x1; x2). Обратите внимание, что функция возрастает на каждом из промежутков [a; x1) и (x2; b], но не на объединении промежутков Что значит характер монотонности функции

Если функция возрастает или убывает на некотором промежутке, то она называется монотонной на этом промежутке.

Заметим, что если f – монотонная функция на промежутке D (f (x)), то уравнение f (x) = const не может иметь более одного корня на этом промежутке.

Аналогичные утверждения можно сформулировать и для убывающей функции.

Что значит характер монотонности функции
Модель 1.9. Свойства функции

Точка a называется точкой максимума функции f, если существует такая ε-окрестность точки a, что для любого x из этой окрестности выполняется неравенство f (a) ≥ f (x).

Точка a называется точкой минимума функции f, если существует такая ε-окрестность точки a, что для любого x из этой окрестности выполняется неравенство f (a) ≤ f (x).

Точки, в которых достигается максимум или минимум функции, называются точками экстремума.

В точке экстремума происходит смена характера монотонности функции. Так, слева от точки экстремума функция может возрастать, а справа – убывать. Согласно определению, точка экстремума должна быть внутренней точкой области определения.

Если для любого Что значит характер монотонности функции(xa) выполняется неравенство f (x) ≤ f (a) Что значит характер монотонности функциито точка a называется точкой наибольшего значения функции на множестве D:

Что значит характер монотонности функции

Если для любого Что значит характер монотонности функции(xb) выполняется неравенство f (x) > f (b) Что значит характер монотонности функциито точка b называется точкой наименьшего значения функции на множестве D.

Что значит характер монотонности функции

Точка наибольшего или наименьшего значения может быть экстремумом функции, но не обязательно им является.

Точку наибольшего (наименьшего) значения непрерывной на отрезке функции следует искать среди экстремумов этой функции и ее значений на концах отрезка.

Что значит характер монотонности функции
График 1.3.5.1. Функция, ограниченная сверху
Что значит характер монотонности функции
График 1.3.5.2. Функция, ограниченная снизу
Что значит характер монотонности функции
График 1.3.5.3. Функция, ограниченная на множестве D.

Наибольшее и наименьшее значения функции y=f(x) на [а,b].

Источник

Что значит характер монотонности функции

Возрастающие и убывающие функции объединяют общим понятием: монотонные функции.

Монотонная функция – это функция, меняющаяся в одном и том же направлении.

Функция возрастает, если большему значению аргумента соответствует большее значение функции. Говоря иначе, если при возрастании значения x значение y тоже возрастает, то это возрастающая функция.

Функция убывает, если большему значению аргумента соответствует меньшее значение функции. Говоря иначе, если при возрастании значения x значение y убывает, то это убывающая функция.

Если функция возрастает или убывает на некотором промежутке, то она называется монотонной на этом промежутке.

Функция постоянна (немонотонна), если она не убывает и не возрастает.

Что значит характер монотонности функции


Свойства монотонных функций:

1) Сумма нескольких возрастающих функций является возрастающей функцией.

2) Произведение неотрицательных возрастающих функций есть возрастающая функция.

3) Если функция f возрастает и сохраняет знак, то функция 1/f убывает.

4) Если функция f возрастает и неотрицательна, то f n тоже возрастает (n ∈ N).

5) Композиция g (f (x)) возрастающих функций f и g также возрастает.

6) Если функция f возрастает, то функции cf (c > 0) и f + c также возрастают, а функция cf (c Производная и монотонность функции.

Зависимость между знаком производной и характером монотонности:

Если на промежутке Х функция возрастает и имеет на нем производную, то производная неотрицательна.

Если на промежутке Х функция убывает и имеет на нем производную, то производная неположительна.

Условия возрастания или убывания функции y = f(x):

Функция возрастает, если во всех точках открытого промежутка Х производная f ′(x) больше нуля:

Говоря проще, функция возрастает, если производная положительна.

Примечание : Равенство f ′(x) = 0 либо выполняется лишь в конечном множестве точек, либо не выполняется вовсе.

Функция убывает, если во всех точках открытого промежутка Х производная f ′(x) меньше нуля:

f ′(x) Примечание : равенство f ′(x) = 0 либо выполняется лишь в конечном множестве точек, либо не выполняется вовсе.

Условие существования постоянной функции:

Функция y = f(x) постоянна на промежутке Х, если во всех точках этого промежутка производная
f ′(x) равна нулю:

Монотонность некоторых функций:


Функция


Производная


Монотонность

При a > 0 возрастает

При a 0 возрастает.

При k > 0 убывает на (–∞; 0) и (0; +∞).

При a > 0 убывает на (–∞; –b/2a]
и возрастает на [–b/2a; +∞).

Источник

Монотонная функция

Определения

функция f <\displaystyle f>называется возраста́ющей на M<\displaystyle M>, если

функция f <\displaystyle f>называется стро́го возраста́ющей на M<\displaystyle M>, если

функция f <\displaystyle f>называется убыва́ющей на M<\displaystyle M>, если

функция f <\displaystyle f>называется стро́го убыва́ющей на M<\displaystyle M>, если

∀x,y∈M,x>y⇒f(x) y\Rightarrow f(x)

(Строго) возрастающая или убывающая функция называется (строго) монотонной.

Решение

Для определения промежутков возрастания и убывания функции решаем уравнение: x^<2>-2x-3=0. Решениями уравнения являются точки: x=-1 и x=3, которые разбивают числовую прямую на три отрезка. Получаем:

С отметкой о просмотре

    Для доказательства достаточности критерия возрастания и убывания функции мы используем:

    Элементы сортировки

    Правильно
    4 / 4Баллы

    Неправильно
    / 4 Баллы

максимум из 8 баллов

МестоИмяЗаписаноБаллыРезультат
Таблица загружается
Нет данных

Доказательство:

Литература

из 2 заданий окончено

Информация

Тест по теме Пределы монотонных функций.

Вы уже проходили тест ранее. Вы не можете запустить его снова.

Вы должны войти или зарегистрироваться для того, чтобы начать тест.

Вы должны закончить следующие тесты, чтобы начать этот:

Результаты

Правильных ответов: из 2

Вы набрали из баллов ()

Средний результат
Ваш результат

Ваш результат был записан в таблицу лидеров

С отметкой о просмотре

    Количество баллов: 5

    Дать определение строго монотонно возрастающей функции на отрезке

    Количество баллов: 5

    Вставьте пропущенные слова.
    $$Если

    (правосторонний) и (левосторонний) пределы.

максимум из 10 баллов

МестоИмяЗаписаноБаллыРезультат
Таблица загружается
Нет данных

Условия монотонности функции

Обратное, вообще говоря, неверно. Производная строго монотонной функции может обращаться в ноль. Однако, множество точек, где производная не равна нулю, должно быть плотно на интервале (a,b). <\displaystyle (a,b).>Точнее имеет место

Что значит характер монотонности функции Что значит характер монотонности функции Что значит характер монотонности функции Что значит характер монотонности функции Что значит характер монотонности функции Что значит характер монотонности функции Что значит характер монотонности функции Что значит характер монотонности функции Что значит характер монотонности функции Что значит характер монотонности функции

(Критерий строгой монотонности функции, имеющей производную на интервале) Пусть f∈C((a,b)),<\displaystyle f\in C<\bigl (>(a,b)<\bigr )>,> и всюду на интервале определена производная f′(x). <\displaystyle f'(x).>Тогда f <\displaystyle f>строго возрастает на интервале (a,b) <\displaystyle (a,b)>тогда и только тогда, когда выполнены следующие два условия:

Аналогично, f <\displaystyle f>строго убывает на интервале (a,b) <\displaystyle (a,b)>тогда и только тогда, когда выполнены следующие два условия:

1.3.5. Монотонность функций

Функция f (x) называется возрастающей на промежутке D, если для любых чисел x1 и x2 из промежутка D таких, что x1 f (x2).

Что значит характер монотонности функции
Рисунок 1.3.5.1.Промежутки возрастания и убывания функции

Если функция возрастает или убывает на некотором промежутке, то она называется монотонной на этом промежутке.

Заметим, что если f – монотонная функция на промежутке D (f (x)), то уравнение f (x) = const не может иметь более одного корня на этом промежутке.

Действительно, если x1 0) и f + c также возрастают, а функция cf (c

Что значит характер монотонности функции
Модель 1.9.
Свойства функции

Точка a называется точкой максимума функции f, если существует такая ε-окрестность точки a, что для любого x из этой окрестности выполняется неравенство f (a) ≥ f (x).

Точка a называется точкой минимума функции f, если существует такая ε-окрестность точки a, что для любого x из этой окрестности выполняется неравенство f (a) ≤ f (x).

Точки, в которых достигается максимум или минимум функции, называются точками экстремума.

В точке экстремума происходит смена характера монотонности функции. Так, слева от точки экстремума функция может возрастать, а справа – убывать. Согласно определению, точка экстремума должна быть внутренней точкой области определения.

(x ≠ a) выполняется неравенство f (x) ≤ f (a)

то точка a называется точкой наибольшего значения функции на множестве D:

(x ≠ b) выполняется неравенство f (x) > f (b)

то точка b называется точкой наименьшего значения функции на множестве D.

Точка наибольшего или наименьшего значения может быть экстремумом функции, но не обязательно им является.

Точку наибольшего (наименьшего) значения непрерывной на отрезке функции следует искать среди экстремумов этой функции и ее значений на концах отрезка.

График 1.3.5.1.Функция, ограниченная сверху
График 1.3.5.2.Функция, ограниченная снизу
График 1.3.5.3.Функция, ограниченная на множестве D.

Если существует число C такое, что для любого

выполняется неравенство f (x) ≤ C, то функция f называется ограниченной сверху на множестве D.

Если существует число c такое, что для любого

выполняется неравенство f (x) ≥ c, то функция f называется ограниченной снизу на множестве D.

Функция, ограниченная и сверху, и снизу, называется ограниченной на множестве D. Геометрически ограниченность функции f на множестве D означает, что график функции y = f (x),

лежит в полосе c ≤ y ≤ C.

Если функция не является ограниченной на множестве, то говорят, что она не ограничена.

Примером функции, ограниченной снизу на всей числовой оси, является функция y = x2. Примером функции, ограниченной сверху на множестве (–∞; 0) является функция y = 1/x. Примером функции, ограниченной на всей числовой оси, является функция y = sin x.

Источник

Алгебра

А Вы уже инвестируете?
Слышали про акцию в подарок?

Зарегистрируйся по этой ссылке
и получи акцию до 100.000 руб

План урока:

Возрастание и убывание функций

Посмотрим на график произвольной функции:

Видно, что область определения ф-ции – это промежуток [– 6; 4].

На графике сначала ф-ция как бы «поднимается». При увеличении х растет значение у. Так происходит до точки (1; 5). После этого ситуация меняется, при увеличении аргумента значение ф-ции начинает падать. В математике принято говорить, что ф-ция возрастает на промежутке [– 6; 1] и функция убывает на промежутке [1; 4]. Можно сказать и иначе – ф-ция у является возрастающей функцией на множестве [– 6; 1] и убывающей функцией на множестве [1; 4].

Рассмотрим это определение возрастающей функции подробнее. Построим произвольную возрастающую ф-цию и выберем на ней две точки со значениями аргумента х1 и х2. Также отметим значения ф-ции в этих точках, у(х1) и у(х2):

По определению, если х1 меньше х2, то и у(х1) »и « у(х1). По определению получаем, что у = 2х – 3 – возрастающая ф-ция.

Промежутки монотонности основных функций

Мы ранее уже изучили несколько видов ф-ций. Посмотрим, какие у них промежутки монотонности.

Поведение линейной ф-ции у = kх + b зависит исключительно от значение коэффициента k. Если он больше нуля, то функция возрастает на промежутке (– ∞; + ∞), то есть на всей числовой прямой. Если же k n зависит от показателя n. Если он нечетный, то получается ф-ция, возрастающая на всей числовой прямой:

Если же число n четное, то степенная ф-ция будет убывать на промежутке (– ∞:0] и возрастать на промежутке [0; + ∞):

Пример. Найдите значения параметра a, при котором ф-ция

у = (5а – 2)х +16

является возрастающей.

Решение. Данная ф-ция является линейной ф-цией вида у = kx + b, где в роли коэффициента k выступает выражение (5а – 2). Ф-ция будет возрастать, если этот коэффициент будет больше нуля, то есть

Получаем, что ф-ция будет возрастающей при значениях а, больших 0,4, или, другими словами, при а∊(4; + ∞).

Свойства монотонных функций

Монотонные функции имеют ряд примечательных свойств, которые могут помогать при решении задач. Вспомним, что некоторые ф-ции могут при различных значениях аргументов принимать одинаковое значение. Например, таковой является степенная ф-ция у = х 2 :

С точки зрения графиков это означает, что горизонтальная линия может пересекать график ф-ции в нескольких точках:

С другой стороны, это значит, что уравнение х 2 = 4 имеет два корня, 2 и ( – 2).

Если же ф-ция строго монотонна, то такая ситуация невозможна. Любое ее значение может быть получено только при одном значении аргумента.

Действительно, если ф-ция монотонна, то любая горизонтальная прямая сможет пересечь ее график не более чем в одной точке:

Это также означает, что, если у(х) – строго монотонная ф-ция, а b– произвольное число, то уравнение у(х) = b имеет не более одного корня. Так, у уравнения х 3 = 8 есть только один корень (он равен 2), потому что х 3 – монотонная ф-ция.

Рассмотрим следующее свойство монотонных функций.

Действительно, ранее мы уже изучали сжатие и растягивание графиков. умножение ф-ции на постоянное число как раз и ведет к подобным преобразованиям. Ясно, что при этом не происходит изменение монотонности ф-ций:

Например, парабола у = х 2 возрастает на промежутке [0; + ∞), значит, и ф-ция у = 3х 2 также возрастает на этом же промежутке:

Проще говоря, при умножении ф-ции на положительное число ее промежутки монотонности не изменяются.

А что же произойдет при умножении ф-ции на отрицательное число. Она не только сожмется или растянется, но ещё и отобразится симметрично относительно оси Ох. В результате промежутки возрастания ф-ции превратятся в промежутки убывания, и наоборот.

Проиллюстрируем это на примере ф-ций у = х 2 и у = – х 2 :

Видно, что на промежутке (– ∞; 0] ф-ция у = – х 2 возрастает, в то время как обычная парабола убывает. На промежутке [0; + ∞)ситуация противоположная.

Если две ф-ции одновременно возрастают на одном промежутке, то и их сумма также будет возрастать на этом промежутке.

Например, ф-ции у = х 5 и у = 4х возрастают на всей числовой прямой. Следовательно, возрастающей является и ф-ция у = х 5 + 4х.

Пример. Решите уравнение

х 7 + 2х – 3 = 0

Решение. Можно заметить, что число 1 является корнем этого уравнения. Действительно, подставим единицу в уравнение и получим верное равенство:

Докажем, что других корней уравнение не имеет. В его левой части стоит сумма двух возрастающих ф-ций, у = х 7 и у = 2х – 3. Следовательно, и ф-ция у = х 7 + 2х – 3 также является возрастающей на всей числовой прямой. Это значит, что исследуемое уравнение имеет не более 1 корня, то есть корень х = 1 – единственный.

Пример. Докажите, что у уравнения

не более одного корня.

Выражение в левой части имеет смысл только при положительных х. Ведь если х 2 :

В общем случае эту особенность можно доказать так:

у(– х) = (– х) 2 = х 2 = у(х)

В математике есть специальный термин для обозначения ф-ций, обладающих таким свойством. Их называют четным функциями.

Определение четной функции можно записать и так, чтобы в нем фигурировали формулы:

Для проверки того, является ли функция четной, достаточно подставить в нее вместо аргумента х величину (– х).

Пример. Докажите, что ф-ция у = х 4 + 3х 2 является четной.

Решение. Подставим в ф-цию значение (– х):

у(– х) = (– х) 4 + 3(– х) 2 = х 4 + 3х 2

Получили исходную ф-цию у(х). Значит, исследуемая функция является четной.

Пример. Четна ли ф-ция

Решение снова подставим в ф-цию значение (– х):

Получили изначальную ф-цию. Следовательно, она – четная.

Почему же четные ф-ции симметричны относительно оси Оу? Из определения следует, что если графику четной ф-ции принадлежит точка (х00), то ему же принадлежит точка (– х00). Посмотрим, как они располагаются на координатной плоскости:

Они симметричны относительно оси Оу. Если же для каждой точки графика есть симметричная точка, также ему принадлежащая, то и в целом график симметричен относительно вертикальной оси.

Такая симметрия (относительно точки), называется центральной. Геометрически она означает, каждой точке графика в I четверти с двумя положительными координатами соответствует точка графика в III четверти с такими же координатами, но взятыми со знаком «минус»:

Существует множество ф-ций, обладающих подобной симметрией. В математике их все называют нечетными функциями. У них противоположным значениям аргументов соответствуют противоположные значения ф-ции, а график нечетной функции всегда симметричен относительно начала координат.

Чаще используется определение, содержащее формулу:

Покажем это свойство у ф-ции у = х 3 :

Для того, чтобы доказать нечетность ф-ции, надо поставить в нее (– х) вместо х. Если получилась исходная ф-ция с противоположным знаком, то это значит, что ф-ция нечетная.

Пример. Докажите, что ф-ция у = х 5 + х – нечетная.

Решение: Подставим (– х):

у(– х) = (– х) 5 + (– х) = –х 5 – х = – (х 5 + х) = – у(х)

Получили исходную ф-цию, но со знаком «минус», поэтому ф-ция является нечетной.

Пример. Докажите нечетность ф-ции у = 5/х + 4х.

Решение. Подставляем в ф-цию (– х):

у = 5/(– х) + 4(– х) = – 5/х – 4х = – (5/х + 4х) = – у(х)

Снова получили исходную ф-цию со знаком минус, следовательно, мы исследовали нечетную ф-цию.

Известно, что любое целое число либо четное, либо нечетное. Однако с ф-циями всё по-другому. Существует множество ф-ций, которые не относятся ни к тем, ни к другим. Чтобы доказать, что ф-ция не является ни четной, ни нечетной, достаточно продемонстрировать, что хотя бы для одного значения х не выполняются условия у(– х) = у(х) и у(– х) = – у(х).

Пример. Докажите, что у = х 3 + х 2 – ни четная, ни нечетная ф-ция.

Решение. Определим значение ф-ции при, например, х = 1 и х = –1

у(– 1) = (– 1) 3 + (– 1) 2 = 0

Получили, что при противоположных х значения у не являются ни одинаковыми, ни противоположными. Значит, рассматриваемая ф-ция не подходит под приведенные определения четности и нечетности.

Свойства четных и нечетных функций

Рассмотрим важные свойства, помогающие быстро определять четность и нечетность ф-ций.

Так, ф-ции у = х 3 и у = 1/х – нечетны. Значит, нечетна и их сумма у = х 3 + 1/х.

Другими словами, ф-цию можно «перевернуть», и она всё равно сохранит свою четность. Так, ф-ция 5х 4 + х 2 четная, поэтому и ф-ция

останется такой же.

Вообще рассматриваемое свойство ф-ции часто называют ее четностью. Так, про две рассматриваемые ф-ции у = х 3 и у = х 9 можно сказать, что они обладают одинаковой четностью (обе нечетные), а у = х 5 и у = х 7 обладают различной четностью (одна из них четная, а другая нечетная).

Например, ф-ции у = 5х 3 + 6х и у = 9х 5 имеют одинаковую четность (обе нечетные), а потому их произведение у = 9х 5 (5х 3 + 6х) является четным. С другой стороны, у = х 5 и у = х 8 + у 6 имеют различную четность, следовательно, их произведение у = х 5 (х 8 + у 6 ) нечетное.

Докажем справедливость этого правила. Пусть есть две ф-ции, у = у(х) и g = g(х), которые обладают какой-нибудь четностью. Определим четность их произведения у(х)•g(х). Для этого рассмотрим 3 различных случая:

Пример. Определите четность ф-ции у = (8х 4 + 3х 2 )(7х 5 + 2х)

Решение. Ф-ция из условия представляет собой произведение двух других ф-ций: у = 8х 4 + 3х 2 и у = 7х 5 + 2х. Первая из них является суммой двух четных и поэтому сама четная. Вторая ф-ция, наоборот, нечетная. Следовательно, их произведение – это тоже нечетная ф-ция.

Ответ: Нечетная ф-ция.

Пример. Определите четность ф-ции у = (х 6 + х 2 )(х 10 + х 8 )

Решение. Так как ф-ции у = х 6 + х 2 и у = х 10 + х 8 имеют одинаковую четность (обе четные), то их произведение является четным.

Для изучения следующего свойства ф-ций необходимо сначала рассмотреть понятие сложной ф-ции. Так называют ф-цию, которую получают подстановкой одной «простой» ф-ции в другую.Например, пусть есть ф-ции g = х 2 и у = х 3 + 2х. Подставив вторую в первую, получим

Ещё пример сложной ф-ции:

у = 2(9х 2 + 4х + 1) 3 + 3(9х 2 + 4х + 1)

Она получена путем подстановки выражения 9х 2 + 4х + 1 в ф-цию у = х 3 + 3х. В общем случае, если в ф-цию у = f (x) подставляют g(x), то используют запись у = f (g(x)). Иногда вместо термина «сложная функция» используют аналогичное понятие «композиция функций».

Итак, сформулируем ещё одно свойство четных функций:

которая будет четной. При этом природа ф-ции у = 5х + 7 + 1/х не играет никакой роли. Мы могли бы взять любую другую ф-цию, например, у = 958,235х 3 – 12,25х 2 + 19х + 2/3, и подставив в нее х 2 вместо х, получить ф-цию

у = 958,235(х 2 ) 3 – 12,25(х 2 ) 2 + 19х 2 + 2/3

которая будет четной.

Ограниченные и неограниченные функции

В математике говорят, что ф-ция у = х 2 ограничена снизу. То есть для любого допустимого х выполняется неравенство у(х) ⩾ а, где а – это какое-то произвольное число. И действительно, неравенство х 2 ⩾ 0 выполняется при всех значениях х. Также выполняются неравенства

Дадим определение функции, ограниченной снизу

Очевидно, что если неравенство у(х) ⩾ а выполняется хотя бы для одного числа а, то оно выполняется и для всех а, которые ещё меньше. Так, из справедливости неравенства х 2 ⩾ 0 автоматически следует справедливость неравенства х 2 ⩾ – 1,5, так как

Аналогично в математике существует понятие функции, ограниченной сверху.

В качестве примера ограниченной сверху ф-ции можно привести у = 4 – х 2 :

Ясно, что неравенство 4 – х 2 ⩽ 4 выполняется при всех х, то есть ни одна точка графика не лежит выше прямой у = 4.

Иногда бывает так, что функция ограничена одновременно и снизу, и сверху. Их называют ограниченными функциями.

Ф-ция, не попадающее под это определение, называется неограниченной функцией. В качестве примера неограниченной функции можно привести линейную ф-цию у = х + 1.

График ограниченной ф-ции находится в своеобразной «полосе» из горизонтальных линий, которые ограничивают его сверху и снизу. Примером ограниченной ф-ции является

С одной стороны, у этой дроби и числитель, и знаменатель – положительное число, поэтому она ограничена снизу прямой у = 0. С другой стороны, дробь тем больше, чем меньше ее знаменатель (если они оба положительны). Минимальное значение выражения х 2 + 1 – это единица (при х = 0), а поэтому максимальное значение дроби равно 4/1 = 4. Поэтому график ограничен сверху прямой у = 4.

Пример. Ограничена ли ф-ция

Решение. Выделим в ф-ции целую часть:

Так как величина 5х 2 + 5 всегда положительна, то и дробь

а значит, и вообще вся ф-ция положительна, то есть ограничена снизу прямой у = 0

С другой стороны, дробь будет принимать максимальное значение при минимальном значении знаменателя, которое равно 5 (при х = 0) При х = 0 имеем

Получается, что ф-ция ограничена сверху прямой у = 1,4.

Пример. Ограничена ли ф-ция

Решение. Величина х 2 всегда положительна, то есть х 2 ⩾ 0. Преобразуем это неравенство, умножив его на (– 1) и добавив к нему 16:

Получили, что подкоренное выражение не превосходит 16, а значит, и корень из него не больше, чем

То есть график будет ограничен прямой у = 4 сверху. С другой стороны, арифметический квадратный корень не может быть отрицательным числом, а потому его график ограничен снизу прямой у = 0. Для наглядности покажем график исследуемой ф-ции:

Квадратичная функция

В качестве ф-ции можно использовать квадратный трехчлен, например:

у = – 1,5х 2 + 19х + 0,5

у = 0,005х 2 + 654,25х – 124

Все эти ф-ции заданы с помощью выражения, представляющего собой квадратный трехчлен, поэтому в математике их называют квадратичными функциями.

Если коэффициент перед х 2 окажется равным нулю, то ф-ция превратится из квадратичной в линейную:

0х 2 + bx + c = bx + c

Попытаемся понять, как выглядит график квадратичной функции. Для этого начнем рассматривать частные случаи и использовать правило растяжения и сжатия, а также параллельного переноса графиков ф-ций.

Если в выражение для квадратичной ф-ции подставить значения

то получится уже известная нам степенная ф-ция у = х 2 :

Её графиком является парабола.

График ф-ции у = ах 2 – это тоже парабола (где а – некоторое число), которая однако, получена из «обычной» параболы у = х 2 путем сжатия или растяжения графика. Если коэффициент а является отрицательным, то парабола «перевернется» то есть отобразится симметрично относительно оси Ох. Покажем примеры нескольких графиков у = ах 2 :

Напомним, что при добавлении к ф-ции какого-нибудь постоянного числа n ее график переносится на n единиц вверх. Зная это можно легко получить график ф-ции у = ах 2 + с из графика у = ах 2 :

Таким образом, графиком ф-ции у = ах 2 + с является парабола, чья вершина поднята на с единиц вверх.

Как изменится график квадратичной ф-ции у = ах 2 + с, если в вместо х возводить в квадрат выражение (х +m), где m – произвольное число? В этом случае ф-ция примет вид у = а(х +m) 2 + с. Вершина параболы должна будет сместиться на m единиц влево:

Теперь докажем, что любая квадратичная ф-ция может быть представлена как в виде у = а(х + m) + n, где m и n – некоторые числа (в том числе и отрицательные). Похожие преобразования мы производили, когда учились решать квадратные уравнения. Запишем саму квадратичную ф-цию:

Вынесем множитель а за скобки:

Далее попытаемся преобразовать трехчлен в скобках, используя формулу квадрата суммы. Для этого добавим к нему и сразу же вычтем величину (b/2a) 2 :

Теперь раскроем внешние скобки:

Теперь произведем две замены:

Используя их, можно записать:

Получили, что любую квадратичную ф-цию можно свести к виду у = а(х + m) 2 + n. Что это значит и для чего мы это доказывали? Из этого факта следует, что график любой квадратичной ф-ции может быть получен из обычной параболы у = х 2 за счет трех действий.

Итак, как будет выглядеть график квадратичной ф-ции? В общем случае он является параболой, центр которой располагается не в точке (0;0), а в некоторой другой точке (х0; у0):

Если мы вернемся к доказательству того, что любую квадратичную ф-цию можно представить в виде у = а(х + m) 2 + n, то увидим, что число m рассчитывается по формуле

Так как график из-за этого числа m перемещается влево, а не вправо, то координата вершины х0 рассчитывается по формуле:

Нет смысла составлять такую же формулу для определения координаты вершины у0, ведь можно подставить х0 в сам ф-цию и так узнать вторую координату вершины.

Пример. Определите вершину параболы, задаваемой ф-цией

у = 2х 2 + 8х + 5

Решение. Выпишем коэффициенты а, b и c квадратичной ф-ции:

Зная их, легко рассчитаем координату х вершины параболы:

Теперь подставим это число в исходную ф-цию и определим координату у вершины параболы:

у0 = у(х0) = 2(– 2) 2 + 8(– 2) + 5 = 8 – 16 + 5 = – 3

Напомним, что нули ф-ции – это те точки, в которых ее график пересекает ось Ох. Для их поиска необходимо приравнять ф-цию к нулю и решить уравнение. В случае с квадратичной ф-цией мы получим квадратной уравнение.

Пример. Постройте график ф-ции у = х 2 – 4х + 3, отметьте на нем вершину параболы и нули ф-ции.

Решение. Приравняем ф-цию к нулю:

Решим это уравнение

D = b 2 – 4ас = (– 4) 2 – 4•1•3 = 16 – 12 = 4

Итак, нашли нули ф-ции: 1 и 3. Теперь найдем вершину параболы:

у0 = у(х0) = 2 2 – 4•2 + 3 = 4 – 8 + 3 = – 1

Вершина находится в точке (2; – 1). Теперь отметим ее, а также нули ф-ции на графике, и соединим их линией, похожей на параболу:

При необходимости для точности построения всегда можно вычислить значение ф-ции в нескольких дополнительных точках и провести параболу через них. Здесь мы этого делать не будем

Ответ: вершина параболы – точка (2; – 1), нули ф-ции х1 = 1 и х2 = 3

Обратите внимание, что в рассмотренном примере вершина параболы оказалась ниже нулей, поэтому ее ветви смотрят вверх. Вообще, если коэффициент а > 0, то ветви смотрят вверх, а если а 2 – 4х + 6

у = – 3х 2 + 6х – 4

Решение. Начнем с первой ф-ции. Сначала найдем ее нули:

D = b 2 – 4ас = (– 4) 2 – 4•(– 2)•6 = 16+48 = 64

Найдем вершину. Сначала используем обычную формулу:

Далее просто проверим себя, найдя среднее арифметическое нулей ф-ции:

Как и ожидалось, получились одинаковые результаты! Вычислим теперь у0:

у0 = у(х0) = – 2(– 1) 2 – 4(– 1) + 6 = – 2 + 4 + 6 = 8

Итак, вершина первой ф-ции – это точка (– 1; 8).

Перейдем ко второй ф-ции. Попробуем найти ее нули:

D = b 2 – 4ас = 6 2 – 4•(– 3)•(– 4) = 36–48 = – 16

Дискриминант отрицательный, значит, корней у уравнения нет. Не будет и нулей и ф-ции. Найдем вершину параболы

Найдем координату у0 вершины:

у0 = у(х0) = – 3•1 2 + 6•1 – 4 = – 3 + 6 – 4 = – 1

Отметим, что у обоих графиков коэффициент а отрицательный, а потому их ветви будут смотреть вниз. Построим их графики:

Иногда приходится решать обратную задачу – по графику квадратичной ф-ции находить выражение, задающее эту ф-цию. Для ее решения необходимо подставлять в общий вид квадратичной ф-ции

значения квадратичной функции, взятые из графика (то есть координаты точек параболы) и получать уравнения, из которых можно найти величины a, b и c.

Пример. Запишите выражение для квадратичной ф-ции, имеющей следующий график:

Решение. Заметим, что графику параболы принадлежит точка с координатами (0; 3). Подставим эти числа, х = 0 и у = 3, в квадратичную ф-цию:

Итак, мы нашли, что коэффициент с = 3. Осталось найти а и b. Возьмем ещё одну точку, скажем, (1; 0), и подставим ее координаты (вообще в большинстве случаев удобно брать точки, одна из координат которой равна 0 или, на худой конец, единице):

Возьмем точку с координатами (– 3; 0):

Получили два уравнения с двумя неизвестными: a + b = – 3 и 9а – 3b = – 3. Решим систему, составленную из них:

Подставим первое уравнение во второе и получим:

Нашли а. Теперь подставим его в уравнение для b:

b = – 3 – а = – 3 – (– 1) = – 2

Получили b = – 2. Мы нашли все коэффициенты, а потому можем записать ф-цию в аналитическом виде:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *